1
|
Zhang C, Wei G, Zhou N, Wang Y, Feng J, Wang X, Zhang A, Chen K. Systematic Engineering of Escherichia coli for Efficient Production of Pseudouridine from Glucose and Uracil. ACS Synth Biol 2024; 13:1303-1311. [PMID: 38529630 DOI: 10.1021/acssynbio.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
In this study, we proposed a biological approach to efficiently produce pseudouridine (Ψ) from glucose and uracil in vivo using engineered Escherichia coli. By screening host strains and core enzymes, E. coli MG1655 overexpressing Ψ monophosphate (ΨMP) glycosidase and ΨMP phosphatase was obtained, which displayed the highest Ψ concentration. Then, optimization of the RBS sequences, enhancement of ribose 5-phosphate supply in the cells, and overexpression of the membrane transport protein UraA were investigated. Finally, fed-batch fermentation of Ψ in a 5 L fermentor can reach 27.5 g/L with a yield of 89.2 mol % toward uracil and 25.6 mol % toward glucose within 48 h, both of which are the highest to date. In addition, the Ψ product with a high purity of 99.8% can be purified from the fermentation broth after crystallization. This work provides an efficient and environmentally friendly protocol for allowing for the possibility of Ψ bioproduction on an industrial scale.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Guoguang Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ning Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yingying Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jia Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Alei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
2
|
Chen H, Liu H, Zhang C, Xiao N, Li Y, Zhao X, Zhang R, Gu H, Kang Q, Wan J. RNA methylation-related inhibitors: Biological basis and therapeutic potential for cancer therapy. Clin Transl Med 2024; 14:e1644. [PMID: 38572667 PMCID: PMC10993167 DOI: 10.1002/ctm2.1644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 04/05/2024] Open
Abstract
RNA methylation is widespread in nature. Abnormal expression of proteins associated with RNA methylation is strongly associated with a number of human diseases including cancer. Increasing evidence suggests that targeting RNA methylation holds promise for cancer treatment. This review specifically describes several common RNA modifications, such as the relatively well-studied N6-methyladenosine, as well as 5-methylcytosine and pseudouridine (Ψ). The regulatory factors involved in these modifications and their roles in RNA are also comprehensively discussed. We summarise the diverse regulatory functions of these modifications across different types of RNAs. Furthermore, we elucidate the structural characteristics of these modifications along with the development of specific inhibitors targeting them. Additionally, recent advancements in small molecule inhibitors targeting RNA modifications are presented to underscore their immense potential and clinical significance in enhancing therapeutic efficacy against cancer. KEY POINTS: In this paper, several important types of RNA modifications and their related regulatory factors are systematically summarised. Several regulatory factors related to RNA modification types were associated with cancer progression, and their relationships with cancer cell migration, invasion, drug resistance and immune environment were summarised. In this paper, the inhibitors targeting different regulators that have been proposed in recent studies are summarised in detail, which is of great significance for the development of RNA modification regulators and cancer treatment in the future.
Collapse
Affiliation(s)
- Huanxiang Chen
- Department of Clinical LaboratoryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- School of Life ScienceZhengzhou UniversityZhengzhouChina
| | - Hongyang Liu
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chenxing Zhang
- Department of Clinical LaboratoryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Nan Xiao
- Department of Clinical LaboratoryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yang Li
- Department of Clinical LaboratoryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | | | - Ruike Zhang
- Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Huihui Gu
- Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Qiaozhen Kang
- School of Life ScienceZhengzhou UniversityZhengzhouChina
| | - Junhu Wan
- Department of Clinical LaboratoryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
3
|
Añazco-Guenkova AM, Miguel-López B, Monteagudo-García Ó, García-Vílchez R, Blanco S. The impact of tRNA modifications on translation in cancer: identifying novel therapeutic avenues. NAR Cancer 2024; 6:zcae012. [PMID: 38476632 PMCID: PMC10928989 DOI: 10.1093/narcan/zcae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Recent advancements have illuminated the critical role of RNA modifications in post-transcriptional regulation, shaping the landscape of gene expression. This review explores how tRNA modifications emerge as critical players, fine-tuning functionalities that not only maintain the fidelity of protein synthesis but also dictate gene expression and translation profiles. Highlighting their dysregulation as a common denominator in various cancers, we systematically investigate the intersection of both cytosolic and mitochondrial tRNA modifications with cancer biology. These modifications impact key processes such as cell proliferation, tumorigenesis, migration, metastasis, bioenergetics and the modulation of the tumor immune microenvironment. The recurrence of altered tRNA modification patterns across different cancer types underscores their significance in cancer development, proposing them as potential biomarkers and as actionable targets to disrupt tumorigenic processes, offering new avenues for precision medicine in the battle against cancer.
Collapse
Affiliation(s)
- Ana M Añazco-Guenkova
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Borja Miguel-López
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Óscar Monteagudo-García
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Raquel García-Vílchez
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Sandra Blanco
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
4
|
Qiu L, Jing Q, Li Y, Han J. RNA modification: mechanisms and therapeutic targets. MOLECULAR BIOMEDICINE 2023; 4:25. [PMID: 37612540 PMCID: PMC10447785 DOI: 10.1186/s43556-023-00139-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
RNA modifications are dynamic and reversible chemical modifications on substrate RNA that are regulated by specific modifying enzymes. They play important roles in the regulation of many biological processes in various diseases, such as the development of cancer and other diseases. With the help of advanced sequencing technologies, the role of RNA modifications has caught increasing attention in human diseases in scientific research. In this review, we briefly summarized the basic mechanisms of several common RNA modifications, including m6A, m5C, m1A, m7G, Ψ, A-to-I editing and ac4C. Importantly, we discussed their potential functions in human diseases, including cancer, neurological disorders, cardiovascular diseases, metabolic diseases, genetic and developmental diseases, as well as immune disorders. Through the "writing-erasing-reading" mechanisms, RNA modifications regulate the stability, translation, and localization of pivotal disease-related mRNAs to manipulate disease development. Moreover, we also highlighted in this review all currently available RNA-modifier-targeting small molecular inhibitors or activators, most of which are designed against m6A-related enzymes, such as METTL3, FTO and ALKBH5. This review provides clues for potential clinical therapy as well as future study directions in the RNA modification field. More in-depth studies on RNA modifications, their roles in human diseases and further development of their inhibitors or activators are needed for a thorough understanding of epitranscriptomics as well as diagnosis, treatment, and prognosis of human diseases.
Collapse
Affiliation(s)
- Lei Qiu
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Qian Jing
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yanbo Li
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| |
Collapse
|
5
|
Pomaville MM, He C. Advances in targeting RNA modifications for anticancer therapy. Trends Cancer 2023; 9:528-542. [PMID: 37147166 PMCID: PMC10330282 DOI: 10.1016/j.trecan.2023.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/07/2023]
Abstract
Numerous strategies are employed by cancer cells to control gene expression and facilitate tumorigenesis. In the study of epitranscriptomics, a diverse set of modifications to RNA represent a new player of gene regulation in disease and in development. N6-methyladenosine (m6A) is the most common modification on mammalian messenger RNA and tends to be aberrantly placed in cancer. Recognized by a series of reader proteins that dictate the fate of the RNA, m6A-modified RNA could promote tumorigenesis by driving protumor gene expression signatures and altering the immunologic response to tumors. Preclinical evidence suggests m6A writer, reader, and eraser proteins are attractive therapeutic targets. First-in-human studies are currently testing small molecule inhibition against the methyltransferase-like 3 (METTL3)/methyltransferase-like 14 (METTL14) methyltransferase complex. Additional modifications to RNA are adopted by cancers to drive tumor development and are under investigation.
Collapse
Affiliation(s)
- Monica M Pomaville
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL, USA; Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA; Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
| | - Chuan He
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA; Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
6
|
Heparan Sulfate and Enoxaparin Interact at the Interface of the Spike Protein of HCoV-229E but Not with HCoV-OC43. Viruses 2023; 15:v15030663. [PMID: 36992372 PMCID: PMC10056857 DOI: 10.3390/v15030663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/20/2022] [Accepted: 01/05/2023] [Indexed: 03/05/2023] Open
Abstract
It is known that the spike protein of human coronaviruses can bind to a secondary receptor, or coreceptor, to facilitate the virus entry. While HCoV-229E uses human aminopeptidase N (hAPN) as a receptor, HCoV-OC43 binds to 9-O-acetyl-sialic acid (9-O-Ac-Sia), which is linked in a terminal way to the oligosaccharides that decorate glycoproteins and gangliosides on the surface of the host cell. Thus, evaluating the possible inhibitory activity of heparan sulfate, a linear polysaccharide found in animal tissues, and enoxaparin sodium on these viral strains can be considered attractive. Therefore, our study also aims to evaluate these molecules’ antiviral activity as possible adsorption inhibitors against non-SARS-CoV. Once the molecules’ activity was verified in in vitro experiments, the binding was studied by molecular docking and molecular dynamic simulations confirming the interactions at the interface of the spike proteins.
Collapse
|
7
|
Gentile D, Coco A, Patamia V, Zagni C, Floresta G, Rescifina A. Targeting the SARS-CoV-2 HR1 with Small Molecules as Inhibitors of the Fusion Process. Int J Mol Sci 2022; 23:10067. [PMID: 36077465 PMCID: PMC9456533 DOI: 10.3390/ijms231710067] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
The rapid and global propagation of the novel human coronavirus that causes severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has produced an immediate urgency to discover promising targets for the treatment of this virus. In this paper, we studied the spike protein S2 domain of SARS-CoV-2 as it is the most conserved component and controls the crucial fusion process of SARS-CoV-2 as a target for different databases of small organic compounds. Our in silico methodology, based on pharmacophore modeling, docking simulation and molecular dynamics simulations, was first validated with ADS-J1, a potent small-molecule HIV fusion inhibitor that has already proved effective in binding the HR1 domain and inhibiting the fusion core of SARS-CoV-1. It then focused on finding novel small molecules and new peptides as fusion inhibitors. Our methodology identified several small molecules and peptides as potential inhibitors of the fusion process. Among these, NF 023 hydrate (MolPort-006-822-583) is one of the best-scored compounds. Other compounds of interest are ZINC00097961973, Salvianolic acid, Thalassiolin A and marine_160925_88_2. Two interesting active peptides were also identified: AP00094 (Temporin A) and AVP1227 (GBVA5). The inhibition of the spike protein of SARS-CoV-2 is a valid target to inhibit the virus entry in human cells. The discussed compounds reported in this paper led to encouraging results for future in vitro tests against SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco e Della Salute, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
8
|
Leptidis S, Papakonstantinou E, Diakou KI, Pierouli K, Mitsis T, Dragoumani K, Bacopoulou F, Sanoudou D, Chrousos GP, Vlachakis D. Epitranscriptomics of cardiovascular diseases (Review). Int J Mol Med 2022; 49:9. [PMID: 34791505 PMCID: PMC8651226 DOI: 10.3892/ijmm.2021.5064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022] Open
Abstract
RNA modifications have recently become the focus of attention due to their extensive regulatory effects in a vast array of cellular networks and signaling pathways. Just as epigenetics is responsible for the imprinting of environmental conditions on a genetic level, epitranscriptomics follows the same principle at the RNA level, but in a more dynamic and sensitive manner. Nevertheless, its impact in the field of cardiovascular disease (CVD) remains largely unexplored. CVD and its associated pathologies remain the leading cause of death in Western populations due to the limited regenerative capacity of the heart. As such, maintenance of cardiac homeostasis is paramount for its physiological function and its capacity to respond to environmental stimuli. In this context, epitranscriptomic modifications offer a novel and promising therapeutic avenue, based on the fine‑tuning of regulatory cascades, necessary for cardiac function. This review aimed to provide an overview of the most recent findings of key epitranscriptomic modifications in both coding and non‑coding RNAs. Additionally, the methods used for their detection and important associations with genetic variations in the context of CVD were summarized. Current knowledge on cardiac epitranscriptomics, albeit limited still, indicates that the impact of epitranscriptomic editing in the heart, in both physiological and pathological conditions, holds untapped potential for the development of novel targeted therapeutic approaches in a dynamic manner.
Collapse
Affiliation(s)
- Stefanos Leptidis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Kalliopi Io Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Katerina Pierouli
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Thanasis Mitsis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Flora Bacopoulou
- Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Despina Sanoudou
- Fourth Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, Medical School, 'Attikon' Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George P. Chrousos
- Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
- Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London WC2R 2LS, UK
| |
Collapse
|
9
|
Zhu LR, Ni WJ, Cai M, Dai WT, Zhou H. Advances in RNA Epigenetic Modifications in Hepatocellular Carcinoma and Potential Targeted Intervention Strategies. Front Cell Dev Biol 2021; 9:777007. [PMID: 34778277 PMCID: PMC8586511 DOI: 10.3389/fcell.2021.777007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/12/2021] [Indexed: 01/02/2023] Open
Abstract
The current interventions for hepatocellular carcinoma (HCC) are not satisfactory, and more precise targets and promising strategies need to be explored. Recent research has demonstrated the non-negligible roles of RNA epigenetic modifications such as N6-methyladenosine (m6A) and 5-methylcytosine (m5C) in various cancers, including HCC. However, the specific targeting mechanisms are not well elucidated. In this review, we focus on the occurrence and detailed physiopathological roles of multiple RNA modifications on diverse RNAs closely related to the HCC process. In particular, we highlight fresh insights into the impact mechanisms of these posttranscriptional modifications on the whole progression of HCC. Furthermore, we analyzed the possibilities and significance of these modifications and regulators as potential therapeutic targets in HCC treatment, which provides the foundation for exploring targeted intervention strategies. This review will propel the identification of promising therapeutic targets and novel strategies that can be translated into clinical applications for HCC treatment.
Collapse
Affiliation(s)
- Li-Ran Zhu
- Anhui Provincial Children’s Hospital, Anhui Institute of Pediatric Research, Hefei, China
| | - Wei-Jian Ni
- The Key Laboratory of Anti-inflammatory of Immune Medicines, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Ministry of Education, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
- Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ming Cai
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Wen-Tao Dai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, China
| | - Hong Zhou
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
10
|
Nombela P, Miguel-López B, Blanco S. The role of m 6A, m 5C and Ψ RNA modifications in cancer: Novel therapeutic opportunities. Mol Cancer 2021; 20:18. [PMID: 33461542 PMCID: PMC7812662 DOI: 10.1186/s12943-020-01263-w] [Citation(s) in RCA: 278] [Impact Index Per Article: 92.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
RNA modifications have recently emerged as critical posttranscriptional regulators of gene expression programmes. Significant advances have been made in understanding the functional role of RNA modifications in regulating coding and non-coding RNA processing and function, which in turn thoroughly shape distinct gene expression programmes. They affect diverse biological processes, and the correct deposition of many of these modifications is required for normal development. Alterations of their deposition are implicated in several diseases, including cancer. In this Review, we focus on the occurrence of N6-methyladenosine (m6A), 5-methylcytosine (m5C) and pseudouridine (Ψ) in coding and non-coding RNAs and describe their physiopathological role in cancer. We will highlight the latest insights into the mechanisms of how these posttranscriptional modifications influence tumour development, maintenance, and progression. Finally, we will summarize the latest advances on the development of small molecule inhibitors that target specific writers or erasers to rewind the epitranscriptome of a cancer cell and their therapeutic potential.
Collapse
Affiliation(s)
- Paz Nombela
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007, Salamanca, Spain
| | - Borja Miguel-López
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007, Salamanca, Spain
| | - Sandra Blanco
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007, Salamanca, Spain. .,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
11
|
An Integrated Pharmacophore/Docking/3D-QSAR Approach to Screening a Large Library of Products in Search of Future Botulinum Neurotoxin A Inhibitors. Int J Mol Sci 2020; 21:ijms21249470. [PMID: 33322848 PMCID: PMC7764241 DOI: 10.3390/ijms21249470] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022] Open
Abstract
Botulinum toxins are neurotoxins produced by Clostridium botulinum. This toxin can be lethal for humans as a cause of botulism; however, in small doses, the same toxin is used to treat different conditions. Even if the therapeutic doses are effective and safe, the adverse reactions could be local and could unmask a subclinical impairment of neuromuscular transmissions. There are not many cases of adverse events in the literature; however, it is possible that sometimes they do not occur as they are transient and, if they do occur, there is no possibility of a cure other than to wait for the pharmacological effect to end. Inhibition of botulinum neurotoxin type A (BoNT/A) effects is a strategy for treating botulism as it can provide an effective post-exposure remedy. In this paper, 13,592,287 compounds were screened through a pharmacophore filter, a 3D-QSAR model, and a virtual screening; then, the compounds with the best affinity were selected. Molecular dynamics simulation studies on the first four compounds predicted to be the most active were conducted to verify that the poses foreseen by the docking were stable. This approach allowed us to identify compounds with a calculated inhibitory activity in the range of 316–500 nM.
Collapse
|
12
|
Salerno L, Floresta G, Ciaffaglione V, Gentile D, Margani F, Turnaturi R, Rescifina A, Pittalà V. Progress in the development of selective heme oxygenase-1 inhibitors and their potential therapeutic application. Eur J Med Chem 2019; 167:439-453. [PMID: 30784878 DOI: 10.1016/j.ejmech.2019.02.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 10/27/2022]
Abstract
Heme oxygenases (HOs) are a family of enzymes involved in the selective catabolism of free circulating heme. While HO-2 is constitutively expressed, HO-1 is strongly overexpressed under stressful stimuli (e.g., oxidative stress). Under these conditions, HO-1 exerts its strong cytoprotective activities and plays a crucial role in stimulating cell survival by removing the pro-oxidant heme and by producing carbon monoxide and biliverdin (promptly reduced to bilirubin). Unfortunately, the broad spectrum of HO-1 cytoprotective effects has been well experimentally documented both in normal and tumor cells, where the enzyme can be overexpressed, making it an exciting target in the management of some type of tumors. Development of non-competitive HO-1 inhibitors dates back in 2002 with the discovery of Azalanstat. Since then, many efforts have been devoted to the identification of selective HO-1 and HO-2 inhibitors and to unravel the molecular determinants responsible for selectivity. Molecular modeling studies supported the identification of chemical features involved in the recognition and inhibition of these enzymes. Herein, medicinal chemistry aspects and in silico studies related to the development of HO inhibitors will be discussed. The purpose of this review is to highlight recent advances in the development of new selective HO-1 and HO-2 inhibitors and covers the last six years (2013-2018).
Collapse
Affiliation(s)
- Loredana Salerno
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Valeria Ciaffaglione
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Davide Gentile
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy; Department of Chemical Sciences, University of Catania, V.le A. Doria, 95125, Catania, Italy
| | - Fatima Margani
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Rita Turnaturi
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy; Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (C.I.N.M.P.S.), Via E. Orabona, 4, Bari, 70125, Italy.
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
13
|
Floresta G, Pistarà V, Christensen KE, Amata E, Marrazzo A, Gentile D, Rescifina A, Punzo F. A Pseudouridine Isoxazolidinyl Nucleoside Analogue Structural Analysis: A Morphological Approach. Molecules 2018; 23:molecules23123381. [PMID: 30572684 PMCID: PMC6321120 DOI: 10.3390/molecules23123381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 12/03/2022] Open
Abstract
An in silico study has been conducted upon (3′RS,5′SR)-5-[2′-benzyl-5′-hydroxymethyl-1′,2′-isoxazolidin-3′-yl]uracil through a molecular dynamics/docking approach that highlights its potential inhibitory activity upon the wild-type pseudouridine 5′-monophosphate glycosidase. The crystal structure of this compound has been solved by means of X-ray single crystal diffraction and the data inferred were used to predict its crystal morphology. These data were compared with optical microscopy images and confirmed the validity of the computed models. This robust approach, already used for several other different compounds, provides a fast and reliable tool to standardize a crystallization method in order to get similar and good quality crystals. As different crystal shapes could be associated with different polymorphic forms, this method could be considered a fast and cheap screening to choose among different and coexistent polymorphic forms. Furthermore, a match with the original crystal structure of pseudouridine 5′-monophosphate is provided.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Venerando Pistarà
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Kirsten E Christensen
- Chemical Crystallography, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK.
| | - Emanuele Amata
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Agostino Marrazzo
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Davide Gentile
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Francesco Punzo
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
14
|
Floresta G, Cilibrizzi A, Abbate V, Spampinato A, Zagni C, Rescifina A. FABP4 inhibitors 3D-QSAR model and isosteric replacement of BMS309403 datasets. Data Brief 2018; 22:471-483. [PMID: 30619925 PMCID: PMC6312796 DOI: 10.1016/j.dib.2018.12.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022] Open
Abstract
The data have been obtained from FABP4 inhibitor molecules previously published. The 120 compounds were used to build a 3D-QSAR model. The development of the QSAR model has been undertaken with the use of Forge software using the PM3 optimized structure and the experimental IC50 of each compound. The QSAR model was also employed to predict the activity of 3000 new isosteric derivatives of BMS309403. The isosteric replacement was also validated by the synthesis and the biological screening of three new compounds reported in the related research article “3D-QSAR assisted identification of FABP4 inhibitors: An effective scaffold hopping analysis/QSAR evaluation” (Floresta et al., 2019).
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy.,Department of Chemical Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.,Institute of Pharmaceutical Science, King׳s College London, Stamford Street, London SE1 9NH, UK
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King׳s College London, Stamford Street, London SE1 9NH, UK.,King׳s Forensics, School of Population Health & Environmental Sciences, King׳s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Vincenzo Abbate
- King׳s Forensics, School of Population Health & Environmental Sciences, King׳s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Ambra Spampinato
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Chiara Zagni
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
15
|
Cilibrizzi A, Floresta G, Abbate V, Giovannoni MP. iVS analysis to evaluate the impact of scaffold diversity in the binding to cellular targets relevant in cancer. J Enzyme Inhib Med Chem 2018; 34:44-50. [PMID: 30362379 PMCID: PMC6211261 DOI: 10.1080/14756366.2018.1518960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study reports the application of inverse virtual screening (iVS) methodologies to identify cellular proteins as suitable targets for a library of heterocyclic small-molecules, with potential pharmacological implications. Standard synthetic procedures allow facile generation of these ligands showing a high degree of core scaffold diversity. Specifically, we have computationally investigated the binding efficacy of the new series for target proteins which are involved in cancer pathogenesis. As a result, nine macromolecules demonstrated efficient binding interactions for the molecular dataset, in comparison to the co-crystallised ligand for each target. Moreover, the iVS analysis led us to confirm that 27 analogues have high affinity for one or more examined cellular proteins. The additional evaluation of ADME and drug score for selected hits also highlights their capability as drug candidates, demonstrating valuable leads for further structure optimisation and biological studies.
Collapse
Affiliation(s)
- Agostino Cilibrizzi
- a Institute of Pharmaceutical Science , King's College London , London , UK.,b King's Forensics, School of Population Health & Environmental Sciences , King's College London , London , UK
| | - Giuseppe Floresta
- a Institute of Pharmaceutical Science , King's College London , London , UK.,c Department of Drug Sciences , University of Catania , Catania , Italy
| | - Vincenzo Abbate
- b King's Forensics, School of Population Health & Environmental Sciences , King's College London , London , UK
| | - Maria Paola Giovannoni
- d NEUROFARBA, Sezione di Farmaceutica e Nutraceutica , Università degli Studi di Firenze , Sesto Fiorentino , Italy
| |
Collapse
|
16
|
Floresta G, Amata E, Barbaraci C, Gentile D, Turnaturi R, Marrazzo A, Rescifina A. A Structure- and Ligand-Based Virtual Screening of a Database of "Small" Marine Natural Products for the Identification of "Blue" Sigma-2 Receptor Ligands. Mar Drugs 2018; 16:md16100384. [PMID: 30322188 PMCID: PMC6212963 DOI: 10.3390/md16100384] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022] Open
Abstract
Sigma receptors are a fascinating receptor protein class whose ligands are actually under clinical evaluation for the modulation of opioid analgesia and their use as positron emission tomography radiotracers. In particular, peculiar biological and therapeutic functions are associated with the sigma-2 (σ2) receptor. The σ2 receptor ligands determine tumor cell death through apoptotic and non-apoptotic pathways, and the overexpression of σ2 receptors in several tumor cell lines has been well documented, with significantly higher levels in proliferating tumor cells compared to quiescent ones. This acknowledged feature has found practical application in the development of cancer cell tracers and for ligand-targeting therapy. In this context, the development of new ligands that target the σ2 receptors is beneficial for those diseases in which this protein is involved. In this paper, we conducted a search of new potential σ2 receptor ligands among a database of 1517 “small” marine natural products constructed by the union of the Seaweed Metabolite and the Chemical Entities of Biological Interest (ChEBI) Databases. The structures were passed through two filters that were constituted by our developed two-dimensional (2D) and three-dimensional Quantitative Structure-Activity Relationship (3D-QSAR) statistical models, and successively docked upon a σ2 receptor homology model that we built according to the FASTA sequence of the σ2/TMEM97 (SGMR2_HUMAN) receptor.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
- Department of Chemical Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Emanuele Amata
- Department of Chemical Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Carla Barbaraci
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Davide Gentile
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Rita Turnaturi
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Agostino Marrazzo
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| |
Collapse
|