1
|
Chen TH, Ando A, Shamoto O, Fuse S. Effect of Brønsted Acids on the Activation of Mixed Anhydride/Mixed Carbonic Anhydride and C-Terminal-Free N-Methylated Peptide Synthesis in a Micro-Flow Reactor. Chemistry 2024; 30:e202401402. [PMID: 38719730 DOI: 10.1002/chem.202401402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Indexed: 06/19/2024]
Abstract
Amidations employing mixed (carbonic) anhydrides have long been favoured in peptide synthesis because of their cost-effectiveness and less waste generation. Despite their long history, no study has compared the effects of additives on the activation of mixed anhydrides and carbonic anhydrides. In this study, we investigated the amidation of mixed (carbonic) anhydride in the presence of a base and/or Brønsted acids. The use of NMI⋅HCl significantly improved the conversion of the mixed carbonic anhydride, while expediting nucleophilic attacks on the desired carbonyl group. In contrast, in the case of mixed anhydrides, neither the conversion nor the desired nucleophilic attack improved significantly. We developed a C-terminus-free N-methylated peptide synthesis method using mixed carbonic anhydrides in a micro-flow reactor. Fourteen N-alkylated peptides were synthesized in moderate to high yields (55-99 %) without severe racemization (<1 %). Additionally, a significant enhancement in the amidation between mixed carbonic anhydrides and bis-TMS-protected N-methyl amino acids with the inclusion of NMI⋅HCl was observed for the first time. In addition, we observed unexpected C-terminal epimerization of the C-terminus-free N-methyl peptides.
Collapse
Affiliation(s)
- Ting-Ho Chen
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Akira Ando
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Otoka Shamoto
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| |
Collapse
|
2
|
Imamura Y, Ogawa JI, Otake Y, Itoh H. Simultaneous Characterization of Reaction Kinetics and Enthalpy by Calorimetry Based on Spatially Resolved Temperature Profile in Flow Reactors. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- Yusuke Imamura
- Innovation Center, Yokogawa Electric Corp., 2-9-32 Nakacho, Musashino-shi, Tokyo 180-8750, Japan
| | - Jun-ichi Ogawa
- Innovation Center, Yokogawa Electric Corp., 2-9-32 Nakacho, Musashino-shi, Tokyo 180-8750, Japan
| | - Yuma Otake
- Innovation Center, Yokogawa Electric Corp., 2-9-32 Nakacho, Musashino-shi, Tokyo 180-8750, Japan
| | - Hidenosuke Itoh
- Innovation Center, Yokogawa Electric Corp., 2-9-32 Nakacho, Musashino-shi, Tokyo 180-8750, Japan
| |
Collapse
|
3
|
Haji Abbasi Somehsaraie M, Fathi Vavsari V, Kamangar M, Balalaie S. Chemical Wastes in the Peptide Synthesis Process and Ways to Reduce Them. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e123879. [PMID: 36942077 PMCID: PMC10024322 DOI: 10.5812/ijpr-123879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022]
Abstract
In recent decades, a growing interest has been observed among pharmaceutical companies in producing and selling 80 FDA-approved therapeutic peptides. However, there are many drawbacks to peptide synthesis at the academic and industrial scales, involving the use of large amounts of highly hazardous coupling reagents and solvents. This review focuses on hideous and observant wastes produced before, during, and after peptide synthesis and proposes some solutions to reduce them.
Collapse
Affiliation(s)
| | - Vaezeh Fathi Vavsari
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, Tehran, Iran
| | - Mohammad Kamangar
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, Tehran, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, Tehran, Iran
- Corresponding Author: Peptide Chemistry Research Institute, K. N. Toosi University of Technology, Tehran, Iran.
| |
Collapse
|
4
|
Masui H, Fuse S. Recent Advances in the Solid- and Solution-Phase Synthesis of Peptides and Proteins Using Microflow Technology. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hisashi Masui
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
5
|
Alfano AI, Lange H, Brindisi M. Amide Bonds Meet Flow Chemistry: A Journey into Methodologies and Sustainable Evolution. CHEMSUSCHEM 2022; 15:e202102708. [PMID: 35015338 PMCID: PMC9304223 DOI: 10.1002/cssc.202102708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Indexed: 06/03/2023]
Abstract
Formation of amide bonds is of immanent importance in organic and synthetic medicinal chemistry. Its presence in "traditional" small-molecule active pharmaceutical ingredients, in linear or cyclic oligo- and polypeptidic actives, including pseudopeptides, has led to the development of dedicated synthetic approaches for the formation of amide bonds starting from, if necessary, suitably protected amino acids. While the use of solid supported reagents is common in traditional peptide synthesis, similar approaches targeting amide bond formation in continuous-flow mode took off more significantly, after a first publication in 2006, only a couple of years ago. Most efforts rely upon the transition of traditional approaches in flow mode, or the combination of solid-phase peptide synthesis principles with flow chemistry, and advantages are mainly seen in improving space-time yields. This Review summarizes and compares the various approaches in terms of basic amide formation, peptide synthesis, and pseudopeptide generation, describing the technological approaches and the advantages that were generated by the specific flow approaches. A final discussion highlights potential future needs and perspectives in terms of greener and more sustainable syntheses.
Collapse
Affiliation(s)
- Antonella Ilenia Alfano
- SPOTS-Lab – Sustainable Pharmaceutical and Organic Technology and Synthesis LaboratoryUniversity of Naples ‘Federico II', Department of PharmacyVia Domenico Montesano 4980131NaplesItaly
| | - Heiko Lange
- University of Milano-Bicocca Department of Earth and Environmental SciencesPiazza della Scienza 120126MilanItaly
| | - Margherita Brindisi
- SPOTS-Lab – Sustainable Pharmaceutical and Organic Technology and Synthesis LaboratoryUniversity of Naples ‘Federico II', Department of PharmacyVia Domenico Montesano 4980131NaplesItaly
| |
Collapse
|
6
|
Inami H, Asano Y, Oda M. Flow Peptide Synthesis in a Microchannel with a Reciprocating Flow of Resin Slurry. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2021. [DOI: 10.1252/jcej.20we189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Yukako Asano
- Innovation Division, Hitachi Plant Services Co., Ltd
| | - Masashi Oda
- Innovation Division, Hitachi Plant Services Co., Ltd
| |
Collapse
|
7
|
Fuse S, Komuro K, Otake Y, Masui H, Nakamura H. Rapid and Mild Lactamization Using Highly Electrophilic Triphosgene in a Microflow Reactor. Chemistry 2021; 27:7525-7532. [PMID: 33496974 DOI: 10.1002/chem.202100059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Indexed: 12/23/2022]
Abstract
Lactams are cyclic amides that are indispensable as drugs and as drug candidates. Conventional lactamization includes acid-mediated and coupling-agent-mediated approaches that suffer from narrow substrate scope, much waste, and/or high cost. Inexpensive, less-wasteful approaches mediated by highly electrophilic reagents are attractive, but there is an imminent risk of side reactions. Herein, a methods using highly electrophilic triphosgene in a microflow reactor that accomplishes rapid (0.5-10 s), mild, inexpensive, and less-wasteful lactamization are described. Methods A and B, which use N-methylmorpholine and N-methylimidazole, respectively, were developed. Various lactams and a cyclic peptide containing acid- and/or heat-labile functional groups were synthesized in good to high yields without the need for tedious purification. Undesired reactions were successfully suppressed, and the risk of handling triphosgene was minimized by the use of microflow technology.
Collapse
Affiliation(s)
- Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Keiji Komuro
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Yuma Otake
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Hisashi Masui
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
8
|
Parthasarathy A, Borrego EJ, Savka MA, Dobson RCJ, Hudson AO. Amino acid-derived defense metabolites from plants: A potential source to facilitate novel antimicrobial development. J Biol Chem 2021; 296:100438. [PMID: 33610552 PMCID: PMC8024917 DOI: 10.1016/j.jbc.2021.100438] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/23/2022] Open
Abstract
For millennia, humanity has relied on plants for its medicines, and modern pharmacology continues to reexamine and mine plant metabolites for novel compounds and to guide improvements in biological activity, bioavailability, and chemical stability. The critical problem of antibiotic resistance and increasing exposure to viral and parasitic diseases has spurred renewed interest into drug treatments for infectious diseases. In this context, an urgent revival of natural product discovery is globally underway with special attention directed toward the numerous and chemically diverse plant defensive compounds such as phytoalexins and phytoanticipins that combat herbivores, microbial pathogens, or competing plants. Moreover, advancements in “omics,” chemistry, and heterologous expression systems have facilitated the purification and characterization of plant metabolites and the identification of possible therapeutic targets. In this review, we describe several important amino acid–derived classes of plant defensive compounds, including antimicrobial peptides (e.g., defensins, thionins, and knottins), alkaloids, nonproteogenic amino acids, and phenylpropanoids as potential drug leads, examining their mechanisms of action, therapeutic targets, and structure–function relationships. Given their potent antibacterial, antifungal, antiparasitic, and antiviral properties, which can be superior to existing drugs, phytoalexins and phytoanticipins are an excellent resource to facilitate the rational design and development of antimicrobial drugs.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Eli J Borrego
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Michael A Savka
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - André O Hudson
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA.
| |
Collapse
|
9
|
Martin V, Egelund PHG, Johansson H, Thordal Le Quement S, Wojcik F, Sejer Pedersen D. Greening the synthesis of peptide therapeutics: an industrial perspective. RSC Adv 2020; 10:42457-42492. [PMID: 35516773 PMCID: PMC9057961 DOI: 10.1039/d0ra07204d] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Solid-phase peptide synthesis (SPPS) is generally the method of choice for the chemical synthesis of peptides, allowing routine synthesis of virtually any type of peptide sequence, including complex or cyclic peptide products. Importantly, SPPS can be automated and is scalable, which has led to its widespread adoption in the pharmaceutical industry, and a variety of marketed peptide-based drugs are now manufactured using this approach. However, SPPS-based synthetic strategies suffer from a negative environmental footprint mainly due to extensive solvent use. Moreover, most of the solvents used in peptide chemistry are classified as problematic by environmental agencies around the world and will soon need to be replaced, which in recent years has spurred a movement in academia and industry to make peptide synthesis greener. These efforts have been centred around solvent substitution, recycling and reduction, as well as exploring alternative synthetic methods. In this review, we focus on methods pertaining to solvent substitution and reduction with large-scale industrial production in mind, and further outline emerging technologies for peptide synthesis. Specifically, the technical requirements for large-scale manufacturing of peptide therapeutics are addressed.
Collapse
Affiliation(s)
- Vincent Martin
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| | - Peter H G Egelund
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| | - Henrik Johansson
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| | | | - Felix Wojcik
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| | - Daniel Sejer Pedersen
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| |
Collapse
|
10
|
Hartrampf N, Saebi A, Poskus M, Gates ZP, Callahan AJ, Cowfer AE, Hanna S, Antilla S, Schissel CK, Quartararo AJ, Ye X, Mijalis AJ, Simon MD, Loas A, Liu S, Jessen C, Nielsen TE, Pentelute BL. Synthesis of proteins by automated flow chemistry. Science 2020; 368:980-987. [PMID: 32467387 DOI: 10.1126/science.abb2491] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Abstract
Ribosomes can produce proteins in minutes and are largely constrained to proteinogenic amino acids. Here, we report highly efficient chemistry matched with an automated fast-flow instrument for the direct manufacturing of peptide chains up to 164 amino acids long over 327 consecutive reactions. The machine is rapid: Peptide chain elongation is complete in hours. We demonstrate the utility of this approach by the chemical synthesis of nine different protein chains that represent enzymes, structural units, and regulatory factors. After purification and folding, the synthetic materials display biophysical and enzymatic properties comparable to the biologically expressed proteins. High-fidelity automated flow chemistry is an alternative for producing single-domain proteins without the ribosome.
Collapse
Affiliation(s)
- N Hartrampf
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - A Saebi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - M Poskus
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Z P Gates
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - A J Callahan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - A E Cowfer
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - S Hanna
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - S Antilla
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - C K Schissel
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - A J Quartararo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - X Ye
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - A J Mijalis
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - M D Simon
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - A Loas
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - S Liu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - C Jessen
- Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Måløv, Denmark
| | - T E Nielsen
- Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Måløv, Denmark
| | - B L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
11
|
Fuse S, Masuda K, Otake Y, Nakamura H. Peptide‐Chain Elongation Using Unprotected Amino Acids in a Micro‐Flow Reactor. Chemistry 2019; 25:15091-15097. [DOI: 10.1002/chem.201903531] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/28/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Shinichiro Fuse
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Koshiro Masuda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
- School of Life Science and Technology Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Yuma Otake
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
- School of Life Science and Technology Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
12
|
Isidro-Llobet A, Kenworthy MN, Mukherjee S, Kopach ME, Wegner K, Gallou F, Smith AG, Roschangar F. Sustainability Challenges in Peptide Synthesis and Purification: From R&D to Production. J Org Chem 2019; 84:4615-4628. [PMID: 30900880 DOI: 10.1021/acs.joc.8b03001] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, there has been a growing interest in therapeutic peptides within the pharmaceutical industry with more than 50 peptide drugs on the market, approximately 170 in clinical trials, and >200 in preclinical development. However, the current state of the art in peptide synthesis involves primarily legacy technologies with use of large amounts of highly hazardous reagents and solvents and little focus on green chemistry and engineering. In 2016, the ACS Green Chemistry Institute Pharmaceutical Roundtable identified development of greener processes for peptide API as a critical unmet need, and as a result, a new Roundtable team formed to address this important area. The initial focus of this new team is to highlight best practices in peptide synthesis and encourage much needed innovations. In this Perspective, we aim to summarize the current challenges of peptide synthesis and purification in terms of sustainability, highlight possible solutions, and encourage synergies between academia, the pharmaceutical industry, and contract research organizations/contract manufacturing organizations.
Collapse
Affiliation(s)
- Albert Isidro-Llobet
- Medicines Research Centre , GlaxoSmithKline , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Martin N Kenworthy
- Pharmaceutical Technology and Development , AstraZeneca , Silk Road Business Park, Charter Way , Macclesfield SK10 2NA , U.K
| | - Subha Mukherjee
- Chemical and Synthetic Development , Bristol-Myers Squibb Company , One Squibb Drive , New Brunswick , New Jersey 08903 , United States
| | - Michael E Kopach
- Small Molecule Design and Development , Eli Lilly and Company , 1400 West Raymond Street , Indianapolis , Indiana , United States
| | - Katarzyna Wegner
- Active Pharmaceutical Ingredient Development , IPSEN Manufacturing Ireland, Ltd. , Blanchardstown Industrial Park , Dublin 15 , Ireland
| | - Fabrice Gallou
- Chemical & Analytical Development , Novartis , 4056 Basel , Switzerland
| | - Austin G Smith
- Drug Substance Process Development , Amgen, Inc. , 1 Amgen Center Drive , Thousand Oaks , California 91320 , United States
| | - Frank Roschangar
- Chemical Development , Boehringer Ingelheim Pharmaceuticals , Ridgefield , Connecticut 06877 , United States
| |
Collapse
|
13
|
Affiliation(s)
- Jian Deng
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Jisong Zhang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Kai Wang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Guangsheng Luo
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| |
Collapse
|
14
|
Ahmed N. Peptide Bond Formations through Flow Chemistry. Chem Biol Drug Des 2018; 92:1398. [DOI: 10.1111/cbdd.13204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|