1
|
Kurtyka M, Wessely F, Bau S, Ifie E, He L, de Wit NM, Pedersen ABV, Keller M, Webber C, de Vries HE, Ansorge O, Betsholtz C, De Bock M, Chaves C, Brodin B, Nielsen MS, Neuhaus W, Bell RD, Letoha T, Meyer AH, Leparc G, Lenter M, Lesuisse D, Cader ZM, Buckley ST, Loryan I, Pietrzik CU. The solute carrier SLC7A1 may act as a protein transporter at the blood-brain barrier. Eur J Cell Biol 2024; 103:151406. [PMID: 38547677 DOI: 10.1016/j.ejcb.2024.151406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/02/2024] [Accepted: 03/20/2024] [Indexed: 06/29/2024] Open
Abstract
Despite extensive research, targeted delivery of substances to the brain still poses a great challenge due to the selectivity of the blood-brain barrier (BBB). Most molecules require either carrier- or receptor-mediated transport systems to reach the central nervous system (CNS). These transport systems form attractive routes for the delivery of therapeutics into the CNS, yet the number of known brain endothelium-enriched receptors allowing the transport of large molecules into the brain is scarce. Therefore, to identify novel BBB targets, we combined transcriptomic analysis of human and murine brain endothelium and performed a complex screening of BBB-enriched genes according to established selection criteria. As a result, we propose the high-affinity cationic amino acid transporter 1 (SLC7A1) as a novel candidate for transport of large molecules across the BBB. Using RNA sequencing and in situ hybridization assays, we demonstrated elevated SLC7A1 gene expression in both human and mouse brain endothelium. Moreover, we confirmed SLC7A1 protein expression in brain vasculature of both young and aged mice. To assess the potential of SLC7A1 as a transporter for larger proteins, we performed internalization and transcytosis studies using a radiolabelled or fluorophore-labelled anti-SLC7A1 antibody. Our results showed that SLC7A1 internalised a SLC7A1-specific antibody in human colorectal carcinoma (HCT116) cells. Moreover, transcytosis studies in both immortalised human brain endothelial (hCMEC/D3) cells and primary mouse brain endothelial cells clearly demonstrated that SLC7A1 effectively transported the SLC7A1-specific antibody from luminal to abluminal side. Therefore, here in this study, we present for the first time the SLC7A1 as a novel candidate for transport of larger molecules across the BBB.
Collapse
Affiliation(s)
- Magdalena Kurtyka
- Institute for Pathobiochemistry, University Medical Center Mainz, Mainz, Germany
| | - Frank Wessely
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Sarah Bau
- Pathology & Imaging, Novo Nordisk A/S, Måløv, Denmark
| | - Eseoghene Ifie
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Nienke M de Wit
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | | | - Maximilian Keller
- Institute for Pathobiochemistry, University Medical Center Mainz, Mainz, Germany
| | - Caleb Webber
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Helga E de Vries
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden; Department of Medicine (Huddinge), Karolinska Institutet, Huddinge, Sweden
| | - Marijke De Bock
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica, Beerse, Belgium
| | - Catarina Chaves
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Birger Brodin
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Morten S Nielsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Winfried Neuhaus
- Austrian Institute of Technology GmbH, Vienna, Austria; Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
| | | | | | - Axel H Meyer
- AbbVie Deutschland GmbH & Co. KG, Quantitative, Translational & ADME Sciences, Ludwigshafen, Germany
| | - Germán Leparc
- Boehringer Ingelheim Pharma GmbH & Co. KG, Translational Medicine & Clinical Pharmacology, Biberach, Germany
| | - Martin Lenter
- Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, Biberach, Germany
| | - Dominique Lesuisse
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Zameel M Cader
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | | | - Irena Loryan
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Claus U Pietrzik
- Institute for Pathobiochemistry, University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
2
|
Liu C, Zou M, Zuo J, Xie H, Lyu W, Xu J, Feng F, Sun H, Liu W, Jiang X. Discovery of thiazole salt AChE inhibitors and development of thiamine disulfide prodrugs targeting the central nervous system. Bioorg Chem 2023; 139:106702. [PMID: 37390634 DOI: 10.1016/j.bioorg.2023.106702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/13/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
The selective AChE inhibitor donepezil has been approved by the FDA as a first-line drug for the treatment of mild to moderate AD. However, many peripheral side effects were observed in patients taking donepezil. Our main objective here is to provide insight into the opportunities and challenges associated with development of AChE inhibitors with high brain exposure and low peripheral side effects. In this study, we have for the first time revealed a series of novel thiazole salt AChE inhibitors, which exhibit a nanomolar inhibitory effect on human AChE. We further developed thiamine disulfide prodrugs based on optimized thiazole salt AChE inhibitors, which are reduced in the brain to form thiazole salt AChE inhibitors. In vivo experiments have confirmed that the representative prodrug Tap4 (i.p., 10 mg/kg) can be converted into the thiazole salt AChE inhibitor Tat2 and shows high brain exposure, reaching 500 ng/g. Further, the inhibitory effect of the prodrug Tap4 on AChE is obviously stronger in the brain than that on intestinal AChE of ICR mice. Our study provides a possible basis for centrally targeted thiazole salt inhibitors in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Chang Liu
- Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 211198, China
| | - Manxing Zou
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jianguo Zuo
- Department of Medicinal Chemistry, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Huanfang Xie
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Weiping Lyu
- Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 211198, China
| | - Jian Xu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China; Nanjing Medical University, Nanjing 211166, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 211198, China
| | - Xueyang Jiang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China; Department of Medicinal Chemistry, Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
3
|
Antunes JL, Amado J, Veiga F, Paiva-Santos AC, Pires PC. Nanosystems, Drug Molecule Functionalization and Intranasal Delivery: An Update on the Most Promising Strategies for Increasing the Therapeutic Efficacy of Antidepressant and Anxiolytic Drugs. Pharmaceutics 2023; 15:998. [PMID: 36986859 PMCID: PMC10054777 DOI: 10.3390/pharmaceutics15030998] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Depression and anxiety are high incidence and debilitating psychiatric disorders, usually treated by antidepressant or anxiolytic drug administration, respectively. Nevertheless, treatment is usually given through the oral route, but the low permeability of the blood-brain barrier reduces the amount of drug that will be able to reach it, thus consequently reducing the therapeutic efficacy. Which is why it is imperative to find new solutions to make these treatments more effective, safer, and faster. To overcome this obstacle, three main strategies have been used to improve brain drug targeting: the intranasal route of administration, which allows the drug to be directly transported to the brain by neuronal pathways, bypassing the blood-brain barrier and avoiding the hepatic and gastrointestinal metabolism; the use of nanosystems for drug encapsulation, including polymeric and lipidic nanoparticles, nanometric emulsions, and nanogels; and drug molecule functionalization by ligand attachment, such as peptides and polymers. Pharmacokinetic and pharmacodynamic in vivo studies' results have shown that intranasal administration can be more efficient in brain targeting than other administration routes, and that the use of nanoformulations and drug functionalization can be quite advantageous in increasing brain-drug bioavailability. These strategies could be the key to future improved therapies for depressive and anxiety disorders.
Collapse
Affiliation(s)
- Jéssica L. Antunes
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Joana Amado
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia C. Pires
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
4
|
Agnihotri TG, Jadhav GS, Sahu B, Jain A. Recent trends of bioconjugated nanomedicines through nose-to-brain delivery for neurological disorders. Drug Deliv Transl Res 2022; 12:3104-3120. [PMID: 35570262 DOI: 10.1007/s13346-022-01173-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 12/16/2022]
Abstract
The global burden of neurological disorders has been increasing day by day which calls for immediate attention to the solutions. Novel drug delivery systems are one of the alternatives that we count on to counteract these disorders. As the blood-brain barrier creates a significant hindrance to the delivery of drugs across the endothelium lining of the brain, nose-to-brain delivery has been the favorite option to administer such drugs. In recent times, bioconjugation has been viewed as a rapidly growing area in the field of pharmaceuticals. The pharmaceutical industry and academic research are investing significantly in bioconjugated structures as an attractive and advantageous potential aid to nanoparticulate delivery systems, with all of its flexible benefits in terms of tailor grafting and custom design as well as overcoming the majority of their drawbacks. This review discusses drug delivery via the intranasal route and gives insight into bioconjugation systems for drug molecules, their chemistry, and benefits over other systems. Conjugation of drugs/macromolecules with peptides, carbohydrates, ligands, and nucleic acids has also been discussed in detail. The figure represents few types of novel drug delivery systems and molecules that have been attempted by researchers for nose-to-brain delivery through nasal (mucosal) route for the effective management of epilepsy, Alzheimer's disease, brain cancer, and other brain disorders.
Collapse
Affiliation(s)
- Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Govinda Shivaji Jadhav
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Bichismita Sahu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
5
|
Pardridge WM. A Historical Review of Brain Drug Delivery. Pharmaceutics 2022; 14:1283. [PMID: 35745855 PMCID: PMC9229021 DOI: 10.3390/pharmaceutics14061283] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
The history of brain drug delivery is reviewed beginning with the first demonstration, in 1914, that a drug for syphilis, salvarsan, did not enter the brain, due to the presence of a blood-brain barrier (BBB). Owing to restricted transport across the BBB, FDA-approved drugs for the CNS have been generally limited to lipid-soluble small molecules. Drugs that do not cross the BBB can be re-engineered for transport on endogenous BBB carrier-mediated transport and receptor-mediated transport systems, which were identified during the 1970s-1980s. By the 1990s, a multitude of brain drug delivery technologies emerged, including trans-cranial delivery, CSF delivery, BBB disruption, lipid carriers, prodrugs, stem cells, exosomes, nanoparticles, gene therapy, and biologics. The advantages and limitations of each of these brain drug delivery technologies are critically reviewed.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Targeting Transporters for Drug Delivery to the Brain: Can We Do Better? Pharm Res 2022; 39:1415-1455. [PMID: 35359241 PMCID: PMC9246765 DOI: 10.1007/s11095-022-03241-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/21/2022] [Indexed: 12/11/2022]
Abstract
Limited drug delivery to the brain is one of the major reasons for high failure rates of central nervous system (CNS) drug candidates. The blood–brain barrier (BBB) with its tight junctions, membrane transporters, receptors and metabolizing enzymes is a main player in drug delivery to the brain, restricting the entrance of the drugs and other xenobiotics. Current knowledge about the uptake transporters expressed at the BBB and brain parenchymal cells has been used for delivery of CNS drugs to the brain via targeting transporters. Although many transporter-utilizing (pro)drugs and nanocarriers have been developed to improve the uptake of drugs to the brain, their success rate of translation from preclinical development to humans is negligible. In the present review, we provide a systematic summary of the current progress in development of transporter-utilizing (pro)drugs and nanocarriers for delivery of drugs to the brain. In addition, we applied CNS pharmacokinetic concepts for evaluation of the limitations and gaps in investigation of the developed transporter-utilizing (pro)drugs and nanocarriers. Finally, we give recommendations for a rational development of transporter-utilizing drug delivery systems targeting the brain based on CNS pharmacokinetic principles.
Collapse
|
7
|
Ndemazie NB, Inkoom A, Morfaw EF, Smith T, Aghimien M, Ebesoh D, Agyare E. Multi-disciplinary Approach for Drug and Gene Delivery Systems to the Brain. AAPS PharmSciTech 2021; 23:11. [PMID: 34862567 PMCID: PMC8817187 DOI: 10.1208/s12249-021-02144-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Drug delivery into the brain has for long been a huge challenge as the blood–brain barrier (BBB) offers great resistance to entry of foreign substances (with drugs inclusive) into the brain. This barrier in healthy individuals is protective to the brain, disallowing noxious substances present in the blood to get to the brain while allowing for the exchange of small molecules into the brain by diffusion. However, BBB is disrupted under certain disease conditions, such as cerebrovascular diseases including acute ischemic stroke and intracerebral hemorrhage, and neurodegenerative disorders including multiple sclerosis (MS), Alzheimer’s disease (AD), Parkinson’s disease (PD), and cancers. This review aims to provide a broad overview of present-day strategies for brain drug delivery, emphasizing novel delivery systems. Hopefully, this review would inspire scientists and researchers in the field of drug delivery across BBB to uncover new techniques and strategies to optimize drug delivery to the brain. Considering the anatomy, physiology, and pathophysiological functioning of the BBB in health and disease conditions, this review is focused on the controversies drawn from conclusions of recently published studies on issues such as the penetrability of nanoparticles into the brain, and whether active targeted drug delivery into the brain could be achieved with the use of nanoparticles. We also extended the review to cover novel non-nanoparticle strategies such as using viral and peptide vectors and other non-invasive techniques to enhance brain uptake of drugs.
Collapse
|
8
|
Zhao Y, Zhao Z, Cui Y, Chen X, Chen C, Xie C, Qin B, Yang Y. Redox-responsive glycosylated combretastatin A-4 derivative as novel tubulin polymerization inhibitor for glioma and drug delivery. Drug Dev Res 2021; 82:1063-1072. [PMID: 34585392 DOI: 10.1002/ddr.21889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 01/20/2023]
Abstract
Combretastatin A-4 (CA4), a tubulin inhibitor, binds to the colchicine site of tubulin, inhibits tubulin polymerization, and leads to the apoptosis of tumor cells. However, the poor hydrophilicity and blood-brain barrier (BBB) penetration ability of CA4 hampers its application in the treatment of glioma. In this study, a novel combretastatin A-4 derivative (CA4D) was designed and developed, which was further conjugated with glucose via disulfide-bond-bridged (CA4D-SS-Glu) to enhance the BBB penetration capacity. The obtained CA4D-SS-Glu conjugate displayed a suitable water partition coefficient and the superior ability across BBB in vitro and in vivo. In addition, the CA4D-SS-Glu exhibited rapid redox-responsive drug release in the presence of glutathione, enhanced in vitro cytotoxicity, and cell apoptosis. Our data further confirmed that CA4D-SS-Glu inhibited proliferation, and restrained migration via affecting microtubule stabilization. Additionally, the conjugate also showed the highest antiproliferative and antitumor action on glioma in vivo as compared to CA4D and CA4. Taken together, the novel CA4D-SS-Glu conjugate possess improved physicochemical property and BBB penetration ability, reduction triggered release of CA4D, and efficient antiproliferative activity. These results provided a novel and effective entry to the treatment of glioma.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ze Zhao
- Department of Orthopedics, The First Affiliated Hospital of Henan Polytechnic University (The Second People's Hospital of Jiaozuo City), Jiaozuo, China
| | - Yamin Cui
- Department of Recombinant Antibody, Zhengzhou Immuno Bio-Tech Co., Ltd, Zhengzhou, China
| | - Xing Chen
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Changqing Chen
- Department of Orthopedics, The First Affiliated Hospital of Henan Polytechnic University (The Second People's Hospital of Jiaozuo City), Jiaozuo, China
| | - Changwei Xie
- Department of Orthopedics, The First Affiliated Hospital of Henan Polytechnic University (The Second People's Hospital of Jiaozuo City), Jiaozuo, China
| | - Bo Qin
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Yang
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Xiong B, Wang Y, Chen Y, Xing S, Liao Q, Chen Y, Li Q, Li W, Sun H. Strategies for Structural Modification of Small Molecules to Improve Blood-Brain Barrier Penetration: A Recent Perspective. J Med Chem 2021; 64:13152-13173. [PMID: 34505508 DOI: 10.1021/acs.jmedchem.1c00910] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the development of central nervous system (CNS) drugs, the blood-brain barrier (BBB) restricts many drugs from entering the brain to exert therapeutic effects. Although many novel delivery methods of large molecule drugs have been designed to assist transport, small molecule drugs account for the vast majority of the CNS drugs used clinically. From this perspective, we review studies from the past five years that have sought to modify small molecules to increase brain exposure. Medicinal chemists make it easier for small molecules to cross the BBB by improving diffusion, reducing efflux, and activating carrier transporters. On the basis of their excellent work, we summarize strategies for structural modification of small molecules to improve BBB penetration. These strategies are expected to provide a reference for the future development of small molecule CNS drugs.
Collapse
Affiliation(s)
- Baichen Xiong
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yuanyuan Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Ying Chen
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Qinghong Liao
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Qi Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China.,School of Basic Medicine, Qingdao University, Qingdao 266071, People's Republic of China
| | - Wei Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
10
|
Xia X, Zhou Y, Gao H. Prodrug strategy for enhanced therapy of central nervous system disease. Chem Commun (Camb) 2021; 57:8842-8855. [PMID: 34486590 DOI: 10.1039/d1cc02940a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Central nervous system (CNS) disease is one of the most notorious arch-criminals of human health across the world. Although considerable efforts have been devoted to promote the development of CNS drugs, ideal therapeutical effects are yet far from enough. The blood-brain barrier remains a major player that impedes the full potential of CNS therapeutical agents as it blocks the entry of CNS drugs into the brain. The past few decades have witnessed the upspring of prodrug strategies as a promising method to accelerate CNS drug development. The prodrug strategy with the ability to overcome the formidable blood-brain barrier enhances the delivery to the brain and hence improves the effects of the CNS therapeutics. In this Feature Article, we summarize the reported barriers and strategies for CNS therapeutics and spotlight prodrug design strategies to improve the efficiency of crossing the blood-brain barrier.
Collapse
Affiliation(s)
- Xue Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, P. R. China.
| | - Yang Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, P. R. China.
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, P. R. China.
| |
Collapse
|
11
|
Li D, Yang X, Li B, Yang C, Sun J, Yu M, Wang H, Lu Y. Lidocaine liposome modified with folic acid suppresses the proliferation and motility of glioma cells via targeting the PI3K/AKT pathway. Exp Ther Med 2021; 22:1025. [PMID: 34373711 PMCID: PMC8343891 DOI: 10.3892/etm.2021.10457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 05/28/2021] [Indexed: 11/06/2022] Open
Abstract
Glioma is life-threatening tumor of the central nervous system. Although lidocaine is usually used as local anesthetic, it also has antitumor effects. However, its clinical application in glioma is hampered by limited distribution to the brain. The aim of the present study was to enhance the ability of lidocaine to penetrate the blood-brain barrier (BBB) to target glioma and investigate its antitumor mechanism. A folic acid (FA)-modified lidocaine-carrying liposome (Lid-FA-Lip) was prepared, and its particle size, ζ potential, encapsulation efficiency, release profile stability and hemolytic effect were characterized in vitro. The targeting capacity and antitumor activities of Lid-FA-Lip were also investigated in vitro and in vivo. The results indicated that the modification of liposomes with FA significantly improved the ability of lidocaine to cross the BBB in an in vitro model and increased its uptake by U87 cells. Additionally, Lid-FA-Lip significantly suppressed the motility of U87 glioma cells and stimulated apoptosis. Furthermore, the results confirmed that Lid-FA-Lip targeted the PI3K/AKT pathway and suppressed the growth of glioma xenografts in mice. In summary, the study demonstrated that Lid-FA-Lip is a promising liposomal formulation of lidocaine that may provide improved therapeutic effects on glioma, mediated via the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Dedong Li
- Department of Anesthesiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Xuewei Yang
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin 300191, P.R. China
| | - Bo Li
- Department of Anesthesiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Chenyi Yang
- Department of Anesthesiology, Tianjin Third Central Hospital, Tianjin 300052, P.R. China
| | - Jian Sun
- Department of Anesthesiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Mingdong Yu
- Department of Anesthesiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Haiyun Wang
- Department of Anesthesiology, Tianjin Third Central Hospital, Tianjin 300052, P.R. China
| | - Yuechun Lu
- Department of Anesthesiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
12
|
Liu Q, Zhou L, Lu R, Yang C, Wang S, Hai L, Wu Y. Biotin and glucose co-modified multi-targeting liposomes for efficient delivery of chemotherapeutics for the treatment of glioma. Bioorg Med Chem 2020; 29:115852. [PMID: 33189509 DOI: 10.1016/j.bmc.2020.115852] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/20/2020] [Accepted: 11/01/2020] [Indexed: 12/29/2022]
Abstract
Glioma is one of the most common primary intracranial tumor, but the current treatments of glioma are far from satisfying. As the major treatment option for malignant glioma, chemotherapy has its own disadvantages, including low chemotherapeutic agents delivery across blood-brain barrier (BBB) and lack of specificity. Therefore, new approach permitting glioma targeting ability that can allow an efficient therapeutic delivery into the glioma regions is urgently required. Ligand-mediated liposomes have shown great potential for improving the efficiency of glioma treatment. In our study, the multi-targeting liposomes based on glucose and biotin were constructed for the first time. We synthesized two ligands (Glu3-Chol, Bio2-Chol), prepared three types of modified liposomes (Glu3-Lip, Bio2-Lip and Bio2 + Glu3-Lip) and evaluated the glioma-targeting ability of these liposomes which were using paclitaxel (PTX) as the model drug in vitro. Besides, the uptake mechanism of Bio2 + Glu3-Lip was investigated. PTX-loaded Bio2 + Glu3-Lip (PTX-Bio2 + Glu3-Lip) exhibited satisfactory targeting effect in Bend.3 and C6 cells in vitro, in which the cellular uptake of Bio2 + Glu3-Lip were 4.04- and 3.49-fold more than that of the uncoated liposomes (Lip). The results suggested the multi-targeting liposomes (Bio2 + Glu3-Lip) is a promising formulation for glioma, which was almost consistent with the results of in vivo imaging. In summary, we have designed and fabricated an effective delivery system to treat glioma.
Collapse
Affiliation(s)
- Qijun Liu
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Lin Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Runxin Lu
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Chunyan Yang
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Siqi Wang
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Li Hai
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| | - Yong Wu
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
13
|
Wang X, Guo K, Huang B, Lin Z, Cai Z. Role of Glucose Transporters in Drug Membrane Transport. Curr Drug Metab 2020; 21:947-958. [PMID: 32778021 DOI: 10.2174/1389200221666200810125924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/12/2020] [Accepted: 06/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glucose is the main energy component of cellular activities. However, as a polar molecule, glucose cannot freely pass through the phospholipid bilayer structure of the cell membrane. Thus, glucose must rely on specific transporters in the membrane. Drugs with a similar chemical structure to glucose may also be transported through this pathway. METHODS This review describes the structure, distribution, action mechanism and influencing factors of glucose transporters and introduces the natural drugs mediated by these transporters and drug design strategies on the basis of this pathway. RESULTS The glucose transporters involved in glucose transport are of two major types, namely, Na+-dependent and Na+-independent transporters. Glucose transporters can help some glycoside drugs cross the biological membrane. The transmembrane potential is influenced by the chemical structure of drugs. Glucose can be used to modify drugs and improve their ability to cross biological barriers. CONCLUSION The membrane transport mechanism of some glycoside drugs may be related to glucose transporters. Glucose modification may improve the oral bioavailability of drugs or achieve targeted drug delivery.
Collapse
Affiliation(s)
- Xin Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Kunkun Guo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Baolin Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zimin Lin
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zheng Cai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Yang Y, Zhao Z, Xie C, Zhao Y. Dual-targeting liposome modified by glutamic hexapeptide and folic acid for bone metastatic breast cancer. Chem Phys Lipids 2020; 228:104882. [PMID: 32017901 DOI: 10.1016/j.chemphyslip.2020.104882] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/05/2020] [Accepted: 01/29/2020] [Indexed: 11/17/2022]
Abstract
Bone is the most common organ affected by metastatic breast cancer. Targeting delivery of drugs to bone may not only enhance the treatment efficacy, but also reduce the quantity of drug administered. In order to increase the distribution of paclitaxel (PTX) in bone, herein, a novel bone metastasis-targeted glutamic hexapeptide-folic acid (Glu6-FA) derivative was designed and synthesized as liposome ligand to deliver PTX to bone metastasis effectively. The liposomes were prepared by thin film hydration method and its particle size, zeta potential, encapsulation efficiency, release profile, stability, hemolysis were also characterized. What's more, the anti-tumor effects of PTX-Glu6-FA-Lip were confirmed by the detection of cell cycle, migration, and further measurement of microtubule stabilization. In addition, the PTX-Glu6-FA-Lip showed superior targeting ability in vitro and in vivo evaluation as compared to naked PTX, non-coated, singly-modified and co-modified by physical blending liposomes. All the results suggested that Glu6-FA-modified liposome showed excellent targeting activity to metastatic bone cancer. These findings suggested that Glu6-FA-Lip was a promising bone metastasis-targeting carrier for the delivery of PTX. This study may therefore be conducive to the field of bone-targeting drugs delivery.
Collapse
Affiliation(s)
- Yang Yang
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ze Zhao
- Department of Orthopedics, the First Affiliated Hospital of Henan Polytechnic University (the Second People's Hospital of Jiaozuo City), Jiaozuo 454001, China
| | - Changwei Xie
- Department of Orthopedics, the First Affiliated Hospital of Henan Polytechnic University (the Second People's Hospital of Jiaozuo City), Jiaozuo 454001, China
| | - Yi Zhao
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
15
|
Mittal S, Ashhar MU, Qizilbash FF, Qamar Z, Narang JK, Kumar S, Ali J, Baboota S. Ligand Conjugated Targeted Nanotherapeutics for Treatment of Neurological Disorders. Curr Pharm Des 2020; 26:2291-2305. [PMID: 32303160 DOI: 10.2174/1381612826666200417141600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/26/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Human brain is amongst the most complex organs in human body, and delivery of therapeutic agents across the brain is a tedious task. Existence of blood brain barrier (BBB) protects the brain from invasion of undesirable substances; therefore it hinders the transport of various drugs used for the treatment of different neurological diseases including glioma, Parkinson's disease, Alzheimer's disease, etc. To surmount this barrier, various approaches have been used such as the use of carrier mediated drug delivery; use of intranasal route, to avoid first pass metabolism; and use of ligands (lactoferrin, apolipoprotein) to transport the drug across the BBB. Ligands bind with proteins present on the cell and facilitate the transport of drug across the cell membrane via. receptor mediated, transporter mediated or adsorptive mediated transcytosis. OBJECTIVE The main focus of this review article is to illustrate various studies performed using ligands for delivering drug across BBB; it also describes the procedure used by various researchers for conjugating the ligands to the formulation to achieve targeted action. METHODS Research articles that focused on the used of ligand conjugation for brain delivery and compared the outcome with unconjugated formulation were collected from various search engines like PubMed, Science Direct and Google Scholar, using keywords like ligands, neurological disorders, conjugation, etc. Results and Conclusion: Ligands have shown great potential in delivering drug across BBB for treatment of various diseases, yet extensive research is required so that the ligands can be used clinically for treating neurological diseases.
Collapse
Affiliation(s)
- Saurabh Mittal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Muhammad U Ashhar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Farheen F Qizilbash
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Zufika Qamar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Jasjeet K Narang
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, Punjab, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Uttar Pradesh, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
16
|
Li Y, Cong H, Wang S, Yu B, Shen Y. Liposomes modified with bio-substances for cancer treatment. Biomater Sci 2020; 8:6442-6468. [DOI: 10.1039/d0bm01531h] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, liposomes have been used in the field of biomedicine and have achieved many significant results.
Collapse
Affiliation(s)
- Yanan Li
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Song Wang
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Bing Yu
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| |
Collapse
|
17
|
Zhao Z, Chen C, Xie C, Zhao Y. Design, synthesis and evaluation of liposomes modified with dendritic aspartic acid for bone-specific targeting. Chem Phys Lipids 2019; 226:104832. [PMID: 31560875 DOI: 10.1016/j.chemphyslip.2019.104832] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/09/2019] [Accepted: 09/21/2019] [Indexed: 02/06/2023]
Abstract
Bone diseases are notoriously difficult diseases to treat due to the comparatively low blood flows in bone tissue. Therefore, targeting delivery of drugs to bone may not only enhance the treatment efficacy, but also reduce the quantity of drug administered. In order to increase the distribution of paclitaxel (PTX) in bone, in this study, a series of novel dendritic aspartic acid derivatives were designed and synthesized as liposome ligands to deliver PTX to bone effectively. The liposomes were prepared by thin film hydration method and its particle size, zeta potential, encapsulation efficiency, release profile, stability, hemolysis were also characterized. All the aspartic acid-coated liposomes showed more than 60% binding rates to hydroxyapatite (HAP), especially the PTX-Asp8-Lip exhibited dramatic binding rates (> 97%) after 24 h. Moreover, the bone-targeting study in vivo indicated that all liposomes could improve the accumulation of PTX in bone, among which, the PTX-Asp8-Lip showed the best affinity due to the increase of aspartic acid residues exposed on the liposome surface. These results provided a novel and effective entry to the development of bone-targeting drugs.
Collapse
Affiliation(s)
- Ze Zhao
- Department of Orthopedics, the First Affiliated Hospital of Henan Polytechnic University (the Second People's Hospital of Jiaozuo City), Jiaozuo 454001, China.
| | - Changqing Chen
- Department of Orthopedics, the First Affiliated Hospital of Henan Polytechnic University (the Second People's Hospital of Jiaozuo City), Jiaozuo 454001, China
| | - Changwei Xie
- Department of Orthopedics, the First Affiliated Hospital of Henan Polytechnic University (the Second People's Hospital of Jiaozuo City), Jiaozuo 454001, China
| | - Yi Zhao
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
18
|
Han L, Wang Y, Huang X, Liu B, Hu L, Ma C, Liu J, Xue J, Qu W, Liu F, Feng F, Liu W. A stage-specific cancer chemotherapy strategy through flexible combination of reduction-activated charge-conversional core-shell nanoparticles. Theranostics 2019; 9:6532-6549. [PMID: 31588234 PMCID: PMC6771249 DOI: 10.7150/thno.35057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
Precision medicine has increased the demand for stage-specific cancer chemotherapy. Drugs with different properties are needed for different stages of tumor development, which is, inducing rapid destruction in the early stage and facilitating deep penetration in the advanced stage. Herein, we report a novel reduction-activated charge-conversional core-shell nanoparticle (CS NP) formula based on ring-closing metathesis of the thiamine disulfide system (TDS) to deliver the chemotherapeutic agent-gambogic acid (GA). Methods: The shell consisted of hyaluronic acid-all-trans retinoid acid with a disulfide bond as the linker (HA-SS-ATRA). The core was selected from poly (γ-glutamic acid) with different grafting rates of the functional group (Fx%) of TDS. GA/CF100%S NPs, with the strongest reduction-responsive drug release, and GA/CF60%S NPs with the strongest penetration have been finally screened. On this basis, a stage-specific administration strategy against a two-stage hepatocellular carcinoma was proposed. Results: The developed CS NPs have been confirmed as inducing reduction-activated charge conversion from about -25 to +30 mV with up to 95% drug release within 48 h. The administration strategy, GA/CF100%S NPs for the early-stage tumor, and sequential administration of GA/CF60%S NPs followed by GA/CF100%S NPs for the advanced-stage tumor, achieved excellent tumor inhibition rates of 93.86±2.94% and 90.76±6.43%, respectively. Conclusions: Our CS NPs provide a novel platform for charge conversion activated by reduction. The stage-specific administration strategy showed great promise for cancer therapy.
Collapse
Affiliation(s)
- Lingfei Han
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Yingming Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoxian Huang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Bowen Liu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Lejian Hu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Congyu Ma
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Liu
- The Joint Laboratory of Chinese Pharmaceutical University and Taian City Central Hospital, Taian City Central Hospital, Taian, 271000, China
| | - Jingwei Xue
- The Joint Laboratory of Chinese Pharmaceutical University and Taian City Central Hospital, Taian City Central Hospital, Taian, 271000, China
- Taian City institute of Digestive Disease, Taian City Central Hospital, Taian, 271000, China
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Fulei Liu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
- The Joint Laboratory of Chinese Pharmaceutical University and Taian City Central Hospital, Taian City Central Hospital, Taian, 271000, China
- Pharmaceutical Department, Taian City Central Hospital, Taian, 271000, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
- Hangzhou Institute of Pharmaceutical Innovation, China Pharmaceutical University, Hangzhou 310018, China
| |
Collapse
|
19
|
Zhao Z, Zhao Y, Xie C, Chen C, Lin D, Wang S, Lin D, Cui X, Guo Z, Zhou J. Dual-active targeting liposomes drug delivery system for bone metastatic breast cancer: Synthesis and biological evaluation. Chem Phys Lipids 2019; 223:104785. [PMID: 31194968 DOI: 10.1016/j.chemphyslip.2019.104785] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/15/2019] [Accepted: 06/09/2019] [Indexed: 01/25/2023]
Abstract
Bone is the most common organ affected by metastatic breast cancer. Targeting cancers within the bone remains a great challenge due to the inefficient delivery of therapeutic to bone. In order to increase the distribution of paclitaxel (PTX) in bone metastases, in this study, a novel bone-targeted glutamic oligopeptides-RGD peptide (Glu6-RGD) derivative was designed and synthesized as liposome ligand for preparing liposome to effectively deliver PTX to bone metastases. The liposome was prepared and its particle size, zeta potential, encapsulation efficiency, release profile, stability, hemolysis and cytotoxicity were also characterized. What's more, the Glu6-RGD-Lip showed superior targeting ability in vitro and in vivo evaluation as compared to naked PTX, non-coated, singly-modified and co-modified by physical blending liposomes. All the results suggested that Glu6-RGD-modified liposome showed excellent targeting activity to metastatic bone cancer. This study may be conducive to the field of bone-targeting drugs delivery.
Collapse
Affiliation(s)
- Ze Zhao
- Department of Orthopedics, the First Affiliated Hospital of Henan Polytechnic University (the Second People's Hospital of Jiaozuo City), No.17 Minzhu South Road, Jiaozuo, 454001, China.
| | - Yi Zhao
- Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, China.
| | - Changwei Xie
- Department of Orthopedics, the First Affiliated Hospital of Henan Polytechnic University (the Second People's Hospital of Jiaozuo City), No.17 Minzhu South Road, Jiaozuo, 454001, China
| | - Changqing Chen
- Department of Orthopedics, the First Affiliated Hospital of Henan Polytechnic University (the Second People's Hospital of Jiaozuo City), No.17 Minzhu South Road, Jiaozuo, 454001, China
| | - Dong Lin
- Department of Orthopedics, the First Affiliated Hospital of Henan Polytechnic University (the Second People's Hospital of Jiaozuo City), No.17 Minzhu South Road, Jiaozuo, 454001, China
| | - Sheng Wang
- Department of Orthopedics, the First Affiliated Hospital of Henan Polytechnic University (the Second People's Hospital of Jiaozuo City), No.17 Minzhu South Road, Jiaozuo, 454001, China
| | - Dong Lin
- Department of Orthopedics, the First Affiliated Hospital of Henan Polytechnic University (the Second People's Hospital of Jiaozuo City), No.17 Minzhu South Road, Jiaozuo, 454001, China
| | - Xinhua Cui
- Department of Orthopedics, the First Affiliated Hospital of Henan Polytechnic University (the Second People's Hospital of Jiaozuo City), No.17 Minzhu South Road, Jiaozuo, 454001, China
| | - Zhongshuai Guo
- Department of Orthopedics, the First Affiliated Hospital of Henan Polytechnic University (the Second People's Hospital of Jiaozuo City), No.17 Minzhu South Road, Jiaozuo, 454001, China
| | - Junfeng Zhou
- Department of Orthopedics, the First Affiliated Hospital of Henan Polytechnic University (the Second People's Hospital of Jiaozuo City), No.17 Minzhu South Road, Jiaozuo, 454001, China
| |
Collapse
|
20
|
Matos AM, Man T, Idrissi I, Souza CC, Mead E, Dunbar C, Wolak J, Oliveira MC, Evans D, Grayson J, Partridge B, Garwood C, Ning K, Sharman G, Chen B, Rauter AP. Discovery of N-methylpiperazinyl flavones as a novel class of compounds with therapeutic potential against Alzheimer’s disease: synthesis, binding affinity towards amyloid β oligomers (Aβo) and ability to disrupt Aβo-PrPC interactions. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2019-0114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
With no currently available disease-modifying drugs, Alzheimer’s disease is the most common type of dementia affecting over 47 million people worldwide. In light of the most recent discoveries placing the cellular prion protein (PrPC) as a key player in amyloid β oligomer (Aβo)-induced neurodegeneration, we investigated whether the neuroprotective potential of nature-inspired flavonoids against Aβ-promoted toxicity would translate into the ability to disrupt PrPC-Aβo interactions. Hence, we synthesized a small library of flavones and studied their binding affinity towards Aβo by STD-NMR. C-glucosyl flavones exhibited improved binding affinity with morpholine, thiomorpholine or N-methylpiperazine rings attached to the flavone skeleton in ring B para position. Moreover, a N-methylpiperazinyl flavone displayed suitable physicochemical properties and optimal water solubility even without the sugar moiety, and a high interaction with Aβo involving the whole flavone core. Its C-glucosyl derivative, was, however, the best compound to inhibit PrPC-Aβo interactions in a dose-dependent manner, with 41 % of inhibition capacity at 10 μM. The potential of C-glucosyl flavones and their aglycones as protein-protein interaction inhibitors able to tackle PrPC-Aβo interactions is here presented for the first time, and supports this class of compounds as new prototypes for further development in the treatment of Alzheimer’s disease.
Collapse
Affiliation(s)
- Ana M. Matos
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa , Ed. C8, Campo Grande , 1749-016 Lisboa , Portugal
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa , Ed. C8, Campo Grande , 1749-016 Lisboa , Portugal
| | - Teresa Man
- Department of Chemistry , Erl Wood Manor, Eli Lilly , Windlesham , UK
| | - Imane Idrissi
- Biofordrug, Via Edoardo Orabona , 4 , 70125 – Bari BA , Italy
| | - Cleide C. Souza
- Department of Chemistry , The University of Sheffield , Dainton Building, Brook Hill , S3 7HF Sheffield , UK
| | - Emma Mead
- Department of Biology , Erl Wood Manor, Eli Lilly , Windlesham , UK
| | - Charlotte Dunbar
- Department of Biology , Erl Wood Manor, Eli Lilly , Windlesham , UK
| | - Joanna Wolak
- Department of Chemistry , Erl Wood Manor, Eli Lilly , Windlesham , UK
- Department of Chemistry , The University of Sheffield , Dainton Building, Brook Hill , S3 7HF Sheffield , UK
| | - Maria C. Oliveira
- Mass Spectrometry Facility, Centro de Química Estrutural, Instituto Superior Técnico , Av. Rovisco Pais , 1049-001 Lisboa , Portugal
| | - David Evans
- Department of Chemistry , Erl Wood Manor, Eli Lilly , Windlesham , UK
| | - James Grayson
- Department of Chemistry , The University of Sheffield , Dainton Building, Brook Hill , S3 7HF Sheffield , UK
| | - Benjamin Partridge
- Department of Chemistry , The University of Sheffield , Dainton Building, Brook Hill , S3 7HF Sheffield , UK
| | - Claire Garwood
- Department of Chemistry , The University of Sheffield , Dainton Building, Brook Hill , S3 7HF Sheffield , UK
| | - Ke Ning
- Department of Chemistry , The University of Sheffield , Dainton Building, Brook Hill , S3 7HF Sheffield , UK
| | - Gary Sharman
- Department of Chemistry , Erl Wood Manor, Eli Lilly , Windlesham , UK
| | - Beining Chen
- Department of Chemistry , The University of Sheffield , Dainton Building, Brook Hill , S3 7HF Sheffield , UK
| | - Amélia P. Rauter
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa , Ed. C8, Campo Grande , 1749-016 Lisboa , Portugal
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa , Ed. C8, Campo Grande , 1749-016 Lisboa , Portugal
| |
Collapse
|
21
|
Fu Q, Zhao Y, Yang Z, Yue Q, Xiao W, Chen Y, Yang Y, Guo L, Wu Y. Liposomes actively recognizing the glucose transporter GLUT1and integrin αvβ3for dual-targeting of glioma. Arch Pharm (Weinheim) 2019; 352:e1800219. [PMID: 30609116 DOI: 10.1002/ardp.201800219] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 11/05/2018] [Accepted: 11/11/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Qiuyi Fu
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Yi Zhao
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Zhongzhen Yang
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Qiming Yue
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Wenjiao Xiao
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Yang Chen
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Yang Yang
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Li Guo
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Yong Wu
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| |
Collapse
|
22
|
Peng Y, Zhao Y, Chen Y, Yang Z, Zhang L, Xiao W, Yang J, Guo L, Wu Y. Dual-targeting for brain-specific liposomes drug delivery system: Synthesis and preliminary evaluation. Bioorg Med Chem 2018; 26:4677-4686. [DOI: 10.1016/j.bmc.2018.08.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/25/2018] [Accepted: 08/04/2018] [Indexed: 12/11/2022]
|
23
|
Yue Q, Peng Y, Zhao Y, Lu R, Fu Q, Chen Y, Yang Y, Hai L, Guo L, Wu Y. Dual-targeting for brain-specific drug delivery: synthesis and biological evaluation. Drug Deliv 2018; 25:426-434. [PMID: 29382239 PMCID: PMC6058731 DOI: 10.1080/10717544.2018.1431978] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ibuprofen is one of the most potent non-steroid anti-inflammatory drugs (NSAIDs) and plays an important role in the treatment of neurodegenerative diseases. However, its poor brain penetration and serious side effects at therapeutic doses, has hindered its further application. Thus, it is of great interest to develop a carrier-mediated transporter (CMT) system that is capable of more efficiently delivering ibuprofen into the brain at smaller doses to treat neurodegenerative diseases. In this study, a dual-mediated ibuprofen prodrug modified by glucose (Glu) and vitamin C (Vc) for central nervous system (CNS) drug delivery was designed and synthesized in order to effectively deliver ibuprofen to brain. Ibuprofen could be released from the prepared prodrugs when incubated with various buffers, mice plasma and brain homogenate. Also, the prodrug showed superior neuroprotective effect in vitro and in vivo than ibuprofen. Our results suggest that chemical modification of therapeutics with warheads of glucose and Vc represents a promising and efficient strategy for the development of brain-targeting prodrugs by utilizing the endogenous transportation mechanism of the warheads.
Collapse
Affiliation(s)
- Qiming Yue
- a Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy , Sichuan University , Chengdu , P.R. China
| | - Yao Peng
- a Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy , Sichuan University , Chengdu , P.R. China
| | - Yi Zhao
- a Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy , Sichuan University , Chengdu , P.R. China
| | - Runxin Lu
- a Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy , Sichuan University , Chengdu , P.R. China
| | - Qiuyi Fu
- a Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy , Sichuan University , Chengdu , P.R. China
| | - Yang Chen
- a Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy , Sichuan University , Chengdu , P.R. China
| | - Yang Yang
- a Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy , Sichuan University , Chengdu , P.R. China
| | - Li Hai
- a Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy , Sichuan University , Chengdu , P.R. China
| | - Li Guo
- a Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy , Sichuan University , Chengdu , P.R. China
| | - Yong Wu
- a Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy , Sichuan University , Chengdu , P.R. China
| |
Collapse
|
24
|
Wang L, Zhang L, Zhao Y, Fu Q, Xiao W, Lu R, Hai L, Guo L, Wu Y. Design, synthesis, and neuroprotective effects of dual-brain targeting naproxen prodrug. Arch Pharm (Weinheim) 2018; 351:e1700382. [PMID: 29566434 DOI: 10.1002/ardp.201700382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/28/2018] [Accepted: 03/06/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Linhui Wang
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Li Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Yi Zhao
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Qiuyi Fu
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Wenjiao Xiao
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Runxin Lu
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Li Hai
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Li Guo
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Yong Wu
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| |
Collapse
|