1
|
Chen J, Gan X, Su S, Jiao S, Gong Z, Liu Z, Wu X, Jiang J, Zhang J, Wan J. Conditional sequential delivery of ginkgetin and rapamycin orchestrates inflammation and autophagy to alleviate intervertebral disc degeneration. J Control Release 2025; 381:113556. [PMID: 39983927 DOI: 10.1016/j.jconrel.2025.02.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/30/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Intervertebral disc degeneration (IVDD) is a multifaceted and complex condition primarily driven by excessive inflammation, degradation of the extracellular matrix (ECM), and dysfunction of nucleus pulposus cells (NPCs). Despite extensive exploration of various therapeutic agents targeting IVDD, their efficacy remains disappointingly limited. This study underscores the efficacy of ginkgetin (GK), a natural bioflavonoid with potent anti-inflammatory properties, in mitigating inflammation as well as ECM degradation and NPC dysfunction triggered by interleukin-1β (IL-1β). However, GK alone cannot fully address the persistent obstruction in autophagic flux induced by IL-1β. To overcome this limitation, an innovative MMP13-responsive nanoplatform was developed, orchestrating the sequential delivery of GK and rapamycin (RA), targeting distinct phases of IVDD progression. In this design, GK is progressively released from exosomes during the initial phase, while RA is released from mesoporous silica nanoparticles during the mid-phase to enhance autophagic flux. This staged release approach leverages the strengths of both agents, addressing inflammation and restoring autophagy more effectively. In vivo experiments confirmed the substantial therapeutic benefits of this staggered delivery strategy in IVDD. The engineered MMP13-responsive nanoplatform represents a significant advancement in controlled, sequential drug delivery systems, offering a promising therapeutic avenue to effectively regulate inflammation and autophagy, thereby ameliorating IVDD.
Collapse
Affiliation(s)
- Jiaoxiang Chen
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Orthopedics, the Second Affiliated Hospital and Yuying Children Hospital of Wenzhou Medical University, Wenzhou 325003, China
| | - Xin Gan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shenkai Su
- Department of Orthopedics, the Second Affiliated Hospital and Yuying Children Hospital of Wenzhou Medical University, Wenzhou 325003, China
| | - Sizhe Jiao
- The First Clinical Medical College, Southern Medical University, Guangzhou 510000, China
| | - Zailing Gong
- Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
| | - Ziqiang Liu
- The First Clinical Medical College, Southern Medical University, Guangzhou 510000, China
| | - Xiaopei Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jun Jiang
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Jiaming Zhang
- Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China.
| | - Junlai Wan
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
2
|
Shi J, Liu X, Jiao Y, Tian J, An J, Zou G, Zhuo L. mTOR pathway: A key player in diabetic nephropathy progression and therapeutic targets. Genes Dis 2025; 12:101260. [PMID: 39717716 PMCID: PMC11665407 DOI: 10.1016/j.gendis.2024.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/26/2024] [Accepted: 02/21/2024] [Indexed: 12/25/2024] Open
Abstract
Diabetic nephropathy is a prevalent complication of diabetes and stands as the primary contributor to end-stage renal disease. The global prevalence of diabetic nephropathy is on the rise, however, due to its intricate pathogenesis, there is currently an absence of efficacious treatments to enhance renal prognosis in affected patients. The mammalian target of rapamycin (mTOR), a serine/threonine protease, assumes a pivotal role in cellular division, survival, apoptosis delay, and angiogenesis. It is implicated in diverse signaling pathways and has been observed to partake in the progression of diabetic nephropathy by inhibiting autophagy, promoting inflammation, and increasing oxidative stress. In this academic review, we have consolidated the understanding of the pathological mechanisms associated with four distinct resident renal cell types (podocytes, glomerular mesangial cells, renal tubular epithelial cells, and glomerular endothelial cells), as well as macrophages and T lymphocytes, within a diabetic environment. Additionally, we highlight the research progress in the treatment of diabetic nephropathy with drugs and various molecules interfering with the mTOR signaling pathway, providing a theoretical reference for the treatment and prevention of diabetic nephropathy.
Collapse
Affiliation(s)
- Jingxuan Shi
- Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029, China
- China-Japan Friendship Institute of Clinical Medical Sciences, Beijing 100029, China
| | - Xinze Liu
- Beijing University of Chinese Medicine China-Japan Friendship Clinical Medical College, Beijing 100029, China
| | - Yuanyuan Jiao
- Department of Nephrology, Fuwai Hospital, Chinese Academy of Medical Science, Beijing 100037, China
| | - Jingwei Tian
- Department of Nephrology, Beijing Sixth Hospital, Beijing 100007, China
- Capital Medical University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Jiaqi An
- Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029, China
- China-Japan Friendship Clinic Medical College, Peking University, Beijing 100191, China
| | - Guming Zou
- Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Li Zhuo
- Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
3
|
Zhang Z, Tang S, Liu S, Leng Y, Fu X, Xie H, Gao H, Xie C. The efficacy and safety of Ginkgo biloba L. leaves extract combined with ACEI/ARB on diabetic kidney disease: a systematic review and meta-analysis of 41 randomized controlled trials. Front Pharmacol 2025; 15:1408546. [PMID: 39830333 PMCID: PMC11739094 DOI: 10.3389/fphar.2024.1408546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025] Open
Abstract
Background Diabetic kidney disease (DKD) has become the leading cause of end-stage renal disease in the world. However, the current conventional approaches have not yet achieved satisfactory efficacy. As one of the most influential products in botanical medicine, Ginkgo biloba L. leaves extract (GBE) demonstrates various pharmacological effects on DKD and is gradually used as an adjunctive therapy for this disease. A comprehensive analysis is necessary to evaluate the efficacy and safety of GBE as an adjuvant treatment for DKD. Objective This meta-analysis aimed to evaluate the efficacy and safety of GBE as a supplementary treatment to conventional renin-angiotensin-aldosterone system inhibitors for DKD patients, providing a reference for subsequent research and clinical practice. Methods This study has been registered in PROSPERO as CRD42023455792. Ten databases were searched from their inception to 21 July 2023. Randomized controlled trials about GBE and DKD were included. Review Manager 5.4 and Stata 16.0 were employed to conduct the analysis. Heterogeneity was assessed through the χ2 test and the I2 test, and the effect model was chosen accordingly. Meta-regression and subgroup analysis were performed to investigate the sources of heterogeneity and the influence of different factor levels on efficacy. The publication bias was evaluated with the funnel plot and Egger's test, and the evidence quality was evaluated by the Grading of Recommendations Assessment, Development and Evaluation (GRADE) method. Results A total of 41 studies with 3,269 patients were finally enrolled in this study. None of the included studies reported whether renal or cardiovascular disease progression events occurred. Compared with angiotensin-converting enzyme inhibitor (ACEI)/angiotensin II receptor blocker (ARB) alone, the combination with GBE was more beneficial in improving urinary albumin excretion rate (UAER) [mean difference (MD) = -22.99 μg/min, 95% confidence interval (CI): -27.66 to -18.31, p < 0.01], serum creatinine (SCr) [MD = -8.30 μmol/L, 95% CI: -11.55 to -5.05, p < 0.01], blood urea nitrogen (BUN) [MD = -0.77 mmol/L, 95% CI: -1.04 to -0.49, p < 0.01], 24-hour urinary total protein (24hUTP) [MD = -0.28 g/d, 95% CI: -0.35 to -0.22, p < 0.01], cystatin C (Cys-C) [MD = -0.30 mg/L, 95% CI: -0.43 to -0.17, p < 0.01], total cholesterol (TC) [MD = -0.69 mmol/L, 95% CI: -1.01 to -0.38, p < 0.01], triglyceride (TG) [MD = -0.40 mmol/L, 95% CI: -0.56 to -0.23, p < 0.01], low-density lipoprotein cholesterol (LDL-C) [MD = -0.97 mmol/L, 95% CI: -1.28 to -0.65, p < 0.01], fasting blood glucose (FBG) [MD = -0.30 mmol/L, 95% CI: -0.54 to -0.05, p = 0.02], hematocrit [MD = -4.58%, 95% CI: -5.25 to -3.90, p < 0.01] and fibrinogen [MD = -0.80 g/L, 95% CI: -1.12 to -0.47, p < 0.01]. No significant improvement was found in 2-hour postprandial glucose (2hPG), glycated hemoglobin (HbA1c), diastolic blood pressure (DBP) and systolic blood pressure (SBP). No significant difference was detected in adverse events. Conclusion Combining GBE with ACEI/ARB may improve UAER, SCr, BUN, 24hUTP, Cys-C, TC, TG, LDL-C, hematocrit and fibrinogen in DKD patients. It also seems beneficial for oxidative stress and inflammation but has minimal impact on glucose and blood pressure. Combined GBE therapy is generally tolerated, but safety monitoring remains essential during its use. More long-term high-quality clinical studies and in-depth molecular research are still necessary to provide stronger evidence regarding the benefits and safety of GBE in DKD. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=455792, identifier CRD42023455792.
Collapse
Affiliation(s)
- Zehua Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyun Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyu Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulin Leng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoxu Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Gao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunguang Xie
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Sulaiman MK. Molecular mechanisms and therapeutic potential of natural flavonoids in diabetic nephropathy: Modulation of intracellular developmental signaling pathways. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100194. [PMID: 39071051 PMCID: PMC11276931 DOI: 10.1016/j.crphar.2024.100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Recognized as a common microvascular complication of diabetes mellitus (DM), diabetic nephropathy (DN) is the principal cause of chronic end-stage renal disease (ESRD). Patients with diabetes have an approximately 25% risk of developing progressive renal disease. The underlying principles of DN control targets the dual outcomes of blood glucose regulation through sodium glucose cotransporter 2 (SGLT 2) blockade and hypertension management through renin-angiotensin-aldosterone inhibition. However, these treatments are ineffective in halting disease progression to kidney failure and cardiovascular comorbidities. Recently, the dysregulation of subcellular signaling pathways has been increasingly implicated in DN pathogenesis. Natural compounds are emerging as effective and side-effect-free therapeutic agents that target intracellular pathways. This narrative review synthesizes recent insights into the dysregulation of maintenance pathways in DN, drawing from animal and human studies. To compile this review, articles reporting DN signaling pathways and their treatment with natural flavonoids were collected from PubMed, Cochrane Library Web of Science, Google Scholar and EMBASE databases since 2000. As therapeutic interventions are frequently based on the results of clinical trials, a brief analysis of data from current phase II and III clinical trials on DN is discussed.
Collapse
|
5
|
Li X, Gao L, Li X, Xia J, Pan Y, Bai C. Autophagy, Pyroptosis and Ferroptosis are Rising Stars in the Pathogenesis of Diabetic Nephropathy. Diabetes Metab Syndr Obes 2024; 17:1289-1299. [PMID: 38505538 PMCID: PMC10949337 DOI: 10.2147/dmso.s450695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular complications in diabetes and can potentially develop into end-stage renal disease. Its pathogenesis is complex and not fully understood. Podocytes, glomerular endothelial cells (GECs), glomerular mesangial cells (GMCs) and renal tubular epithelial cells (TECs) play important roles in the normal function of glomerulus and renal tubules, and their injury is involved in the progression of DN. Although our understanding of the mechanisms leading to DN has substantially improved, we still need to find more effective therapeutic targets. Autophagy, pyroptosis and ferroptosis are programmed cell death processes that are associated with inflammation and are closely related to a variety of diseases. Recently, a growing number of studies have reported that autophagy, pyroptosis and ferroptosis regulate the function of podocytes, GECs, GMCs and TECs. This review highlights the contributions of autophagy, pyroptosis, and ferroptosis to DN injury in these cells, offering potential therapeutic targets for DN treatment.
Collapse
Affiliation(s)
- Xiudan Li
- Department of Endocrinology, Affiliated Hospital of Chifeng University, Chifeng, 024000, China
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, 024000, China
| | - Lifeng Gao
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, 024000, China
| | - Xuyang Li
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, 024000, China
| | - Jingdong Xia
- Department of Endocrinology, Affiliated Hospital of Chifeng University, Chifeng, 024000, China
| | - Yurong Pan
- Department of Endocrinology, Affiliated Hospital of Chifeng University, Chifeng, 024000, China
| | - Chunying Bai
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, 024000, China
| |
Collapse
|
6
|
Wang X, Liu M, Li X, Zhang M, Xu F, Liu H, Wu H. Utilizing molecular docking and cell validation to explore the potential mechanisms of lupenone attenuating the inflammatory response via NF-κB pathway. Sci Rep 2024; 14:625. [PMID: 38182871 PMCID: PMC10770388 DOI: 10.1038/s41598-024-51150-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024] Open
Abstract
Diabetic nephropathy (DN), a common microvascular complicating disease of diabetes. Lupenone, a pentacyclic triterpenoid, has anti-inflammatory effects and can prevent type 2 diabetes mellitus and treat renal damage, however, the effects and mechanisms of lupenone in DN remain unclear. Thereby,the MTT method was used to investigate the antiproliferative effect of lupenoneon the cell line rat glomerular mesangial cells (HBZY-1). Molecular docking was used to investigate the combination of lupenone and MCP-1, IL-1β, TNF-α, IKKβ, IκBα, and NF-κB p65 proteins. The expression of mRNA of the pro-inflammatory cytokines (MCP-1, IL-1β and TNF-α) and the NF-κB signalling pathway in HBZY-1 cells were assessed by RT-PCR. The protein expressions of pro-inflammatory cytokines and NF-κB pathway were got by Western blot. Result showed that lupenone inhibited the proliferative activity of HBZY-1 cells at non-cytotoxic concentrations. Molecular docking results showed that lupenone combined well with the target proteins. Moreover, lupenone could significantly reduced the mRNA and protein expressions for pro-inflammatory cytokines and IKKβ, p-p65 and p-IκBα. Lupenone may play an anti-inflammatory role in DN treatment by inhibiting the NF-κB signalling pathway. These results provided a new understanding of the pharmacological mechanisms of lupenone in treatment of DN.
Collapse
Affiliation(s)
- Xiangpei Wang
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang City, 550025, Guizhou, People's Republic of China
| | - Mei Liu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang City, 550025, Guizhou, People's Republic of China
| | - Xiaofen Li
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang City, 550025, Guizhou, People's Republic of China
| | - Mei Zhang
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang City, 550025, Guizhou, People's Republic of China
| | - Feng Xu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang City, 550025, Guizhou, People's Republic of China
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Hongyun Liu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang City, 550025, Guizhou, People's Republic of China
| | - Hongmei Wu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang City, 550025, Guizhou, People's Republic of China.
| |
Collapse
|
7
|
Liu T, Jin Q, Yang L, Mao H, Ma F, Wang Y, Li P, Zhan Y. Regulation of autophagy by natural polyphenols in the treatment of diabetic kidney disease: therapeutic potential and mechanism. Front Endocrinol (Lausanne) 2023; 14:1142276. [PMID: 37635982 PMCID: PMC10448531 DOI: 10.3389/fendo.2023.1142276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of diabetes and a leading cause of end-stage renal disease worldwide. Autophagy plays an important role in maintaining cellular homeostasis in renal physiology. In DKD, the accumulation of advanced glycation end products induces decreased renal autophagy-related protein expression and transcription factor EB (TFEB) nuclear transfer, leading to impaired autophagy and lysosomal function and blockage of autophagic flux. This accelerates renal resident cell injury and apoptosis, mediates macrophage infiltration and phenotypic changes, ultimately leading to aggravated proteinuria and fibrosis in DKD. Natural polyphenols show promise in treating DKD by regulating autophagy and promoting nuclear transfer of TFEB and lysosomal repair. This review summarizes the characteristics of autophagy in DKD, and the potential application and mechanisms of some known natural polyphenols as autophagy regulators in DKD, with the goal of contributing to a deeper understanding of natural polyphenol mechanisms in the treatment of DKD and promoting the development of their applications. Finally, we point out the limitations of polyphenols in current DKD research and provide an outlook for their future research.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Jin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Yongli Zhan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Liang D, Liu L, Zhao Y, Luo Z, He Y, Li Y, Tang S, Tang J, Chen N. Targeting extracellular matrix through phytochemicals: a promising approach of multi-step actions on the treatment and prevention of cancer. Front Pharmacol 2023; 14:1186712. [PMID: 37560476 PMCID: PMC10407561 DOI: 10.3389/fphar.2023.1186712] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
Extracellular matrix (ECM) plays a pivotal and dynamic role in the construction of tumor microenvironment (TME), becoming the focus in cancer research and treatment. Multiple cell signaling in ECM remodeling contribute to uncontrolled proliferation, metastasis, immune evasion and drug resistance of cancer. Targeting trilogy of ECM remodeling could be a new strategy during the early-, middle-, advanced-stages of cancer and overcoming drug resistance. Currently nearly 60% of the alternative anticancer drugs are derived from natural products or active ingredients or structural analogs isolated from plants. According to the characteristics of ECM, this manuscript proposes three phases of whole-process management of cancer, including prevention of cancer development in the early stage of cancer (Phase I); prevent the metastasis of tumor in the middle stage of cancer (Phase II); provide a novel method in the use of immunotherapy for advanced cancer (Phase III), and present novel insights on the contribution of natural products use as innovative strategies to exert anticancer effects by targeting components in ECM. Herein, we focus on trilogy of ECM remodeling and the interaction among ECM, cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs), and sort out the intervention effects of natural products on the ECM and related targets in the tumor progression, provide a reference for the development of new drugs against tumor metastasis and recurrence.
Collapse
Affiliation(s)
- Dan Liang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunjie Zhao
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Zhenyi Luo
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Yadi He
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanping Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyun Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nianzhi Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Jin Q, Liu T, Qiao Y, Liu D, Yang L, Mao H, Ma F, Wang Y, Peng L, Zhan Y. Oxidative stress and inflammation in diabetic nephropathy: role of polyphenols. Front Immunol 2023; 14:1185317. [PMID: 37545494 PMCID: PMC10401049 DOI: 10.3389/fimmu.2023.1185317] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
Diabetic nephropathy (DN) often leads to end-stage renal disease. Oxidative stress demonstrates a crucial act in the onset and progression of DN, which triggers various pathological processes while promoting the activation of inflammation and forming a vicious oxidative stress-inflammation cycle that induces podocyte injury, extracellular matrix accumulation, glomerulosclerosis, epithelial-mesenchymal transition, renal tubular atrophy, and proteinuria. Conventional treatments for DN have limited efficacy. Polyphenols, as antioxidants, are widely used in DN with multiple targets and fewer adverse effects. This review reveals the oxidative stress and oxidative stress-associated inflammation in DN that led to pathological damage to renal cells, including podocytes, endothelial cells, mesangial cells, and renal tubular epithelial cells. It demonstrates the potent antioxidant and anti-inflammatory properties by targeting Nrf2, SIRT1, HMGB1, NF-κB, and NLRP3 of polyphenols, including quercetin, resveratrol, curcumin, and phenolic acid. However, there remains a long way to a comprehensive understanding of molecular mechanisms and applications for the clinical therapy of polyphenols.
Collapse
Affiliation(s)
- Qi Jin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Qiao
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Donghai Liu
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Liping Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Yongli Zhan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Hu B, Lin S, Lin S, Rui G. Ginkgetin Alleviates Intervertebral Disc Degeneration by Inhibiting Apoptosis, Inflammation, and Disturbance of Extracellular Matrix Synthesis and Catabolism via Inactivation of NLRP3 Inflammasome. Immunol Invest 2023:1-15. [PMID: 37154418 DOI: 10.1080/08820139.2023.2205884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND Apoptosis, inflammation, and the extracellular matrix (ECM) synthesis and catabolism are compromised with intervertebral disc degeneration (IDD). Ginkgetin (GK) has been demonstrated to alleviate several diseases; however, its effect on IDD remains unknown. METHODS The nucleus pulposus cells (NPCs) were stimulated with interleukin (IL)-1β to construct the IDD models in vitro. Rats were used for the construction of the IDD models in vivo via the fibrous ring puncture method. The effect and mechanism of GK on IDD were determined by cell counting kit-8 (CCK-8), flow cytometry, western blot, real-time quantitative polymerase chain reaction (RT-qPCR), enzyme‑linked immunosorbent assay (ELISA), hematoxylin and eosin (HE) and safranine O staining, and immunohistochemistry (IHC) assays, respectively. RESULTS GK increased the cell viability and upregulated the expressions of anti-apoptosis and ECM synthesis markers in NPCs treated with IL-1β. GK also decreased apoptosis rate, and downregulated the expressions of proteins related to pro-apoptosis, ECM catabolism, and inflammation in vitro. Mechanically, GK reduced the expression of nucleotide binding oligomeric domain like receptor protein 3 (NLRP3) inflammasome-related proteins. Overexpression of NLRP3 reversed the effect of GK on the proliferation, apoptosis, inflammation, and ECM degradation in IL-1β-induced NPCs. Moreover, GK attenuated the pathological manifestations, inflammation, ECM degradation, and NLRP3 inflammasome expression in IDD rats. CONCLUSION GK suppressed apoptosis, inflammation, and ECM degradation to alleviate IDD via the inactivation of NLRP3 inflammasome.
Collapse
Affiliation(s)
| | | | - Shengrong Lin
- Department of Orthopaedics, The Third Clinical Medical College, Fujian Medical University, Xiamen, China
| | - Gang Rui
- Department of Orthopaedics, The Third Clinical Medical College, Fujian Medical University, Xiamen, China
| |
Collapse
|
11
|
Ren M, Li S, Gao Q, Qiao L, Cao Q, Yang Z, Chen C, Jiang Y, Wang G, Fu S. Advances in the Anti-Tumor Activity of Biflavonoids in Selaginella. Int J Mol Sci 2023; 24:ijms24097731. [PMID: 37175435 PMCID: PMC10178260 DOI: 10.3390/ijms24097731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Despite the many strategies employed to slow the spread of cancer, the development of new anti-tumor drugs and the minimization of side effects have been major research hotspots in the anti-tumor field. Natural drugs are a huge treasure trove of drug development, and they have been widely used in the clinic as anti-tumor drugs. Selaginella species in the family Selaginellaceae are widely distributed worldwide, and they have been well-documented in clinical practice for the prevention and treatment of cancer. Biflavonoids are the main active ingredients in Selaginella, and they have good biological and anti-tumor activities, which warrant extensive research. The promise of biflavonoids from Selaginella (SFB) in the field of cancer therapy is being realized thanks to new research that offers insights into the multi-targeting therapeutic mechanisms and key signaling pathways. The pharmacological effects of SFB against various cancers in vitro and in vivo are reviewed in this review. In addition, the types and characteristics of biflavonoid structures are described in detail; we also provide a brief summary of the efforts to develop drug delivery systems or combinations to enhance the bioavailability of SFB monomers. In conclusion, SFB species have great potential to be developed as adjuvant or even primary therapeutic agents for cancer, with promising applications.
Collapse
Affiliation(s)
- Mengdie Ren
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Sihui Li
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Qiong Gao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Lei Qiao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Qianping Cao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Ze Yang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Chaoqiang Chen
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Yongmei Jiang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Gang Wang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Shaobin Fu
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| |
Collapse
|
12
|
Wang X, Song R, Li Z. Salviolone protects against high glucose-induced proliferation, oxidative stress, inflammation, and fibrosis of human renal mesangial cells by upregulating membrane metalloendopeptidase expression. Chem Biol Drug Des 2023; 101:819-828. [PMID: 36404132 DOI: 10.1111/cbdd.14183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
As one of complications of diabetes mellitus, diabetic nephropathy is related to renal dysfunction. Membrane metalloendopeptidase (MME) is associated with the pathogenesis of diabetic nephropathy and exerts a protective function in high glucose (HG)-treated podocytes. Salviolone, one of important bioactive components from Salvia miltiorrhiza, possesses an anti-inflammatory activity. However, the roles of salviolone in renal mesangial cell dysfunction under HG condition remain unknown. The targets of salviolone in diabetic nephropathy were predicted by bioinformatics analysis. Relative mRNA level of MME was detected by qPCR in HG-treated human renal mesangial cells (HRMCs). Cell viability was analyzed using CCK-8 assay. Cell proliferation was investigated by EdU staining. Oxidative stress was evaluated by detection of ROS generation and levels of oxidative stress-related biomarkers. The inflammatory cytokines and fibrosis-related biomarkers were examined by ELISA. Our results showed that MME expression was decreased in diabetic nephropathy and HG-treated HRMCs. Salviolone increased MME level in HG-treated HRMCs. Salviolone mitigated HG-induced HRMC proliferation by increasing MME expression. Salviolone attenuated HG-induced ROS generation, MDA level increase, and SOD activity decrease through upregulating MME expression. Moreover, salviolone suppressed HG-induced increase of levels of TNF-α, IL-1β, IL-6, fibronectin, and collagen IV through upregulating MME expression. In conclusion, salviolone attenuates proliferation, oxidative stress, inflammation, and fibrosis in HG-treated HRMCs through upregulating MME expression.
Collapse
Affiliation(s)
- Xichao Wang
- Department of Nephrology, Tianjin First Center Hospital, Tianjin, China
| | - Ruili Song
- Teaching & Research Section of TCM & Pharmacy, Zheng Zhou Railway Vocational & Technical College, Zhengzhou, China
| | - Zhuo Li
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
13
|
Tatlı Çankaya İİ, Devkota HP, Zengin G, Šamec D. Neuroprotective Potential of Biflavone Ginkgetin: A Review. Life (Basel) 2023; 13:562. [PMID: 36836918 PMCID: PMC9964866 DOI: 10.3390/life13020562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023] Open
Abstract
Neurological disorders are becoming more common, and there is an intense search for molecules that can help treat them. Several natural components, especially those from the flavonoid group, have shown promising results. Ginkgetin is the first known biflavonoid, a flavonoid dimer isolated from ginkgo (Ginkgo biloba L.). Later, its occurrence was discovered in more than 20 different plant species, most of which are known for their use in traditional medicine. Herein we have summarized the data on the neuroprotective potential of ginkgetin. There is evidence of protection against neuronal damage caused by ischemic strokes, neurotumors, Alzheimer's disease (AD), and Parkinson's disease (PD). Beneficial effects in ischemic strokes have been demonstrated in animal studies in which injection of ginkgetin before or after onset of the stoke showed protection from neuronal damage. AD protection has been the most studied to date. Possible mechanisms include inhibition of reactive oxygen species, inhibition of β-secretase, inhibition of Aβ fibril formation, amelioration of inflammation, and antimicrobial activity. Ginkgetin has also shown positive effects on the relief of PD symptoms in animal studies. Most of the available data are from in vitro or in vivo animal studies, where ginkgetin showed promising results, and further clinical studies should be conducted.
Collapse
Affiliation(s)
- İ. İrem Tatlı Çankaya
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto 862-0973, Japan
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| | - Dunja Šamec
- Department of Food Technology, University Center Koprivnica, University North, 48000 Koprivnica, Croatia
| |
Collapse
|
14
|
Ala M. Sestrin2 Signaling Pathway Regulates Podocyte Biology and Protects against Diabetic Nephropathy. J Diabetes Res 2023; 2023:8776878. [PMID: 36818747 PMCID: PMC9937769 DOI: 10.1155/2023/8776878] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
Sestrin2 regulates cell homeostasis and is an upstream signaling molecule for several signaling pathways. Sestrin2 leads to AMP-activated protein kinase- (AMPK-) and GTPase-activating protein activity toward Rags (GATOR) 1-mediated inhibition of mammalian target of rapamycin complex 1 (mTORC1), thereby enhancing autophagy. Sestrin2 also improves mitochondrial biogenesis via AMPK/Sirt1/peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) signaling pathway. Blockade of ribosomal protein synthesis and augmentation of autophagy by Sestrin2 can prevent misfolded protein accumulation and attenuate endoplasmic reticulum (ER) stress. In addition, Sestrin2 enhances P62-mediated autophagic degradation of Keap1 to release nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 release by Sestrin2 vigorously potentiates antioxidant defense in diabetic nephropathy. Impaired autophagy and mitochondrial biogenesis, severe oxidative stress, and ER stress are all deeply involved in the development and progression of diabetic nephropathy. It has been shown that Sestrin2 expression is lower in the kidney of animals and patients with diabetic nephropathy. Sestrin2 knockdown aggravated diabetic nephropathy in animal models. In contrast, upregulation of Sestrin2 enhanced autophagy, mitophagy, and mitochondrial biogenesis and suppressed oxidative stress, ER stress, and apoptosis in diabetic nephropathy. Consistently, overexpression of Sestrin2 ameliorated podocyte injury, mesangial proliferation, proteinuria, and renal fibrosis in animal models of diabetic nephropathy. By suppressing transforming growth factor beta (TGF-β)/Smad and Yes-associated protein (YAP)/transcription enhancer factor 1 (TEF1) signaling pathways in experimental models, Sestrin2 hindered epithelial-mesenchymal transition and extracellular matrix accumulation in diabetic kidneys. Moreover, modulation of the downstream molecules of Sestrin2, for instance, augmentation of AMPK or Nrf2 signaling and inhibition of mTORC1, has been protective in diabetic nephropathy. Regarding the beneficial effects of Sestrin2 on diabetic nephropathy and its interaction with several signaling molecules, it is worth targeting Sestrin2 in diabetic nephropathy.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
15
|
Shi X, Chang M, Zhao M, Shi Y, Zhang Y. Traditional Chinese medicine compounds ameliorating glomerular diseases via autophagy: A mechanism review. Biomed Pharmacother 2022; 156:113916. [DOI: 10.1016/j.biopha.2022.113916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
|
16
|
Diphenyl Diselenide Alleviates Tert-Butyl Hydrogen Peroxide-Induced Oxidative Stress and Lipopolysaccharide-Induced Inflammation in Rat Glomerular Mesangial Cells. Int J Mol Sci 2022; 23:ijms231911215. [PMID: 36232514 PMCID: PMC9570341 DOI: 10.3390/ijms231911215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Hyperglycemia, oxidative stress, and inflammation play key roles in the onset and development of diabetic complications such as diabetic nephropathy (DN). Diphenyl diselenide (DPDS) is a stable and simple organic selenium compound with anti-hyperglycemic, anti-inflammatory, and anti-oxidative activities. Nevertheless, in vitro, the role and molecular mechanism of DPDS on DN remains unknown. Therefore, we investigated the effects of DPDS on tert-butyl hydrogen peroxide (t-BHP)-induced oxidative stress and lipopolysaccharide (LPS)-induced inflammation in rat glomerular mesangial (HBZY-1) cells and explored the underlying mechanisms. DPDS attenuated t-BHP-induced cytotoxicity, concurrent with decreased intracellular ROS and MDA contents and increased SOD activity and GSH content. Moreover, DPDS augmented the protein and mRNA expression of Nrf2, HO-1, NQO1, and GCLC in t-BHP-stimulated HBZY-1 cells. In addition, DPDS suppressed LPS-induced elevations of intracellular content and mRNA expression of interleukin (IL)-6, IL-1β and TNF-α. Furthermore, LPS-induced NFκB activation and high phosphorylation of JNK and ERK1/2 were markedly suppressed by DPDS in HBZY-1 cells. In summary, these data demonstrated that DPDS improves t-BHP-induced oxidative stress by activating the Nrf2/Keap1 pathway, and also improves LPS-induced inflammation via inhibition of the NFκB/MAPK pathways in HBZY-1 cells, suggesting that DPDS has the potential to be developed as a candidate for the prevention and treatment of DN.
Collapse
|
17
|
Pan J, Li H, Shi J. Clinical Application of the Classical Theory of Traditional Chinese Medicine in Diabetic Nephropathy. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4066385. [PMID: 35495881 PMCID: PMC9045989 DOI: 10.1155/2022/4066385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 12/03/2022]
Abstract
Objective To explore the clinical application of the classical theory of traditional Chinese medicine (TCM) in diabetic nephropathy (DN). Methods A total of 100 patients with DN treated in our hospital from May 2019 to June 2021 were included. The patients were randomly assigned to the control group and the study group. The control group received routine treatment, and the study group was treated with the classical theory of TCM. The efficacy, TCM syndrome score, urine proteinuria (UTP), urine albumin-creatinine ratio (UACR), plasma albumin (ALB), hemoglobin A1c (HbA1C), fasting blood glucose (FBG), blood urea nitrogen (BUN), creatinine (Cr), and treatment safety were compared between the two groups. Results In comparison to the curative effect, the study group was significantly effective in 34 cases, effective in 12 cases, and ineffective in 4 cases, and the effective rate was 92.00%; the control group was significantly effective in 16 cases, effective in 18 cases, and ineffective in 16 cases, and the effective rate was 68.00%. The effective rate in the study group was higher compared to the control (P < 0.05). In comparison to the TCM syndrome scores, there exhibited no significant difference before treatment (P > 0.05), but after treatment, the TCM syndrome scores of the two groups decreased, and the TCM syndrome scores of the study group were lower compared to the control at 6 weeks, 12 weeks, 24 weeks, and 36 weeks of treatment (P < 0.05). There exhibited no significant difference in the indexes of UTP and UACR before treatment, but the indexes of UTP and UACR in the two groups decreased after treatment, and the indexes of UTP and UACR in the study group were lower compared to the control at 6 and 12 weeks after treatment. There was no significant difference in the indexes of ALB, HbA1C, and FBG before treatment, but after treatment, the indexes of ALB increased, the indexes of HbA1C and FBG decreased in both groups, and the indexes of HbA1C and FBG i4n the study group were lower compared to the control, while the index of ALB in the study group was higher. The indexes of BUN and Cr were compared, and there was no significant difference before treatment, but after treatment, the indexes of BUN and Cr in the two groups decreased, and the indexes of BUN and Cr in the study group were lower compared to the control (P < 0.05). In terms of the treatment safety of the two groups, there was no abnormality in blood, urine, stool routine, and liver and kidney function examination in the study group. No obvious adverse reactions were found in all patients. There were 1 case of abnormal liver function and 2 cases of rash in the control group, and there exhibited no significant difference (P > 0.05). Conclusion Under the guidance of classical theory, the optimization scheme of comprehensive treatment of TCM may improve renal function by improving metabolic disorders, vascular lesions, neurotrophic disorders, antioxidant stress, and other ways to repair nerve injury, improving the changes of TCM syndromes, signs, and indicators of patients, and delay the progress of DN.
Collapse
Affiliation(s)
- Jintong Pan
- Hubei Province Hospital of Traditional Chinese Medicine, Nephropathy, China
| | - Huihui Li
- Guangzhou Weimi Biological Technology Company, China
| | - Junhua Shi
- Hubei Province Hospital of Traditional Chinese Medicine, Nephropathy, China
| |
Collapse
|