1
|
Noh K, Baumgartner NW, Onbasi SI, Kao SC. The relationship of aerobic fitness with verbal and spatial working memory: An ERP study. PROGRESS IN BRAIN RESEARCH 2024; 286:211-234. [PMID: 38876576 DOI: 10.1016/bs.pbr.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Working memory (WM) plays an important role in daily life and is known to correlated with aerobic fitness. However, whether the relationship between aerobic fitness and WM is dependent on the stimulus modality or is associated with one or multiple subprocesses involved in WM remains unknown. Accordingly, this study utilized event-related potentials (ERPs) to comprehensively examine the encoding, preparation, and retrieval processes during verbal and spatial WM performance. Eighty-eight young adults aged 18-30years were recruited to participate in two laboratory visits on separate days. On day 1, aerobic fitness was assessed by maximum oxygen consumption (V˙O2max) during a treadmill-based graded exercise test. On day 2, participants completed verbal and spatial WM tasks while P2, contingent negative voltage (CNV), and P3 components of ERP were recorded during the encoding, preparatory, and retrieval stages of WM, respectively. Results of hierarchical regression analysis showed that V˙O2max was positively correlated with response accuracy during the high-demanding condition of spatial WM after controlling for age, sex, and self-reported physical activity. Additionally, a higher level of V˙O2max was associated with larger terminal CNV amplitude at the Cz electrode during the high-demanding condition of spatial WM. These findings suggest that aerobic fitness may have selective beneficial associations with the motor preparatory process and subsequent task performance requiring a greater amount of spatial information but not the encoding and retrieval stages nor the verbal modality of WM.
Collapse
Affiliation(s)
- Kyoungmin Noh
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States
| | - Nicholas W Baumgartner
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States
| | - Salim Ibrahim Onbasi
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States
| | - Shih-Chun Kao
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
2
|
Orefice C, Cardillo R, Lonciari I, Zoccante L, Mammarella IC. "Picture this from there": spatial perspective-taking in developmental visuospatial disorder and developmental coordination disorder. Front Psychol 2024; 15:1349851. [PMID: 38708023 PMCID: PMC11066165 DOI: 10.3389/fpsyg.2024.1349851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Either Developmental Visuospatial Disorder (DVSD) and Developmental Coordination Disorder (DCD) present with difficulties in visuospatial processing, even though entailing different degrees of impairment. Among the visuospatial domain, spatial perspective taking is essential to interact with the environment and is significantly involved in many daily activities (e.g., environment navigation and spatial orienting). Notwithstanding, no previous studies have investigated this spatial domain in children with DVSD and limited evidence is available regarding DCD. Consistent with a transdiagnostic approach, the first goal of the present study was to compare spatial perspective taking abilities of these groups, also including a control group of not diagnosed peers (ND). Secondly, the role of different fine-motor and visuo-spatial predictors on the spatial perspective taking performance was considered. Method A total of 85 participants (DVSD = 26; DCD = 26; ND = 33), aged between 8 and 16 years old, were included in the study. Tasks assessing spatial perspective taking, fine-motor, visual imagery, and mental rotation skills, as well as visuo-spatial working memory were administered. Results and Discussion Overall, our results confirmed weaknesses in spatial perspective taking in both clinical groups, with the DVSD obtaining the lowest scores. Similarities and differences in the predictors accounting for the performance in the spatial perspective taking task emerged, suggesting the possible employment of different fine-motor or visuospatial strategies by group. Findings are discussed considering the potential impact they may have both in research and clinical practice.
Collapse
Affiliation(s)
- Camilla Orefice
- Department of Developmental and Social Psychology, School of Psychology, University of Padua, Padua, Italy
| | - Ramona Cardillo
- Department of Developmental and Social Psychology, School of Psychology, University of Padua, Padua, Italy
- Department of Women’s and Children’s Health, School of Medicine and Surgery, University of Padua, Padua, Italy
| | - Isabella Lonciari
- Division of Child Neurology and Psychiatry, University Pediatric Hospital “IRCCS Burlo Garofolo”, Trieste, Italy
| | - Leonardo Zoccante
- Child and Adolescent Neuropsychiatry Unit, Maternal-Child Integrated Care Department, Integrated University Hospital of Verona, Verona, Italy
| | - Irene C. Mammarella
- Department of Developmental and Social Psychology, School of Psychology, University of Padua, Padua, Italy
| |
Collapse
|
3
|
Subara-Zukic E, McGuckian TB, Cole MH, Steenbergen B, Wilson PH. Locomotor-cognitive dual-tasking in children with developmental coordination disorder. Front Psychol 2024; 15:1279427. [PMID: 38510308 PMCID: PMC10951910 DOI: 10.3389/fpsyg.2024.1279427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Children with Developmental Coordination Disorder (DCD) demonstrate deficits in predictive motor control and aspects of cognitive control compared with their typically developing (TD) peers. Adjustment to dynamic environments depends on both aspects of control and the deficits for children with DCD may constrain their ability to perform daily actions that involve dual-tasking. Under the assumption that motor-cognitive integration is compromised in children with DCD, we examined proportional dual-task costs using a novel locomotor-cognitive dual-task paradigm that enlisted augmented reality. We expect proportional dual-task performance costs to be greater for children with DCD compared to their TD peers. Methods Participants were 34 children aged 6-12 years (16 TD, 18 DCD) who walked along a straight 12 m path under single- and dual-task conditions, the cognitive task being visual discrimination under simple or complex stimulus conditions presented via augmented reality. Dual-task performance was measured in two ways: first, proportional dual-task costs (pDTC) were computed for cognitive and gait outcomes and, second, within-trial costs (p-WTC) were measured as the difference on gait outcomes between pre- and post-stimulus presentation. Results On measures of pDTC, TD children increased their double-limb support time when walking in response to a dual-task, while the children with DCD increased their locomotor velocity. On p-WTC, both groups increased their gait variability (step length and step width) when walking in response to a dual-task, of which the TD group had a larger proportional change than the DCD group. Greater pDTCs on motor rather than cognitive outcomes were consistent across groups and method of dual-task performance measurement. Discussion Contrary to predictions, our results failed to support dramatic differences in locomotor-cognitive dual-task performance between children with DCD and TD, with both groups tending to priorities the cognitive over the motor task. Inclusion of a within-trial calculation of dual-task interference revealed an expectancy effect for both groups in relation to an impending visual stimulus. It is recommended that dual-task paradigms in the future continue to use augmented reality to present the cognitive task and consider motor tasks of sufficient complexity to probe the limits of performance in children with DCD.
Collapse
Affiliation(s)
- Emily Subara-Zukic
- Healthy Brain and Mind Research Center, School of Behavioral and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - Thomas B. McGuckian
- Healthy Brain and Mind Research Center, School of Behavioral and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - Michael H. Cole
- Healthy Brain and Mind Research Center, School of Behavioral and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - Bert Steenbergen
- Behavioral Science Institute, Radboud University, Nijmegen, Netherlands
| | - Peter Henry Wilson
- Healthy Brain and Mind Research Center, School of Behavioral and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Subara-Zukic E, Cole MH, McGuckian TB, Steenbergen B, Green D, Smits-Engelsman BCM, Lust JM, Abdollahipour R, Domellöf E, Deconinck FJA, Blank R, Wilson PH. Behavioral and Neuroimaging Research on Developmental Coordination Disorder (DCD): A Combined Systematic Review and Meta-Analysis of Recent Findings. Front Psychol 2022; 13:809455. [PMID: 35153960 PMCID: PMC8829815 DOI: 10.3389/fpsyg.2022.809455] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/03/2022] [Indexed: 01/16/2023] Open
Abstract
AIM The neurocognitive basis of Developmental Coordination Disorder (DCD; or motor clumsiness) remains an issue of continued debate. This combined systematic review and meta-analysis provides a synthesis of recent experimental studies on the motor control, cognitive, and neural underpinnings of DCD. METHODS The review included all published work conducted since September 2016 and up to April 2021. One-hundred papers with a DCD-Control comparison were included, with 1,374 effect sizes entered into a multi-level meta-analysis. RESULTS The most profound deficits were shown in: voluntary gaze control during movement; cognitive-motor integration; practice-/context-dependent motor learning; internal modeling; more variable movement kinematics/kinetics; larger safety margins when locomoting, and atypical neural structure and function across sensori-motor and prefrontal regions. INTERPRETATION Taken together, these results on DCD suggest fundamental deficits in visual-motor mapping and cognitive-motor integration, and abnormal maturation of motor networks, but also areas of pragmatic compensation for motor control deficits. Implications for current theory, future research, and evidence-based practice are discussed. SYSTEMATIC REVIEW REGISTRATION PROSPERO, identifier: CRD42020185444.
Collapse
Affiliation(s)
- Emily Subara-Zukic
- Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - Michael H. Cole
- Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - Thomas B. McGuckian
- Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - Bert Steenbergen
- Department of Pedagogical and Educational Sciences, Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| | - Dido Green
- Department of Health Sciences, Brunel University London, London, United Kingdom
- Department of Rehabilitation, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Bouwien CM Smits-Engelsman
- Division of Physiotherapy, Department of Health and Rehabilitation Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jessica M. Lust
- Department of Pedagogical and Educational Sciences, Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| | - Reza Abdollahipour
- Department of Natural Sciences in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czechia
| | - Erik Domellöf
- Department of Psychology, Umeå University, Umeå, Sweden
| | | | - Rainer Blank
- Heidelberg University, Heidelberg, Germany
- Klinik für Kinderneurologie und Sozialpädiatrie, Kinderzentrum Maulbronn gGmbH, Maulbronn, Germany
| | - Peter H. Wilson
- Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Lê M, Blais M, Jucla M, Chauveau N, Maziero S, Biotteau M, Albaret JM, Péran P, Chaix Y, Tallet J. Procedural learning and retention of audio-verbal temporal sequence is altered in children with developmental coordination disorder but cortical thickness matters. Dev Sci 2020; 24:e13009. [PMID: 32573893 DOI: 10.1111/desc.13009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/13/2020] [Accepted: 06/11/2020] [Indexed: 12/21/2022]
Abstract
Rhythmic abilities are impaired in developmental coordination disorder (DCD) but learning deficit of procedural skills implying temporal sequence is still unclear. Current contradictory results suggest that procedural learning deficits in DCD highly depend on learning conditions. The present study proposes to test the role of sensory modality of stimulations (visual or auditory) on synchronization, learning, and retention of temporal verbal sequences in children with and without DCD. We postulated a deficit in learning particularly with auditory stimulations, in association with atypical cortical thickness of three regions of interesting: sensorimotor, frontal and parietal regions. Thirty children with and without DCD (a) performed a synchronization task to a regular temporal sequence and (b) practiced and recalled a novel non-regular temporal sequences with auditory and visual modalities. They also had a magnetic resonance imaging to measure their cortical thickness. Results suggested that children with DCD presented a general deficit in synchronization of a regular temporal verbal sequence irrespective of the sensory modality, but a specific deficit in learning and retention of auditory non-regular verbal temporal sequence. Stability of audio-verbal synchronization during practice correlated with cortical thickness of the sensorimotor cortex. For the first time, our results suggest that synchronization deficits in DCD are not limited to manual tasks. This deficit persists despite repeated exposition and practice of an auditory temporal sequence, which suggests a possible alteration in audio-verbal coupling in DCD. On the contrary, control of temporal parameters with visual stimuli seems to be less affected, which opens perspectives for clinical practice.
Collapse
Affiliation(s)
- Margaux Lê
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Mélody Blais
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Mélanie Jucla
- Octogone-Lordat, University of Toulouse, Toulouse, France
| | - Nicolas Chauveau
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Stéphanie Maziero
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,Octogone-Lordat, University of Toulouse, Toulouse, France
| | - Maëlle Biotteau
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Jean-Michel Albaret
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Patrice Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Yves Chaix
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,Hôpital des Enfants Universitaire de Toulouse, CHU Purpan Toulouse, Midi-Pyrénées, France
| | - Jessica Tallet
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
6
|
Rinat S, Izadi-Najafabadi S, Zwicker JG. Children with developmental coordination disorder show altered functional connectivity compared to peers. Neuroimage Clin 2020; 27:102309. [PMID: 32590334 PMCID: PMC7320316 DOI: 10.1016/j.nicl.2020.102309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
Developmental Coordination Disorder (DCD) is a neurodevelopmental disorder that affects a child's ability to learn motor skills and participate in self-care, educational, and leisure activities. The cause of DCD is unknown, but evidence suggests that children with DCD have atypical brain structure and function. Resting-state MRI assesses functional connectivity by identifying brain regions that have parallel activation during rest. As only a few studies have examined functional connectivity in this population, our objective was to compare whole-brain resting-state functional connectivity of children with DCD and typically-developing children. Using Independent Component Analysis (ICA), we compared functional connectivity of 8-12 year old children with DCD (N = 35) and typically-developing children (N = 23) across 19 networks, controlling for age and sex. Children with DCD demonstrate altered functional connectivity between the sensorimotor network and the posterior cingulate cortex (PCC), precuneus, and the posterior middle temporal gyrus (pMTG) (p < 0.0001). Previous evidence suggests the PCC acts as a link between functionally distinct networks. Our results indicate that ineffective communication between the sensorimotor network and the PCC might play a role in inefficient motor learning seen in DCD. The pMTG acts as hub for action-related information and processing, and its involvement could explain some of the functional difficulties seen in DCD. This study increases our understanding of the neurological differences that characterize this common motor disorder.
Collapse
Affiliation(s)
- Shie Rinat
- Graduate Programs in Rehabilitation Sciences, University of British Columbia, Vancouver, Canada; BC Children's Hospital Research Institute, Vancouver, Canada
| | - Sara Izadi-Najafabadi
- Graduate Programs in Rehabilitation Sciences, University of British Columbia, Vancouver, Canada; BC Children's Hospital Research Institute, Vancouver, Canada
| | - Jill G Zwicker
- BC Children's Hospital Research Institute, Vancouver, Canada; Department of Occupational Science & Occupational Therapy, University of British Columbia, Vancouver, Canada; Department of Pediatrics, University of British Columbia, Vancouver, Canada; Sunny Hill Health Centre for Children, Vancouver, Canada; CanChild Centre for Childhood Disability Research, Hamilton, Canada.
| |
Collapse
|
7
|
Kao SC, Wang CH, Hillman CH. Acute effects of aerobic exercise on response variability and neuroelectric indices during a serial n-back task. Brain Cogn 2019; 138:105508. [PMID: 31838302 DOI: 10.1016/j.bandc.2019.105508] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/25/2019] [Accepted: 11/29/2019] [Indexed: 12/17/2022]
Abstract
To determine the neuroelectric underpinnings of exercise-induced changes in working memory, this study investigated the acute effects ofaerobic exercise (AE) on the P3 component of an event-related potential and brain oscillations during a serial n-back task. Task-related electroencephalography was collected in 23 young adults following 20 min of rest and AE on separate, counterbalanced days. The results revealed reductions in standard deviation of response time and coefficient of variation of response time following AE compared to rest. Neuroelectric analyses showed increased P3 amplitude following AE compared to rest. Task-related frontal alpha desynchronization was stronger in the 2-back compared with the 1-back task following AE, while no such modulation was observed following rest. These findings suggest AE may temporarily enhance working memory, as reflected by decreases in response variability, which are accompanied by neuroelectric indices reflecting greater upregulation of attentional processes.
Collapse
Affiliation(s)
- Shih-Chun Kao
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States.
| | - Chun-Hao Wang
- Institute of Physical Education, Health & Leisure Studies, National Cheng Kung University, Tainan City, Taiwan, ROC
| | - Charles H Hillman
- Department of Psychology, Department of Physical Therapy, Movement & Rehabilitation Sciences, Northeastern University, Boston, MA, United States
| |
Collapse
|
8
|
The Role of Physical Fitness in Cognitive-Related Biomarkers in Persons at Genetic Risk of Familial Alzheimer's Disease. J Clin Med 2019; 8:jcm8101639. [PMID: 31591322 PMCID: PMC6832576 DOI: 10.3390/jcm8101639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/28/2022] Open
Abstract
Introduction: Nondemented people with a family history of Alzheimer’s disease (ADFH) and the ApoE-4 allele have been demonstrated to show a trend for a higher probability of cognitive decline and aberrant levels of cognitive-related biomarkers. However, the potential interactive effects on physical fitness have not been investigated. Purpose: The primary purpose of this study was to determine whether ADFH individuals with the ApoE-4 genotype show deviant brain event-related neural oscillatory performance and cognitively-related molecular indices. A secondary purpose was to examine the interactive effects on physical fitness. Methods: Blood samples were provided from 110 individuals with ADFH to assess molecular biomarkers and the ApoE genotype for the purpose of dividing them into an ApoE-4 group (n = 16) and a non-ApoE-4 group (n = 16) in order for them to complete a visuospatial working memory task while simultaneously recording electroencephalographic signals. They also performed a senior functional physical fitness (SFPF) test. Results: While performing the cognitive task, the ApoE-4 relative to non-ApoE-4 group showed worse accuracy rates (ARs) and brain neural oscillatory performance. There were no significant between-group differences with regard to any molecular biomarkers (e.g., IL-1β, IL-6, IL-8, BDNF, Aβ1-40, Aβ1-42). VO2max was significantly correlated with the neuropsychological performance (i.e., ARs and RTs) in the 2-item and 4-item conditions in the ApoE-4 group and across the two groups. However, the electroencephalogram (EEG) oscillations during visuospatial working memory processing in the two conditions were not correlated with any SFPF scores or cardiorespiratory tests in the two groups. Conclusions: ADFH individuals with the ApoE-4 genotype only showed deviant neuropsychological (e.g., ARs) and neural oscillatory performance when performing the cognitive task with a higher visuospatial working memory load. Cardiorespiratory fitness potentially played an important role in neuropsychological impairment in this group.
Collapse
|
9
|
Schott N. Dual-Task Performance in Developmental Coordination Disorder (DCD): Understanding Trade-offs and Their Implications for Training. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2019. [DOI: 10.1007/s40474-019-00163-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Neurophysiological Approaches to Understanding Motor Control in DCD: Current Trends and Future Directions. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2019. [DOI: 10.1007/s40474-019-00161-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Wang CH, Moreau D, Yang CT, Tsai YY, Lin JT, Liang WK, Tsai CL. Aerobic exercise modulates transfer and brain signal complexity following cognitive training. Biol Psychol 2019; 144:85-98. [PMID: 30943426 DOI: 10.1016/j.biopsycho.2019.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/21/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022]
Abstract
Although recent evidence has demonstrated the potent effect of physical exercise to increase the efficacy of cognitive training, the neural mechanisms underlying this causal relationship remain unclear. Here, we used multiscale entropy (MSE) of electroencephalography (EEG)-a measure of brain signal complexity-to address this issue. Young males were randomly assigned to either a 20-day dual n-back training following aerobic exercise or the same training regimen following a reading. A feature binding working memory task with concurrent EEG recording was used to test for transfer effects. Although results revealed weak-to-moderate evidence for exercise-induced facilitation on cognitive training, the combination of cognitive training with exercise resulted in greater transfer gains on conditions involving greater attentional demanding, together with greater increases in cognitive modulation on MSE, compared with the reading condition. Overall, our findings suggest that the addition of antecedent physical exercise to brain training regimen could enable wider, more robust improvements.
Collapse
Affiliation(s)
- Chun-Hao Wang
- Institute of Physical Education, Health & Leisure Studies, National Cheng Kung University, No. 1, University Road, Tainan City, Taiwan
| | - David Moreau
- School of Psychology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Cheng-Ta Yang
- Department of Psychology, National Cheng Kung University, Social Sciences Building, No. 1, University Road, East District, Tainan City 701, Taiwan; Institute of Allied Health Sciences, National Cheng Kung University, No.1, University Road, Tainan City, Tainan
| | - Yun-Yen Tsai
- Institute of Physical Education, Health & Leisure Studies, National Cheng Kung University, No. 1, University Road, Tainan City, Taiwan
| | - Jui-Tang Lin
- Institute of Physical Education, Health & Leisure Studies, National Cheng Kung University, No. 1, University Road, Tainan City, Taiwan
| | - Wei-Kuang Liang
- Institute of Cognitive Neuroscience, National Central University, Jhongli 320, Taiwan.
| | - Chia-Liang Tsai
- Institute of Physical Education, Health & Leisure Studies, National Cheng Kung University, No. 1, University Road, Tainan City, Taiwan.
| |
Collapse
|
12
|
Ludyga S, Mücke M, Kamijo K, Andrä C, Pühse U, Gerber M, Herrmann C. The Role of Motor Competences in Predicting Working Memory Maintenance and Preparatory Processing. Child Dev 2019; 91:799-813. [DOI: 10.1111/cdev.13227] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Prefrontal activation during Stroop and Wisconsin card sort tasks in children with developmental coordination disorder: a NIRS study. Exp Brain Res 2018; 236:3053-3064. [DOI: 10.1007/s00221-018-5358-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/10/2018] [Indexed: 11/30/2022]
|
14
|
Wang CH, Yang CT, Moreau D, Muggleton NG. Motor expertise modulates neural oscillations and temporal dynamics of cognitive control. Neuroimage 2017; 158:260-270. [DOI: 10.1016/j.neuroimage.2017.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/08/2017] [Accepted: 07/07/2017] [Indexed: 12/23/2022] Open
|