1
|
Zhou Y, Zhao C, Shi Z, Heger Z, Jing H, Shi Z, Dou Y, Wang S, Qiu Z, Li N. A Glucose-Responsive Hydrogel Inhibits Primary and Secondary BRB Injury for Retinal Microenvironment Remodeling in Diabetic Retinopathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402368. [PMID: 39031576 PMCID: PMC11348052 DOI: 10.1002/advs.202402368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/06/2024] [Indexed: 07/22/2024]
Abstract
Current diabetic retinopathy (DR) treatment involves blood glucose regulation combined with laser photocoagulation or intravitreal injection of vascular endothelial growth factor (VEGF) antibodies. However, due to the complex pathogenesis and cross-interference of multiple biochemical pathways, these interventions cannot block disease progression. Recognizing the critical role of the retinal microenvironment (RME) in DR, it is hypothesized that reshaping the RME by simultaneously inhibiting primary and secondary blood-retinal barrier (BRB) injury can attenuate DR. For this, a glucose-responsive hydrogel named Cu-PEI/siMyD88@GEMA-Con A (CSGC) is developed that effectively delivers Cu-PEI/siMyD88 nanoparticles (NPs) to the retinal pigment epithelium (RPE). The Cu-PEI NPs act as antioxidant enzymes, scavenging ROS and inhibiting RPE pyroptosis, ultimately blocking primary BRB injury by reducing microglial activation and Th1 differentiation. Simultaneously, MyD88 expression silence in combination with the Cu-PEI NPs decreases IL-18 production, synergistically reduces VEGF levels, and enhances tight junction proteins expression, thus blocking secondary BRB injury. In summary, via remodeling the RME, the CSGC hydrogel has the potential to disrupt the detrimental cycle of cross-interference between primary and secondary BRB injury, providing a promising therapeutic strategy for DR.
Collapse
Affiliation(s)
- Yue Zhou
- Tianjin Key Laboratory of Drug Delivery & High‐EfficiencySchool of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
- Department of PharmacyTianjin Union Medical CenterNankai UniversityTianjin300122P. R. China
| | - Chan Zhao
- Department of OphthalmologyPeking Union Medical College HospitalChinese Academy of Medical SciencesBeijing100730P. R. China
- Key Laboratory of Ocular Fundus DiseasesChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100730P. R. China
| | - Zhiyuan Shi
- Tianjin Key Laboratory of Drug Delivery & High‐EfficiencySchool of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Zbynek Heger
- Department of Chemistry and BiochemistryMendel University in BrnoBrnoCZ‐61300Czech Republic
| | - HuaQing Jing
- Tianjin Key Laboratory of Drug Delivery & High‐EfficiencySchool of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Zhengming Shi
- Department of OphthalmologyPeking Union Medical College HospitalChinese Academy of Medical SciencesBeijing100730P. R. China
- Key Laboratory of Ocular Fundus DiseasesChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100730P. R. China
| | - Yunsheng Dou
- Tianjin Key Laboratory of Drug Delivery & High‐EfficiencySchool of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Siyu Wang
- Tianjin Key Laboratory of Drug Delivery & High‐EfficiencySchool of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Zitong Qiu
- Tianjin Key Laboratory of Drug Delivery & High‐EfficiencySchool of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Nan Li
- Tianjin Key Laboratory of Drug Delivery & High‐EfficiencySchool of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| |
Collapse
|
2
|
Khayer N, Jalessi M, Farhadi M, Azad Z. S100a9 might act as a modulator of the Toll-like receptor 4 transduction pathway in chronic rhinosinusitis with nasal polyps. Sci Rep 2024; 14:9722. [PMID: 38678138 PMCID: PMC11055867 DOI: 10.1038/s41598-024-60205-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/19/2024] [Indexed: 04/29/2024] Open
Abstract
Chronic rhinosinusitis with nasal polyp (CRSwNP) is a highly prevalent disorder characterized by persistent nasal and sinus mucosa inflammation. Despite significant morbidity and decreased quality of life, there are limited effective treatment options for such a disease. Therefore, identifying causal genes and dysregulated pathways paves the way for novel therapeutic interventions. In the current study, a three-way interaction approach was used to detect dynamic co-expression interactions involved in CRSwNP. In this approach, the internal evolution of the co-expression relation between a pair of genes (X, Y) was captured under a change in the expression profile of a third gene (Z), named the switch gene. Subsequently, the biological relevancy of the statistically significant triplets was confirmed using both gene set enrichment analysis and gene regulatory network reconstruction. Finally, the importance of identified switch genes was confirmed using a random forest model. The results suggested four dysregulated pathways in CRSwNP, including "positive regulation of intracellular signal transduction", "arachidonic acid metabolic process", "spermatogenesis" and "negative regulation of cellular protein metabolic process". Additionally, the S100a9 as a switch gene together with the gene pair {Cd14, Tpd52l1} form a biologically relevant triplet. More specifically, we suggested that S100a9 might act as a potential upstream modulator in toll-like receptor 4 transduction pathway in the major CRSwNP pathologies.
Collapse
Affiliation(s)
- Nasibeh Khayer
- Skull Base Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Maryam Jalessi
- Skull Base Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, Rasoul Akram Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, Rasoul Akram Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Azad
- Skull Base Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Huang J, Xu Y. Autoimmunity: A New Focus on Nasal Polyps. Int J Mol Sci 2023; 24:ijms24098444. [PMID: 37176151 PMCID: PMC10179643 DOI: 10.3390/ijms24098444] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) has long been considered a benign, chronic inflammatory, and hyperplastic disease. Recent studies have shown that autoimmune-related mechanisms are involved in the pathology of nasal polyps. Activated plasma cells, eosinophils, basophils, innate type 2 lymphocytes, mast cells, and proinflammatory cytokine in polyp tissue indicate the mobilization of innate and adaptive immune pathways during polyp formation. The discovery of a series of autoantibodies further supports the autoimmune nature of nasal polyps. Local homeostasis dysregulation, infection, and chronic inflammation may trigger autoimmunity through several mechanisms, including autoantigens overproduction, microbial translocation, molecular mimicry, superantigens, activation or inhibition of receptors, bystander activation, dysregulation of Toll-Like Receptors (TLRs), epitope spreading, autoantigens complementarity. In this paper, we elaborated on the microbiome-mediated mechanism, abnormal host immunity, and genetic changes to update the role of autoimmunity in the pathogenesis of chronic rhinosinusitis with nasal polyps.
Collapse
Affiliation(s)
- Jingyu Huang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
4
|
Role of Nasal Fibroblasts in Airway Remodeling of Chronic Rhinosinusitis: The Modulating Functions Reexamined. Int J Mol Sci 2023; 24:ijms24044017. [PMID: 36835423 PMCID: PMC9965487 DOI: 10.3390/ijms24044017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is a multifactorial inflammatory disease of the nose and sinuses that affects more than 10% of the adult population worldwide. Currently, CRS is classified into endotypes according to the inflammatory response (Th1, Th2, and Th17) or the distribution of immune cells in the mucosa (eosinophilic and non-eosinophilic). CRS induces mucosal tissue remodeling. Extracellular matrix (ECM) accumulation, fibrin deposition, edema, immune cell infiltration, and angiogenesis are observed in the stromal region. Conversely, epithelial-to-mesenchymal transition (EMT), goblet cell hyperplasia, and increased epithelial permeability, hyperplasia, and metaplasia are found in the epithelium. Fibroblasts synthesize collagen and ECM, which create a structural skeleton of tissue and play an important role in the wound-healing process. This review discusses recent knowledge regarding the modulation of tissue remodeling by nasal fibroblasts in CRS.
Collapse
|
5
|
Qin D, Liu P, Zhou H, Jin J, Gong W, Liu K, Chen S, Huang J, Fan W, Tao Z, Xu Y. TIM-4 in macrophages contributes to nasal polyp formation through the TGF-β1–mediated epithelial to mesenchymal transition in nasal epithelial cells. Front Immunol 2022; 13:941608. [PMID: 35990621 PMCID: PMC9389014 DOI: 10.3389/fimmu.2022.941608] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/13/2022] [Indexed: 12/02/2022] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is caused by prolonged inflammation of the paranasal sinus mucosa. The epithelial to mesenchymal transition (EMT) is involved in the occurrence and development of CRSwNP. The T-cell immunoglobulin domain and the mucin domain 4 (TIM-4) is closely related to chronic inflammation, but its mechanism in CRSwNP is poorly understood. In our study, we found that TIM-4 was increased in the sinonasal mucosa of CRSwNP patients and, especially, in macrophages. TIM-4 was positively correlated with α-SMA but negatively correlated with E-cadherin in CRS. Moreover, we confirmed that TIM-4 was positively correlated with the clinical parameters of the Lund-Mackay and Lund-Kennedy scores. In the NP mouse model, administration of TIM-4 neutralizing antibody significantly reduced the polypoid lesions and inhibited the EMT process. TIM-4 activation by stimulating with tissue extracts of CRSwNP led to a significant increase of TGF-β1 expression in macrophages in vitro. Furthermore, coculture of macrophages and human nasal epithelial cells (hNECs) results suggested that the overexpression of TIM-4 in macrophages made a contribution to the EMT process in hNECs. Mechanistically, TIM-4 upregulated TGF-β1 expression in macrophages via the ROS/p38 MAPK/Egr-1 pathway. In conclusion, TIM-4 contributes to the EMT process and aggravates the development of CRSwNP by facilitating the production of TGF-β1 in macrophages. Inhibition of TIM-4 expression suppresses nasal polyp formation, which might provide a new therapeutic approach for CRSwNP.
Collapse
Affiliation(s)
- Danxue Qin
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Peiqiang Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huiqin Zhou
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Jin
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wanyang Gong
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kunyu Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Siyuan Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingyu Huang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenjun Fan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zezhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yu Xu,
| |
Collapse
|
6
|
Huang C, Sun Y, Qiu X, Huang J, Wang A, Zhang Q, Pang S, Huang Q, Zhou R, Li L. The Intracellular Interaction of Porcine β-Defensin 2 with VASH1 Alleviates Inflammation via Akt Signaling Pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2795-2805. [PMID: 35688466 DOI: 10.4049/jimmunol.2100810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
Defensins are a major class of antimicrobial peptides that facilitate the immune system to resist pathogen infection. To date, only β-defensins have been identified in pigs. In our previous studies, porcine β-defensin 2 (PBD-2) was shown to have both bactericidal activity and modulatory roles on inflammation. PBD-2 can interact with the cell surface TLR4 and interfere with the NF-κB signaling pathway to suppress the inflammatory response. In this study, the intracellular functions of PBD-2 were investigated. The fluorescently labeled PBD-2 could actively enter mouse macrophage cells. Proteomic analysis indicated that 37 proteins potentially interacted with PBD-2, among which vasohibin-1 (VASH1) was further tested. LPS, an inflammation inducer, suppressed the expression of VASH1, whereas PBD-2 inhibited this effect. PBD-2 inhibited LPS-induced activation of Akt, expression and release of the inflammatory mediators vascular endothelial growth factor and NO, and cell damage. A follow-up VASH1 knockdown assay validated the specificity of the above observations. In addition, PBD-2 inhibited LPS-induced NF-κB activation via Akt. The inhibition effects of PBD-2 on LPS triggered suppression of VASH1 and activation of Akt, and NF-κB and inflammatory cytokines were also confirmed using pig alveolar macrophage 3D4/21 cells. Therefore, the data indicate that PBD-2 interacts with intracellular VASH1, which inhibits the LPS-induced Akt/NF-κB signaling pathway, resulting in suppression of inflammatory responses. Together with our previous findings, we conclude that PBD-2 interacts with both the cell surface receptor (TLR4) and also with the intracellular receptor (VASH1) to control inflammation, thereby providing insights into the immunomodulatory roles of defensins.
Collapse
Affiliation(s)
- Chao Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yufan Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiuxiu Qiu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jing Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN; and
| | - Antian Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qiuhong Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Siqi Pang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China;
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| |
Collapse
|
7
|
Shimizu S, Tojima I, Nakamura K, Arai H, Kouzaki H, Shimizu T. Nasal polyp fibroblasts (NPFs)-derived exosomes are important for the release of vascular endothelial growth factor from cocultured eosinophils and NPFs. Auris Nasus Larynx 2021; 49:407-414. [PMID: 34736807 DOI: 10.1016/j.anl.2021.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/28/2021] [Accepted: 10/13/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Significant eosinophil infiltration and tissue remodeling are common characteristics of conditions associated with chronic airway inflammation, such as chronic rhinosinusitis with nasal polyp and bronchial asthma. This study was designed to elucidate the role of eosinophil-fibroblast interactions in tissue remodeling during chronic airway inflammation. METHODS Peripheral blood eosinophils or EoL-1 eosinophilic leukemia cells were cocultured with nasal polyp fibroblasts (NPFs). Coculture-induced release of exosomes, major components of extracellular vesicles (EVs), and a profibrotic cytokine, vascular endothelial growth factor (VEGF), were evaluated by enzyme-linked immunosorbent assay. RESULTS Eosinophil-NPF interactions stimulated the release of exosomes and VEGF into culture supernatants. Coculture-induced release of exosomes was stimulated earlier than VEGF release, at 3 h of incubation. The average size of the EVs released by NPFs was 133 ± 3.6 nm. NPF-derived EVs (exosome concentration: 25 pg/mL) significantly stimulated VEGF release from EoL-1 cells. Pretreatment of NPFs with exosome inhibitor, GW4869 or DMA attenuated the release of exosomes and VEGF from cocultured EoL-1 cells and NPFs. CONCLUSION The results of this study indicate that eosinophil-fibroblast interactions are important in the pathophysiology of tissue remodeling in eosinophil-predominant airway inflammation and that NPF-derived exosomes play a crucial role in the release of VEGF.
Collapse
Affiliation(s)
- Shino Shimizu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan.
| | - Ichiro Tojima
- Department of Otorhinolaryngology-Head and Neck Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Keigo Nakamura
- Department of Otorhinolaryngology-Head and Neck Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Hiroyuki Arai
- Department of Otorhinolaryngology-Head and Neck Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Hideaki Kouzaki
- Department of Otorhinolaryngology-Head and Neck Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Takeshi Shimizu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
8
|
Xiang X, Li L, Bo P, Kuang T, Liu S, Xie X, Guo S, Fu X, Zhang Y. 7‑Difluoromethyl‑5,4'‑dimethoxygenistein exerts anti‑angiogenic effects on acute promyelocytic leukemia HL‑60 cells by inhibiting the TLR4/NF‑κB signaling pathway. Mol Med Rep 2020; 21:2251-2259. [PMID: 32186776 PMCID: PMC7115195 DOI: 10.3892/mmr.2020.11029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/18/2020] [Indexed: 01/17/2023] Open
Abstract
Angiogenesis plays an important role in the development and metastasis of tumors, and anti-angiogenesis agents are used to treat tumors. For example, the acute promyelocytic leukemia (APL) may be treated with arsenic trioxide. Angiogenesis in APL is a multi-step dynamic equilibrium process coordinated by various angiogenic stimulators and inhibitors, which play key roles in the occurrence, progression and chemosensitivity of this disease. Our research group previously synthesized 7-difluoromethyl-5,4′-dimethoxygenistein (DFMG), and found that it inhibits angiogenesis during atherosclerotic plaque formation. In the present study, the effect and mechanism of DFMG in angiogenesis induced by APL HL-60 cells was investigated using a chick embryo chorioallantoic membrane model and Matrigel tubule formation assays. The results obtained revealed an anti-angiogenesis effect of DFMG towards HL-60 cells. When the Toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) signaling pathway was inhibited, the anti-angiogenic effect of DFMG was further enhanced. However, when the TLR4/NF-κB signaling pathway was activated, the anti-angiogenic effect of DFMG was attenuated. These results demonstrated that DFMG inhibits angiogenesis induced by APL HL-60 cells, and provides insights into the mechanism by which DFMG inhibits the TLR4/NF-κB signaling pathway. In conclusion, in the present study, the anti-angiogenesis effect of DFMG on APL has been reported, and the mechanism by which DFMG induced the anti-angiogenesis effect was explored. These findings have provided a potential new drug candidate for the treatment of patients with APL.
Collapse
Affiliation(s)
- Xueping Xiang
- Department of Internal Medicine, Medical College of Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Lesai Li
- Department of Gynecologic Oncology, Hunan Cancer Hospital, Changsha, Hunan 410013, P.R. China
| | - Pingjuan Bo
- Department of Internal Medicine, Medical College of Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Ting Kuang
- Department of Gynecologic Oncology, Hunan Cancer Hospital, Changsha, Hunan 410013, P.R. China
| | - Sujuan Liu
- Department of Internal Medicine, Medical College of Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Xiaolin Xie
- Department of Internal Medicine, Medical College of Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Sihui Guo
- Department of Internal Medicine, Medical College of Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Xiaohua Fu
- Department of Internal Medicine, Medical College of Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Yong Zhang
- Department of Internal Medicine, Medical College of Hunan Normal University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
9
|
Neuberger EJ, Gupta A, Subramanian D, Korgaonkar AA, Santhakumar V. Converging early responses to brain injury pave the road to epileptogenesis. J Neurosci Res 2017; 97:1335-1344. [PMID: 29193309 DOI: 10.1002/jnr.24202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/19/2022]
Abstract
Epilepsy, characterized by recurrent seizures and abnormal electrical activity in the brain, is one of the most prevalent brain disorders. Over two million people in the United States have been diagnosed with epilepsy and 3% of the general population will be diagnosed with it at some point in their lives. While most developmental epilepsies occur due to genetic predisposition, a class of "acquired" epilepsies results from a variety of brain insults. A leading etiological factor for epilepsy that is currently on the rise is traumatic brain injury (TBI), which accounts for up to 20% of all symptomatic epilepsies. Remarkably, the presence of an identified early insult that constitutes a risk for development of epilepsy provides a therapeutic window in which the pathological processes associated with brain injury can be manipulated to limit the subsequent development of recurrent seizure activity and epilepsy. Recent studies have revealed diverse pathologies, including enhanced excitability, activated immune signaling, cell death, and enhanced neurogenesis within a week after injury, suggesting a period of heightened adaptive and maladaptive plasticity. An integrated understanding of these processes and their cellular and molecular underpinnings could lead to novel targets to arrest epileptogenesis after trauma. This review attempts to highlight and relate the diverse early changes after trauma and their role in development of epilepsy and suggests potential strategies to limit neurological complications in the injured brain.
Collapse
Affiliation(s)
- Eric J Neuberger
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| | - Akshay Gupta
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| | - Deepak Subramanian
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| | - Akshata A Korgaonkar
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| | - Vijayalakshmi Santhakumar
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| |
Collapse
|
10
|
Diesel Exhaust Particles Upregulate Interleukins IL-6 and IL-8 in Nasal Fibroblasts. PLoS One 2016; 11:e0157058. [PMID: 27295300 PMCID: PMC4905665 DOI: 10.1371/journal.pone.0157058] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/24/2016] [Indexed: 01/08/2023] Open
Abstract
Background Diesel exhaust particles (DEP) are a major source of air pollution. Nasal fibroblasts are known to produce various cytokines and chemokines. The aim of this study was to evaluate DEP-induced cytokines and chemokines in nasal fibroblasts and to identify the signaling pathway involved. Methods A cytokine and chemokine array performed after stimulation of nasal fibroblasts with DEP revealed that levels of IL-6 and IL-8 were increased most significantly among various cytokines and chemokines. RT—PCR and ELISA were used to determine the mRNA and protein expression levels of IL-6 and IL-8. Signaling pathways of p-38, Akt, and NF-κB were analyzed by western blotting, luciferase assay, and ELISA. Organ cultures of nasal interior turbinate were also developed to demonstrate the ex vivo effect of DEP on the expression of IL-6 and IL-8 and the associated signaling pathway. Results DEP increased the expressions of IL-6 and IL-8 in nasal fibroblasts at mRNA and protein levels. DEP induced phosphorylation of p38, Akt, and NF-κB, whereas inhibitors of p38, Akt, and NF-κB blocked these phophorylations and the expressions of IL-6 and IL-8. These findings were also observed in ex vivo organ culture of nasal inferior turbinate. Conclusions DEP induces expression of IL-6 and IL-8 via p38, Akt, and NF-κB signaling pathways in nasal fibroblasts. This finding suggests that air pollution might induce or aggravate allergic rhinitis or chronic rhinosinusitis.
Collapse
|
11
|
Blankestijn MA, Boyle RJ, Gore R, Hawrylowicz C, Jarvis D, Knulst AC, Wardlaw AJ. Developments in the field of allergy in 2013 through the eyes of Clinical and Experimental Allergy. Clin Exp Allergy 2015; 44:1436-57. [PMID: 25346287 DOI: 10.1111/cea.12442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
2013 was another exciting year for allergy in general and Clinical and Experimental Allergy in particular. In the field of asthma and rhinitis, there continued to be a focus on heterogeneity and phenotypes with increasing use of biostatistical techniques to determine clusters of similar populations. Obesity- and aspirin-associated disease are intriguing associations with asthma which were explored in a number of papers. We published a number of excellent papers on mechanisms of airway inflammation and how this relates to physiology, pathology, genetics and biomarkers in both human and experimental model systems. In terms of mechanisms, there is less on individual cell types in allergic disease at the moment, but the immunology of allergic disease continued to fascinate our authors. Another area that was popular both in the mechanisms and in the epidemiology sections was early life events and how these lead to allergic disease, with an increasing focus on the role of the microbiome and how this influences immune tolerance. In the clinical allergy section, oral immunotherapy for food allergy is clearly a major topic of interest at the moment as was in vitro testing to distinguish between sensitization and allergic disease. There was less on inhalant allergy this year, but a good representation from the drug allergy community including some interesting work on non-IgE-mediated mechanisms. In the allergen section, important new allergens continue to be discovered, but the major focus as in the last couple of years was on working out how component-resolved approaches can improve diagnosis and management of food and venom allergy.
Collapse
Affiliation(s)
- M A Blankestijn
- Department of Dermatology and Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
12
|
Amyloid-beta mediates the receptor of advanced glycation end product-induced pro-inflammatory response via toll-like receptor 4 signaling pathway in retinal ganglion cell line RGC-5. Int J Biochem Cell Biol 2015; 64:1-10. [DOI: 10.1016/j.biocel.2015.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 12/02/2014] [Accepted: 03/06/2015] [Indexed: 12/15/2022]
|
13
|
Chen JYF, Hour TC, Yang SF, Chien CY, Chen HR, Tsai KL, Ko JY, Wang LF. Autophagy is deficient in nasal polyps: implications for the pathogenesis of the disease. Int Forum Allergy Rhinol 2014; 5:119-23. [PMID: 25533020 DOI: 10.1002/alr.21456] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/14/2014] [Accepted: 10/28/2014] [Indexed: 02/01/2023]
Abstract
BACKGROUND Nasal polyposis is characterized by persistent inflammation but the pathogenesis is complex and still debatable. Autophagy has been associated with many human health problems including chronic inflammatory airway diseases. Whether autophagy plays a role in nasal polyps and could be a therapeutic target is completely unknown. METHODS We studied light chain 3 (LC3) protein expression, a common indication of autophagy, in fresh tissue specimens of 5 nasal polyps and 6 normal nasal mucosa by Western blot analysis. The results were also confirmed by immunohistochemistry (IHC) using additional 25 paraffin-embedded nasal tissue sections. Finally the autophagic activity was validated in nasal polyp-derived fibroblasts by evaluating the number of green fluorescent protein (GFP)-labeled LC3 puncta. RESULTS The expression of LC3 was dramatically decreased in all 5 nasal polyp tissues. In contrast, protein kinase B-mechanistic target of rapamycin (Akt-mTOR) signaling, an established negative regulator of autophagy, was significantly activated in these tissues. Immunohistochemical results further demonstrated a negative correlation between autophagy and nasal polyps (p < 0.05). GFP-LC3 puncta formation, an alternative indicator of autophagy, was also diminished in nasal polyp-derived fibroblasts (p < 0.01). CONCLUSION Autophagy is deficient presumably due to suppression by high Akt-mTOR activity in nasal polyps, which may provide a molecular basis for future mechanistic study of the disease.
Collapse
Affiliation(s)
- Jeff Yi-Fu Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhao K, Song X, Huang Y, Yao J, Zhou M, Li Z, You Q, Guo Q, Lu N. Wogonin inhibits LPS-induced tumor angiogenesis via suppressing PI3K/Akt/NF-κB signaling. Eur J Pharmacol 2014; 737:57-69. [DOI: 10.1016/j.ejphar.2014.05.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 04/28/2014] [Accepted: 05/07/2014] [Indexed: 10/25/2022]
|
15
|
Cho JS, Kang JH, Park IH, Lee HM. Steroids inhibit vascular endothelial growth factor expression via TLR4/Akt/NF-κB pathway in chronic rhinosinusitis with nasal polyp. Exp Biol Med (Maywood) 2014; 239:913-921. [DOI: 10.1177/1535370214537742] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is elevated in chronic rhinosinusitis with nasal polyps. Steroids have anti-inflammatory properties and are ideal candidates for treating chronic inflammatory airways. The aims of this study were to identify the inhibitory effects and mechanisms of steroids on lipopolysaccharide (LPS)-induced VEGF expression in nasal polyps. Nasal polyp-derived fibroblasts (NPDFs) were stimulated with LPS alone or with both LPS and steroids were used to determine the expression levels of toll-like receptor (TLR)-4, myeloid differentiation primary response gene 88 ( MyD88), and VEGF by using reverse transcription-polymerase chain reaction (RT-PCR). VEGF protein level was analyzed by immunocytochemical staining and enzyme-linked immunosorbent assay (ELISA). Small interfering RNA (siRNA) for TLR4 was transfected to down-regulate TLR4 expression. Activation of Akt and nuclear factor κB (NF-κB) pathway on VEGF expression was determined by Western blot analysis, immunocytochemical staining, and ELISA. Nasal polyp organ cultures were stimulated with LPS alone or in conjunction with steroids or LPS-RS (TLR4 inhibitor) and accessed the expression of VEGF. Steroids decreased the expressions of TLR4, MyD88, and VEGF mRNA and VEGF protein in LPS-stimulated NPDFs. Steroids inhibited LPS-induced VEGF expression levels in dose-dependent manner. The suppression of TLR4 transcription by siRNA treatment reduced LPS-induced expression of both TLR4 and VEGF in NPDFs. Furthermore, steroids inhibited the production of VEGF by blocking Akt and NF-κB activation and preventing with NF-κB translocation. Also, steroid and TLR4 inhibitor decreased VEGF expression in nasal polyp organ cultures. These results indicate that steroids inhibit LPS-induced VEGF expression through the TLR4/Akt/NF-κB signaling pathway in chronic rhinosinusitis with nasal polyp.
Collapse
Affiliation(s)
- Jung-Sun Cho
- Biomedical Science, Guro Hospital, Korea University College of Medicine, Seoul 152-703, Korea
- Institute for Medical Devices Clinical Trial Center, Guro Hospital, Korea University College of Medicine, Seoul 152-703, Korea
| | - Ju-Hyung Kang
- Biomedical Science, Guro Hospital, Korea University College of Medicine, Seoul 152-703, Korea
| | - Il-Ho Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul 152-703, Korea
| | - Heung-Man Lee
- Biomedical Science, Guro Hospital, Korea University College of Medicine, Seoul 152-703, Korea
- Institute for Medical Devices Clinical Trial Center, Guro Hospital, Korea University College of Medicine, Seoul 152-703, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul 152-703, Korea
| |
Collapse
|