1
|
Park SY, Lee YY, Kim MH, Kim CE. Deciphering the Systemic Impact of Herbal Medicines on Allergic Rhinitis: A Network Pharmacological Approach. Life (Basel) 2024; 14:553. [PMID: 38792575 PMCID: PMC11122645 DOI: 10.3390/life14050553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Allergic rhinitis (AR) is a systemic allergic disease that has a considerable impact on patients' quality of life. Current treatments include antihistamines and nasal steroids; however, their long-term use often causes undesirable side effects. In this context, traditional Asian medicine (TAM), with its multi-compound, multi-target herbal medicines (medicinal plants), offers a promising alternative. However, the complexity of these multi-compound traits poses challenges in understanding the overall mechanisms and efficacy of herbal medicines. Here, we demonstrate the efficacy and underlying mechanisms of these multi-compound herbal medicines specifically used for AR at a systemic level. We utilized a modified term frequency-inverse document frequency method to select AR-specific herbs and constructed an herb-compound-target network using reliable databases and computational methods, such as the Quantitative Estimate of Drug-likeness for compound filtering, STITCH database for compound-target interaction prediction (with a high confidence score threshold of 0.7), and DisGeNET and CTD databases for disease-gene association analysis. Through this network, we conducted AR-related targets and pathway analyses, as well as clustering analysis based on target-level information of the herbs. Gene ontology enrichment analysis was conducted using a protein-protein interaction network. Our research identified 14 AR-specific herbs and analyzed whether AR-specific herbs are highly related to previously known AR-related genes and pathways. AR-specific herbs were found to target several genes related to inflammation and AR pathogenesis, such as PTGS2, HRH1, and TBXA2R. Pathway analysis revealed that AR-specific herbs were associated with multiple AR-related pathways, including cytokine signaling, immune response, and allergic inflammation. Additionally, clustering analysis based on target similarity identified three distinct subgroups of AR-specific herbs, corroborated by a protein-protein interaction network. Group 1 herbs were associated with the regulation of inflammatory responses to antigenic stimuli, while Group 2 herbs were related to the detection of chemical stimuli involved in the sensory perception of bitter taste. Group 3 herbs were distinctly associated with antigen processing and presentation and NIK/NF-kappa B signaling. This study decodes the principles of TAM herbal configurations for AR using a network pharmacological approach, providing a holistic understanding of drug effects beyond specific pathways.
Collapse
Affiliation(s)
- Sa-Yoon Park
- Department of Physiology, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Yoon Yeol Lee
- Department of Physiology, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Min Hee Kim
- Department of Ophthalmology, Otolaryngology, and Dermatology, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
| | - Chang-Eop Kim
- Department of Physiology, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
2
|
Jalševac F, Terra X, Rodríguez-Gallego E, Beltran-Debón R, Blay MT, Pinent M, Ardévol A. The Hidden One: What We Know About Bitter Taste Receptor 39. Front Endocrinol (Lausanne) 2022; 13:854718. [PMID: 35345470 PMCID: PMC8957101 DOI: 10.3389/fendo.2022.854718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/04/2022] [Indexed: 12/21/2022] Open
Abstract
Over thousands of years of evolution, animals have developed many ways to protect themselves. One of the most protective ways to avoid disease is to prevent the absorption of harmful components. This protective function is a basic role of bitter taste receptors (TAS2Rs), a G protein-coupled receptor family, whose presence in extraoral tissues has intrigued many researchers. In humans, there are 25 TAS2Rs, and although we know a great deal about some of them, others are still shrouded in mystery. One in this latter category is bitter taste receptor 39 (TAS2R39). Besides the oral cavity, it has also been found in the gastrointestinal tract and the respiratory, nervous and reproductive systems. TAS2R39 is a relatively non-selective receptor, which means that it can be activated by a range of mostly plant-derived compounds such as theaflavins, catechins and isoflavones. On the other hand, few antagonists for this receptor are available, since only some flavones have antagonistic properties (all of them detailed in the document). The primary role of TAS2R39 is to sense the bitter components of food and protect the organism from harmful compounds. There is also some indication that this bitter taste receptor regulates enterohormones and in turn, regulates food intake. In the respiratory system, it may be involved in the congestion process of allergic rhinitis and may stimulate inflammatory cytokines. However, more thorough research is needed to determine the precise role of TAS2R39 in these and other tissues.
Collapse
|
3
|
Jiao WE, Sun L, Xu S, Deng YQ, Qiao YL, Xi Y, Tao ZZ, Chen SM. Notch2 suppresses the development of allergic rhinitis by promoting FOXP3 expression and Treg cell differentiation. Life Sci 2021; 284:119922. [PMID: 34480930 DOI: 10.1016/j.lfs.2021.119922] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 01/15/2023]
Abstract
AIMS Notch signaling is closely related to a variety of diseases, but the role of Notch2 in allergic rhinitis (AR) remain unclear. This study was performed to investigate the effects of Notch2 on the differentiation of Treg cells and on the inflammatory response of AR. MATERIALS AND METHODS Peripheral blood (including 101 AR patients and 66 Controls) and nasal mucosa (including 19 AR patients and 17 Controls) were collected to detect the expression levels of Notch2, NICD2 and FOXP3. CD4+ T cells of human origin were selected to detect the effects of Notch2 on the differentiation of Treg cells and FOXP3. An AR mouse model was established, and lentiviruses overexpressing Notch2 were administered. Then, allergic symptoms, OVA-sIgE titers, nasal mucosal inflammation, Th1/Th2/Th17 cytokines and splenic Treg cells were assessed. KEY FINDINGS Compared with that in the Control group, the expression of Notch2 in the AR group was decreased, and Notch2 expression was negatively correlated with the degree of allergy (P < 0.01). The expression levels of Notch2, NICD2 and FOXP3 were decreased in the nasal mucosa of AR patients. Notch2 can promote the differentiation of human Treg cells in vitro (P < 0.05), and Notch2 can directly promote FOXP3 transcription. Animal experiments showed after the upregulation of Notch2 expression, the allergic inflammatory of mice with AR was reduced, the differentiation of Treg cells was increased, and the imbalance of T cells was reversed (P < 0.05). SIGNIFICANCE Notch2 promotes the differentiation of Treg cells by upregulating FOXP3 expression, thus significantly inhibiting the inflammatory response of AR.
Collapse
Affiliation(s)
- Wo-Er Jiao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Liu Sun
- Department of Otolaryngology-Head and Neck Surgery, General Hospital of The Central Theater Command of The People's Liberation Army, Wuhan 430070, Hubei, PR China
| | - Shan Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Yu-Qin Deng
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Yue-Long Qiao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Yang Xi
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Ze-Zhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China; Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Shi-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China; Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China.
| |
Collapse
|
4
|
Martens K, Steelant B, Bullens DMA. Taste Receptors: The Gatekeepers of the Airway Epithelium. Cells 2021; 10:cells10112889. [PMID: 34831117 PMCID: PMC8616034 DOI: 10.3390/cells10112889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 02/07/2023] Open
Abstract
Taste receptors are well known for their role in the sensation of taste. Surprisingly, the expression and involvement of taste receptors in chemosensory processes outside the tongue have been recently identified in many organs including the airways. Currently, a clear understanding of the airway-specific function of these receptors and the endogenous activating/inhibitory ligands is lagging. The focus of this review is on recent physiological and clinical data describing the taste receptors in the airways and their activation by secreted bacterial compounds. Taste receptors in the airways are potentially involved in three different immune pathways (i.e., the production of nitric oxide and antimicrobial peptides secretion, modulation of ciliary beat frequency, and bronchial smooth muscle cell relaxation). Moreover, genetic polymorphisms in these receptors may alter the patients’ susceptibility to certain types of respiratory infections as well as to differential outcomes in patients with chronic inflammatory airway diseases such as chronic rhinosinusitis and asthma. A better understanding of the function of taste receptors in the airways may lead to the development of a novel class of therapeutic molecules that can stimulate airway mucosal immune responses and could treat patients with chronic airway diseases.
Collapse
Affiliation(s)
- Katleen Martens
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (K.M.); (B.S.)
- Department of Bioscience Engineering, University of Antwerp, 2020 Antwerp, Belgium
| | - Brecht Steelant
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (K.M.); (B.S.)
| | - Dominique M. A. Bullens
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (K.M.); (B.S.)
- Clinical Division of Pediatrics, University Hospitals Leuven, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
5
|
Zhu H, Liu L, Ren L, Chen J, Peng L, Shi C, Wang X, Hu S, Zhang C, Gu M, Li X. Bitter receptor member TAS2R4 may have neurobiological function beyond acting as a bitter receptor. Acta Biochim Biophys Sin (Shanghai) 2020; 52:460-462. [PMID: 32159211 DOI: 10.1093/abbs/gmaa003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hongling Zhu
- Department of Endocrine, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai 200135, China
| | - Lianyong Liu
- Department of Endocrinology, Punan Hospital of Pudong New District, Shanghai 200125, China
| | - Li Ren
- Department of Endocrine, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai 200135, China
| | - Juan Chen
- Department of Obstetrics and Gynecology, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai 200135, China
| | - Li Peng
- Department of Endocrine, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai 200135, China
| | - Chao Shi
- Department of Endocrine, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai 200135, China
| | - Xing Wang
- Department of Endocrine, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai 200135, China
| | - Shuanggang Hu
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Chaobao Zhang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Mingjun Gu
- Department of Endocrine, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai 200135, China
| | - Xiangqi Li
- Department of Endocrine, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai 200135, China
| |
Collapse
|
6
|
Zhu H, Liu L, Ren L, Ma J, Hu S, Zhu Z, Zhao X, Shi C, Wang X, Zhang C, Gu M, Li X. Systematic prediction of the biological functions of TAS2R10 using positive co-expression analysis. Exp Ther Med 2020; 19:1733-1738. [PMID: 32104227 PMCID: PMC7027137 DOI: 10.3892/etm.2019.8397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 11/07/2019] [Indexed: 11/06/2022] Open
Abstract
Type 2 taste receptor 10 (TAS2R10), belonging to the TAS2R family of bitter receptors, is widely expressed in extra-oral tissues. However, its biological roles beyond bitterness sensing in the tongue have remained largely elusive. The present study aimed to perform a positive co-expression analysis using 60,000 Affymetrix expression arrays and 5,000 The Cancer Genome Atlas datasets to uncover such roles. Based on the functional enrichment analysis, it was indicated that in the Gene Ontology (GO) category biological process, TAS2R10 was mostly involved in 'cellular protein metabolic process', 'protein modification process', 'cellular protein modification process' and 'cellular component assembly'. In the GO category cellular component, the co-expressed genes were accumulated in 'Spt-Ada-Gcn5 acetyltransferase (SAGA)-type complex' and 'SAGA complex', and in the category molecular function, they were concentrated in 'hexosaminidase activity', 'cytoskeletal adaptor activity', 'cyclin binding' and 'β-N-acetylhexosaminidase activity'. Of note, it was indicated that TAS2R10 may be involved in 'ubiquitin-mediated proteolysis', which may provide a starting point to fully investigate the detailed functions of TAS2R10 in the future. TAS2R10 was also indicated to be associated with human diseases, i.e. 'Salmonella infection'. Overall, the present study was the first to perform a comprehensive bioinformatics analysis of the functions of TAS2R10 and provide insight regarding the notion that this gene may have crucial roles beyond bitterness sensing.
Collapse
Affiliation(s)
- Hongling Zhu
- Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, P.R. China
| | - Lianyong Liu
- Department of Endocrinology, Punan Hospital of Pudong New District, Shanghai 200125, P.R. China
| | - Li Ren
- Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, P.R. China
| | - Junhua Ma
- Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, P.R. China
| | - Shuanggang Hu
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
| | - Zhaohui Zhu
- Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, P.R. China
| | - Xuemei Zhao
- Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, P.R. China
| | - Chao Shi
- Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, P.R. China
| | - Xing Wang
- Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, P.R. China
| | - Chaobao Zhang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Mingjun Gu
- Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, P.R. China
| | - Xiangqi Li
- Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, P.R. China
| |
Collapse
|
7
|
Abstract
Allergic diseases, which have escalated in prevalence in recent years, arise as a result of maladaptive immune responses to ubiquitous environmental stimuli. Why only certain individuals mount inappropriate type 2 immune responses to these otherwise harmless allergens has remained an unanswered question. Mounting evidence suggests that the epithelium, by sensing its environment, is the central regulator of allergic diseases. Once considered to be a passive barrier to allergens, epithelial cells at mucosal surfaces are now considered to be the cornerstone of the allergic diathesis. Beyond their function as maintaining barrier at mucosal surfaces, mucosal epithelial cells through the secretion of mediators like IL-25, IL-33, and TSLP control the fate of downstream allergic immune responses. In this review, we will discuss the advances in recent years regarding the process of allergen recognition and secretion of soluble mediators by epithelial cells that shape the development of the allergic response.
Collapse
Affiliation(s)
- Naina Gour
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Stephane Lajoie
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|