1
|
Capuano R, Ciotti M, Catini A, Bernardini S, Di Natale C. Clinical applications of volatilomic assays. Crit Rev Clin Lab Sci 2025; 62:45-64. [PMID: 39129534 DOI: 10.1080/10408363.2024.2387038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/23/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
The study of metabolomics is revealing immense potential for diagnosis, therapy monitoring, and understanding of pathogenesis processes. Volatilomics is a subcategory of metabolomics interested in the detection of molecules that are small enough to be released in the gas phase. Volatile compounds produced by cellular processes are released into the blood and lymph, and can reach the external environment through different pathways, such as the blood-air interface in the lung that are detected in breath, or the blood-water interface in the kidney that leads to volatile compounds detected in urine. Besides breath and urine, additional sources of volatile compounds such as saliva, blood, feces, and skin are available. Volatilomics traces its roots back over fifty years to the pioneering investigations in the 1970s. Despite extensive research, the field remains in its infancy, hindered by a lack of standardization despite ample experimental evidence. The proliferation of analytical instrumentations, sample preparations and methods of volatilome sampling still make it difficult to compare results from different studies and to establish a common standard approach to volatilomics. This review aims to provide an overview of volatilomics' diagnostic potential, focusing on two key technical aspects: sampling and analysis. Sampling poses a challenge due to the susceptibility of human samples to contamination and confounding factors from various sources like the environment and lifestyle. The discussion then delves into targeted and untargeted approaches in volatilomics. Some case studies are presented to exemplify the results obtained so far. Finally, the review concludes with a discussion on the necessary steps to fully integrate volatilomics into clinical practice.
Collapse
Affiliation(s)
- Rosamaria Capuano
- Department of Electronic Engineering, University of Rome Tor Vergata, Roma, Italy
- Interdepartmental Center for Volatilomics, "A. D'Amico", University of Rome Tor Vergata, Rome, Italy
| | - Marco Ciotti
- Department of Laboratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Alexandro Catini
- Department of Electronic Engineering, University of Rome Tor Vergata, Roma, Italy
- Interdepartmental Center for Volatilomics, "A. D'Amico", University of Rome Tor Vergata, Rome, Italy
| | - Sergio Bernardini
- Interdepartmental Center for Volatilomics, "A. D'Amico", University of Rome Tor Vergata, Rome, Italy
- Department of Laboratory Medicine, University Hospital Tor Vergata, Rome, Italy
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Roma, Italy
- Interdepartmental Center for Volatilomics, "A. D'Amico", University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
2
|
Brinkman P, Wilde M, Ahmed W, Wang R, van der Schee M, Abuhelal S, Schaber C, Cunoosamy D, Clarke GW, Maitland-van der Zee AH, Dahlén SE, Siddiqui S, Fowler SJ. Fulfilling the Promise of Breathomics: Considerations for the Discovery and Validation of Exhaled Volatile Biomarkers. Am J Respir Crit Care Med 2024; 210:1079-1090. [PMID: 38889337 PMCID: PMC11544359 DOI: 10.1164/rccm.202305-0868tr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
The exhaled breath represents an ideal matrix for noninvasive biomarker discovery, and exhaled metabolomics have the potential to be clinically useful in the era of precision medicine. In this concise translational review, we specifically address volatile organic compounds in the breath, with a view toward fulfilling the promise of these as actionable biomarkers, in particular, for lung diseases. We review the literature paying attention to seminal work linked to key milestones in breath research; discuss potential applications for breath biomarkers across disease areas and healthcare systems, including the perspectives of industry; and outline critical aspects of study design that will need to be considered for any pivotal research going forward if breath analysis is to provide robust validated biomarkers that meet the requirements for future clinical implementation.
Collapse
Affiliation(s)
- Paul Brinkman
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
| | - Michael Wilde
- School of Geography, Earth and Environmental Sciences, Faculty of Science and Engineering, University of Plymouth, Plymouth, United Kingdom
| | - Waqar Ahmed
- Division of Immunology, Immunity to Infection & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Ran Wang
- Division of Immunology, Immunity to Infection & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
- National Institute for Health and Care Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | | | - Shahd Abuhelal
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Chad Schaber
- Owlstone Medical Ltd., Cambridge, United Kingdom
| | | | - Graham W. Clarke
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Anke-Hilse Maitland-van der Zee
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
| | - Sven-Erik Dahlén
- The Department of Medicine Huddinge and the Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden; and
- Department of Respiratory Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Salman Siddiqui
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stephen J. Fowler
- Division of Immunology, Immunity to Infection & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
- National Institute for Health and Care Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
3
|
Hu JC, Sethi S. New methods to detect bacterial or viral infections in patients with chronic obstructive pulmonary disease. Expert Rev Respir Med 2024; 18:693-707. [PMID: 39175157 PMCID: PMC11583054 DOI: 10.1080/17476348.2024.2396413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION Patients with chronic obstructive pulmonary disease (COPD) are frequently colonized and infected by respiratory pathogens. Identifying these infectious etiologies is critical for understanding the microbial dynamics of COPD and for the appropriate use of antimicrobials during exacerbations. AREAS COVERED Traditional methods, such as bacterial and viral cultures, have been standard in diagnosing respiratory infections. However, these methods have significant limitations, including lack of sensitivity and prolonged turnaround time. Modern molecular approaches offer rapid, sensitive, and specific detection, though they also come with their own challenges. This review explores and evaluates the clinical utility of the latest advancements in detecting bacterial and viral respiratory infections in COPD, encompassing molecular techniques, biomarkers, and emerging technologies. EXPERT OPINION In the evolving landscape of COPD management, integrating molecular diagnostics and emerging technologies holds great promise. The enhanced sensitivity of molecular techniques has significantly advanced our understanding of the role of microbes in COPD. However, many of these technologies have primarily been developed for pneumonia diagnosis or research applications, and their clinical utility in managing COPD requires further evaluation.
Collapse
Affiliation(s)
- John C Hu
- Division of Infectious Diseases, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Sanjay Sethi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
4
|
Chou H, Godbeer L, Allsworth M, Boyle B, Ball ML. Progress and challenges of developing volatile metabolites from exhaled breath as a biomarker platform. Metabolomics 2024; 20:72. [PMID: 38977623 PMCID: PMC11230972 DOI: 10.1007/s11306-024-02142-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND The multitude of metabolites generated by physiological processes in the body can serve as valuable biomarkers for many clinical purposes. They can provide a window into relevant metabolic pathways for health and disease, as well as be candidate therapeutic targets. A subset of these metabolites generated in the human body are volatile, known as volatile organic compounds (VOCs), which can be detected in exhaled breath. These can diffuse from their point of origin throughout the body into the bloodstream and exchange into the air in the lungs. For this reason, breath VOC analysis has become a focus of biomedical research hoping to translate new useful biomarkers by taking advantage of the non-invasive nature of breath sampling, as well as the rapid rate of collection over short periods of time that can occur. Despite the promise of breath analysis as an additional platform for metabolomic analysis, no VOC breath biomarkers have successfully been implemented into a clinical setting as of the time of this review. AIM OF REVIEW This review aims to summarize the progress made to address the major methodological challenges, including standardization, that have historically limited the translation of breath VOC biomarkers into the clinic. We highlight what steps can be taken to improve these issues within new and ongoing breath research to promote the successful development of the VOCs in breath as a robust source of candidate biomarkers. We also highlight key recent papers across select fields, critically reviewing the progress made in the past few years to advance breath research. KEY SCIENTIFIC CONCEPTS OF REVIEW VOCs are a set of metabolites that can be sampled in exhaled breath to act as advantageous biomarkers in a variety of clinical contexts.
Collapse
|
5
|
Wijsman PC, Goorsenberg AWM, d'Hooghe JNS, Weersink EJM, Fenn DW, Maitland van der Zee AH, Annema JT, Brinkman P, Bonta PI. Exhaled breath analyses for bronchial thermoplasty in severe asthma patients. Respir Med 2024; 225:107583. [PMID: 38447787 DOI: 10.1016/j.rmed.2024.107583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Bronchial thermoplasty (BT) is a bronchoscopic treatment for severe asthma. Although multiple trials have demonstrated clinical improvement after BT, optimal patient selection remains a challenge and the mechanism of action is incompletely understood. The aim of this study was to examine whether exhaled breath analysis can contribute to discriminate between BT-responders and non-responders at baseline and to explore pathophysiological insights of BT. METHODS Exhaled breath was collected from patients at baseline and six months post-BT. Patients were defined as responders or non-responders based on a half point increase in asthma quality of life questionnaire scores. Gas chromatography-mass spectrometry was used for volatile organic compounds (VOCs) detection and analyses. Analytical workflow consisted of: 1) detection of VOCs that differentiate between responders and non-responders and those that differ between baseline and six months post-BT, 2) identification of VOCs of interest and 3) explore correlations between clinical biomarkers and VOCs. RESULTS Data was available from 14 patients. Nonanal, 2-ethylhexanol and 3-thujol showed a significant difference in intensity between responders and non-responders at baseline (p = 0.04, p = 0.01 and p = 0.03, respectively). After BT, no difference was found in the compound intensity of these VOCs. A negative correlation was observed between nonanal and IgE and BALF eosinophils (r = -0.68, p < 0.01 and r = -0.61, p = 0.02 respectively) and 3-thujol with BALF neutrophils (r = -0.54, p = 0.04). CONCLUSIONS This explorative study identified discriminative VOCs in exhaled breath between BT responders and non-responders at baseline. Additionally, correlations were found between VOC's and inflammatory BALF cells. Once validated, these findings encourage research in breath analysis as a non-invasive easy to apply technique for identifying airway inflammatory profiles and eligibility for BT or immunotherapies in severe asthma.
Collapse
Affiliation(s)
- Pieta C Wijsman
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Annika W M Goorsenberg
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Julia N S d'Hooghe
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Els J M Weersink
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Dominic W Fenn
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | | | - Jouke T Annema
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Paul Brinkman
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Peter I Bonta
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands.
| |
Collapse
|
6
|
Gao M, Yang Z, Choi J, Wang C, Dai G, Yang J. Triboelectric Nanogenerators for Preventive Health Monitoring. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:336. [PMID: 38392709 PMCID: PMC10892167 DOI: 10.3390/nano14040336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
With the improvement in life quality, the increased focus on health has expedited the rapid development of portable preventative-health-monitoring devices. As one of the most attractive sensing technologies, triboelectric nanogenerators (TENGs) are playing a more and more important role in wearable electronics, machinery condition monitoring, and Internet of Things (IoT) sensors. TENGs possess many advantages, such as ease of fabrication, cost-effectiveness, flexibility, material-selection variety, and the ability to collect low-frequency motion, offering a novel way to achieve health monitoring for human beings in various aspects. In this short review, we initially present the working modes of TENGs based on their applications in health monitoring. Subsequently, the applications of TENG-based preventive health monitoring are demonstrated for different abnormal conditions of human beings, including fall-down detection, respiration monitoring, fatigue monitoring, and arterial pulse monitoring for cardiovascular disease. Finally, the discussion summarizes the current limitations and future perspectives. This short review encapsulates the latest and most influential works on preventive health monitoring utilizing the triboelectric effect for human beings and provides hints and evidence for future research trends.
Collapse
Affiliation(s)
- Mang Gao
- School of Physics, Central South University, Changsha 410083, China; (M.G.); (G.D.)
| | - Zhiyuan Yang
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan;
| | - Junho Choi
- Department of Mechanical Engineering, Tokyo City University, Tokyo 158-8557, Japan;
| | - Chan Wang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Guozhang Dai
- School of Physics, Central South University, Changsha 410083, China; (M.G.); (G.D.)
| | - Junliang Yang
- School of Physics, Central South University, Changsha 410083, China; (M.G.); (G.D.)
| |
Collapse
|
7
|
Bajo-Fernández M, Souza-Silva ÉA, Barbas C, Rey-Stolle MF, García A. GC-MS-based metabolomics of volatile organic compounds in exhaled breath: applications in health and disease. A review. Front Mol Biosci 2024; 10:1295955. [PMID: 38298553 PMCID: PMC10828970 DOI: 10.3389/fmolb.2023.1295955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/05/2023] [Indexed: 02/02/2024] Open
Abstract
Exhaled breath analysis, with particular emphasis on volatile organic compounds, represents a growing area of clinical research due to its obvious advantages over other diagnostic tests. Numerous pathologies have been extensively investigated for the identification of specific biomarkers in exhalates through metabolomics. However, the transference of breath tests to clinics remains limited, mainly due to deficiency in methodological standardization. Critical steps include the selection of breath sample types, collection devices, and enrichment techniques. GC-MS is the reference analytical technique for the analysis of volatile organic compounds in exhalates, especially during the biomarker discovery phase in metabolomics. This review comprehensively examines and compares metabolomic studies focusing on cancer, lung diseases, and infectious diseases. In addition to delving into the experimental designs reported, it also provides a critical discussion of the methodological aspects, ranging from the experimental design and sample collection to the identification of potential pathology-specific biomarkers.
Collapse
Affiliation(s)
- María Bajo-Fernández
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Érica A. Souza-Silva
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Departmento de Química, Universidade Federal de São Paulo (UNIFESP), Diadema, Brazil
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Ma Fernanda Rey-Stolle
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Antonia García
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| |
Collapse
|
8
|
Maidodou L, Clarot I, Leemans M, Fromantin I, Marchioni E, Steyer D. Unraveling the potential of breath and sweat VOC capture devices for human disease detection: a systematic-like review of canine olfaction and GC-MS analysis. Front Chem 2023; 11:1282450. [PMID: 38025078 PMCID: PMC10646374 DOI: 10.3389/fchem.2023.1282450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
The development of disease screening methods using biomedical detection dogs relies on the collection and analysis of body odors, particularly volatile organic compounds (VOCs) present in body fluids. To capture and analyze odors produced by the human body, numerous protocols and materials are used in forensics or medical studies. This paper provides an overview of sampling devices used to collect VOCs from sweat and exhaled air, for medical diagnostic purposes using canine olfaction and/or Gas Chromatography-Mass spectrometry (GC-MS). Canine olfaction and GC-MS are regarded as complementary tools, holding immense promise for detecting cancers and infectious diseases. However, existing literature lacks guidelines for selecting materials suitable for both canine olfaction and GC-MS. Hence, this review aims to address this gap and pave the way for efficient body odor sampling materials. The first section of the paper describes the materials utilized in training sniffing dogs, while the second section delves into the details of sampling devices and extraction techniques employed for exhaled air and sweat analysis using GC-MS. Finally, the paper proposes the development of an ideal sampling device tailored for detection purposes in the field of odorology. By bridging the knowledge gap, this study seeks to advance disease detection methodologies, harnessing the unique abilities of both dogs and GC-MS analysis in biomedical research.
Collapse
Affiliation(s)
- Laetitia Maidodou
- Twistaroma, Illkirch Graffenstaden, France
- CITHEFOR, EA 3452, Université de Lorraine, Nancy, France
- DSA, IPHC UMR7178, Université de Strasbourg, Strasbourg, France
| | - Igor Clarot
- CITHEFOR, EA 3452, Université de Lorraine, Nancy, France
| | - Michelle Leemans
- Clinical Epidemiology and Ageing, IMRB—Paris Est Créteil University /Inserm U955, Créteil, France
| | - Isabelle Fromantin
- Clinical Epidemiology and Ageing, IMRB—Paris Est Créteil University /Inserm U955, Créteil, France
- Wound Care and Research Unit, Curie Institute, Paris, France
| | - Eric Marchioni
- DSA, IPHC UMR7178, Université de Strasbourg, Strasbourg, France
| | | |
Collapse
|
9
|
Peel A, Wang R, Ahmed W, White I, Wilkinson M, Loke YK, Wilson AM, Fowler SJ. Changes in exhaled volatile organic compounds following indirect bronchial challenge in suspected asthma. Thorax 2023; 78:966-973. [PMID: 37495368 DOI: 10.1136/thorax-2022-219708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/14/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Inhaled mannitol provokes bronchoconstriction via mediators released during osmotic degranulation of inflammatory cells, and, hence represents a useful diagnostic test for asthma and model for acute attacks. We hypothesised that the mannitol challenge would trigger changes in exhaled volatile organic compounds (VOCs), generating both candidate biomarkers and novel insights into their origin. METHODS Participants with a clinical diagnosis of asthma, or undergoing investigation for suspected asthma, were recruited. Inhaled mannitol challenges were performed, followed by a sham challenge after 2 weeks in participants with bronchial hyper-responsiveness (BHR). VOCs were collected before and after challenges and analysed using gas chromatography-mass spectrometry. RESULTS Forty-six patients (mean (SD) age 52 (16) years) completed a mannitol challenge, of which 16 (35%) were positive, and 15 of these completed a sham challenge. Quantities of 16 of 51 identified VOCs changed following mannitol challenge (p<0.05), of which 11 contributed to a multivariate sparse partial least square discriminative analysis model, with a classification error rate of 13.8%. Five of these 16 VOCs also changed (p<0.05) in quantity following the sham challenge, along with four further VOCs. In patients with BHR to mannitol distinct postchallenge VOC signatures were observed compared with post-sham challenge. CONCLUSION Inhalation of mannitol was associated with changes in breath VOCs, and in people with BHR resulted in a distinct exhaled breath profile when compared with a sham challenge. These differentially expressed VOCs are likely associated with acute airway inflammation and/or bronchoconstriction and merit further investigation as potential biomarkers in asthma.
Collapse
Affiliation(s)
- Adam Peel
- Respiratory medicine, Norfolk Community Health and Care NHS Trust, Norwich, Norfolk, UK
| | - Ran Wang
- Division of Immunology, Immunity to infection & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
- Department of Respiratory Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Waqar Ahmed
- Division of Immunology, Immunity to infection & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Iain White
- Division of Immunology, Immunity to infection & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Nova Gorica, Slovenia
| | - Maxim Wilkinson
- Division of Immunology, Immunity to infection & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Yoon K Loke
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
- Department of Respiratory Medicine, Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, UK
| | - Andrew M Wilson
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
- Department of Respiratory Medicine, Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, UK
| | - Stephen J Fowler
- Division of Immunology, Immunity to infection & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
- Department of Respiratory Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
10
|
Savito L, Scarlata S, Bikov A, Carratù P, Carpagnano GE, Dragonieri S. Exhaled volatile organic compounds for diagnosis and monitoring of asthma. World J Clin Cases 2023; 11:4996-5013. [PMID: 37583852 PMCID: PMC10424019 DOI: 10.12998/wjcc.v11.i21.4996] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
The asthmatic inflammatory process results in the generation of volatile organic compounds (VOCs), which are subsequently secreted by the airways. The study of these elements through gas chromatography-mass spectrometry (GC-MS), which can identify individual molecules with a discriminatory capacity of over 85%, and electronic-Nose (e-NOSE), which is able to perform a quick onboard pattern-recognition analysis of VOCs, has allowed new prospects for non-invasive analysis of the disease in an "omics" approach. In this review, we aim to collect and compare the progress made in VOCs analysis using the two methods and their instrumental characteristics. Studies have described the potential of GC-MS and e-NOSE in a multitude of relevant aspects of the disease in both children and adults, as well as differential diagnosis between asthma and other conditions such as wheezing, cystic fibrosis, COPD, allergic rhinitis and last but not least, the accuracy of these methods compared to other diagnostic tools such as lung function, FeNO and eosinophil count. Due to significant limitations of both methods, it is still necessary to improve and standardize techniques. Currently, e-NOSE appears to be the most promising aid in clinical practice, whereas GC-MS, as the gold standard for the structural analysis of molecules, remains an essential tool in terms of research for further studies on the pathophysiologic pathways of the asthmatic inflammatory process. In conclusion, the study of VOCs through GC-MS and e-NOSE appears to hold promise for the non-invasive diagnosis, assessment, and monitoring of asthma, as well as for further research studies on the disease.
Collapse
Affiliation(s)
- Luisa Savito
- Department of Internal Medicine, Unit of Respiratory Pathophysiology and Thoracic Endoscopy, Fondazione Policlinico Universitario Campus Bio Medico, Rome 00128, Italy
| | - Simone Scarlata
- Department of Internal Medicine, Unit of Respiratory Pathophysiology and Thoracic Endoscopy, Fondazione Policlinico Universitario Campus Bio Medico, Rome 00128, Italy
| | - Andras Bikov
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Pierluigi Carratù
- Department of Internal Medicine "A.Murri", University of Bari "Aldo Moro", Bari 70124, Italy
| | | | - Silvano Dragonieri
- Department of Respiratory Diseases, University of Bari, Bari 70124, Italy
| |
Collapse
|
11
|
Shahbazi Khamas S, Alizadeh Bahmani AH, Vijverberg SJ, Brinkman P, Maitland-van der Zee AH. Exhaled volatile organic compounds associated with risk factors for obstructive pulmonary diseases: a systematic review. ERJ Open Res 2023; 9:00143-2023. [PMID: 37650089 PMCID: PMC10463028 DOI: 10.1183/23120541.00143-2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/21/2023] [Indexed: 09/01/2023] Open
Abstract
Background Asthma and COPD are among the most common respiratory diseases. To improve the early detection of exacerbations and the clinical course of asthma and COPD new biomarkers are needed. The development of noninvasive metabolomics of exhaled air into a point-of-care tool is an appealing option. However, risk factors for obstructive pulmonary diseases can potentially introduce confounding markers due to altered volatile organic compound (VOC) patterns being linked to these risk factors instead of the disease. We conducted a systematic review and presented a comprehensive list of VOCs associated with these risk factors. Methods A PRISMA-oriented systematic search was conducted across PubMed, Embase and Cochrane Libraries between 2000 and 2022. Full-length studies evaluating VOCs in exhaled breath were included. A narrative synthesis of the data was conducted, and the Newcastle-Ottawa Scale was used to assess the quality of included studies. Results The search yielded 2209 records and, based on the inclusion/exclusion criteria, 24 articles were included in the qualitative synthesis. In total, 232 individual VOCs associated with risk factors for obstructive pulmonary diseases were found; 58 compounds were reported more than once and 12 were reported as potential markers of asthma and/or COPD in other studies. Critical appraisal found that the identified studies were methodologically heterogeneous and had a variable risk of bias. Conclusion We identified a series of exhaled VOCs associated with risk factors for asthma and/or COPD. Identification of these VOCs is necessary for the further development of exhaled metabolites-based point-of-care tests in these obstructive pulmonary diseases.
Collapse
Affiliation(s)
- Shahriyar Shahbazi Khamas
- Department of Pulmonary Medicine, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
| | - Amir Hossein Alizadeh Bahmani
- Department of Pulmonary Medicine, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
| | - Susanne J.H. Vijverberg
- Department of Pulmonary Medicine, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
| | - Paul Brinkman
- Department of Pulmonary Medicine, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
- These authors contributed equally
| | - Anke H. Maitland-van der Zee
- Department of Pulmonary Medicine, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
- These authors contributed equally
| |
Collapse
|
12
|
Kermani NZ, Adcock IM, Djukanović R, Chung F, Schofield JPR. Systems Biology in Asthma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1426:215-235. [PMID: 37464123 DOI: 10.1007/978-3-031-32259-4_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The application of mathematical and computational analysis, together with the modelling of biological and physiological processes, is transforming our understanding of the pathophysiology of complex diseases. This systems biology approach incorporates large amounts of genomic, transcriptomic, proteomic, metabolomic, breathomic, metagenomic and imaging data from disease sites together with deep clinical phenotyping, including patient-reported outcomes. Integration of these datasets will provide a greater understanding of the molecular pathways associated with severe asthma in each individual patient and determine their personalised treatment regime. This chapter describes some of the data integration methods used to combine data sets and gives examples of the results obtained using single datasets and merging of multiple datasets (data fusion and data combination) from several consortia including the severe asthma research programme (SARP) and the Unbiased Biomarkers Predictive of Respiratory Disease Outcomes (U-BIOPRED) consortia. These results highlight the involvement of several different immune and inflammatory pathways and factors in distinct subsets of patients with severe asthma. These pathways often overlap in patients with distinct clinical features of asthma, which may explain the incomplete or no response in patients undergoing specific targeted therapy. Collaboration between groups will improve the predictions obtained using a systems medicine approach in severe asthma.
Collapse
Affiliation(s)
- Nazanin Zounemat Kermani
- Data Science Institute, Imperial College London, London, UK
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Ian M Adcock
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Ratko Djukanović
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| | - Fan Chung
- National Heart & Lung Institute, Imperial College London, London, UK
- Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, UK
| | - James P R Schofield
- Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Southampton, UK
- TopMD Precision Medicine Ltd, Southampton, UK
| |
Collapse
|
13
|
Fouka E, Domvri K, Gkakou F, Alevizaki M, Steiropoulos P, Papakosta D, Porpodis K. Recent insights in the role of biomarkers in severe asthma management. Front Med (Lausanne) 2022; 9:992565. [PMID: 36226150 PMCID: PMC9548530 DOI: 10.3389/fmed.2022.992565] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022] Open
Abstract
Contemporary asthma management requires a proactive and individualized approach, combining precision diagnosis and personalized treatment. The introduction of biologic therapies for severe asthma to everyday clinical practice, increases the need for specific patient selection, prediction of outcomes and monitoring of these costly and long-lasting therapies. Several biomarkers have been used in asthma in disease identification, prediction of asthma severity and prognosis, and response to treatment. Novel advances in the area of personalized medicine regarding disease phenotyping and endotyping, encompass the development and application of reliable biomarkers, accurately quantified using robust and reproducible methods. The availability of powerful omics technologies, together with integrated and network-based genome data analysis, and microbiota changes quantified in serum, body fluids and exhaled air, will lead to a better classification of distinct phenotypes or endotypes. Herein, in this review we discuss on currently used and novel biomarkers for the diagnosis and treatment of asthma.
Collapse
Affiliation(s)
- Evangelia Fouka
- G. Papanikolaou General Hospital, Thessaloniki, Greece
- Pulmonary Department of Aristotle University of Thessaloniki, Thessaloniki, Greece
- *Correspondence: Evangelia Fouka
| | - Kalliopi Domvri
- G. Papanikolaou General Hospital, Thessaloniki, Greece
- Pulmonary Department of Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Foteini Gkakou
- G. Papanikolaou General Hospital, Thessaloniki, Greece
- Pulmonary Department of Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Alevizaki
- G. Papanikolaou General Hospital, Thessaloniki, Greece
- Pulmonary Department of Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Despoina Papakosta
- G. Papanikolaou General Hospital, Thessaloniki, Greece
- Pulmonary Department of Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Porpodis
- G. Papanikolaou General Hospital, Thessaloniki, Greece
- Pulmonary Department of Aristotle University of Thessaloniki, Thessaloniki, Greece
- Konstantinos Porpodis
| |
Collapse
|
14
|
Exhaled Breath Analysis for Investigating the Use of Inhaled Corticosteroids and Corticosteroid Responsiveness in Wheezing Preschool Children. J Clin Med 2022; 11:jcm11175160. [PMID: 36079088 PMCID: PMC9456576 DOI: 10.3390/jcm11175160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022] Open
Abstract
Exhaled breath analysis has great potential in diagnosing various respiratory and non-respiratory diseases. In this study, we investigated the influence of inhaled corticosteroids (ICS) on exhaled volatile organic compounds (VOCs) of wheezing preschool children. Furthermore, we assessed whether exhaled VOCs could predict a clinical steroid response in wheezing preschool children. We performed a crossover 8-week ICS trial, in which 147 children were included. Complete data were available for 89 children, of which 46 children were defined as steroid-responsive. Exhaled VOCs were measured by GC-tof-MS. Statistical analysis by means of Random Forest was used to investigate the effect of ICS on exhaled VOCs. A set of 20 VOCs could best discriminate between measurements before and after ICS treatment, with a sensitivity of 73% and specificity of 67% (area under ROC curve = 0.72). Most discriminative VOCs were branched C11H24, butanal, octanal, acetic acid and methylated pentane. Other VOCs predominantly included alkanes. Regularised multivariate analysis of variance (rMANOVA) was used to determine treatment response, which showed a significant effect between responders and non-responders (p < 0.01). These results show that ICS significantly altered the exhaled breath profiles of wheezing preschool children, irrespective of clinical treatment response. Furthermore, exhaled VOCs were capable of determining corticosteroid responsiveness in wheezing preschool children.
Collapse
|
15
|
Zhang X, Deng K, Yuan Y, Liu L, Zhang S, Wang C, Wang G, Zhang H, Wang L, Cheng G, Wood LG, Wang G. Body Composition-Specific Asthma Phenotypes: Clinical Implications. Nutrients 2022; 14:nu14122525. [PMID: 35745259 PMCID: PMC9229860 DOI: 10.3390/nu14122525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Previous studies have indicated the limitations of body mass index for defining disease phenotypes. The description of asthma phenotypes based on body composition (BC) has not been largely reported. Objective: To identify and characterize phenotypes based on BC parameters in patients with asthma. Methods: A study with two prospective observational cohorts analyzing adult patients with stable asthma (n = 541 for training and n = 179 for validation) was conducted. A body composition analysis was performed for the included patients. A cluster analysis was conducted by applying a 2-step process with stepwise discriminant analysis. Logistic regression models were used to evaluate the association between identified phenotypes and asthma exacerbations (AEs). The same algorithm for cluster analysis in the independent validation set was used to perform an external validation. Results: Three clusters had significantly different characteristics associated with asthma outcomes. An external validation identified the similarity of the participants in training and the validation set. In the training set, cluster Training (T) 1 (29.4%) was “patients with undernutrition”, cluster T2 (18.9%) was “intermediate level of nutrition with psychological dysfunction”, and cluster T3 (51.8%) was “patients with good nutrition”. Cluster T3 had a decreased risk of moderate-to-severe and severe AEs in the following year compared with the other two clusters. The most important BC-specific factors contributing to being accurately assigned to one of these three clusters were skeletal muscle mass and visceral fat area. Conclusion: We defined three distinct clusters of asthma patients, which had distinct clinical features and asthma outcomes. Our data reinforced the importance of evaluating BC to determining nutritional status in clinical practice.
Collapse
Affiliation(s)
- Xin Zhang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610044, China; (X.Z.); (L.L.); (S.Z.); (G.W.); (H.Z.); (L.W.)
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610044, China; (K.D.); (C.W.)
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu 610213, China
| | - Ke Deng
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610044, China; (K.D.); (C.W.)
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu 610213, China
| | - Yulai Yuan
- Department of Respiratory Medicine, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou 646699, China;
| | - Lei Liu
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610044, China; (X.Z.); (L.L.); (S.Z.); (G.W.); (H.Z.); (L.W.)
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610044, China; (K.D.); (C.W.)
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu 610213, China
| | - Shuwen Zhang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610044, China; (X.Z.); (L.L.); (S.Z.); (G.W.); (H.Z.); (L.W.)
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu 610213, China
| | - Changyong Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610044, China; (K.D.); (C.W.)
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu 610213, China
| | - Gang Wang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610044, China; (X.Z.); (L.L.); (S.Z.); (G.W.); (H.Z.); (L.W.)
- Institute of Environmental Medicine, Karolinska Institute, 11883 Stockholm, Sweden
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institute, 11883 Stockholm, Sweden
| | - Hongping Zhang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610044, China; (X.Z.); (L.L.); (S.Z.); (G.W.); (H.Z.); (L.W.)
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu 610213, China
| | - Lei Wang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610044, China; (X.Z.); (L.L.); (S.Z.); (G.W.); (H.Z.); (L.W.)
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu 610213, China
| | - Gaiping Cheng
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu 610044, China;
| | - Lisa G. Wood
- Priority Research Center for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW 2308, Australia;
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610044, China; (K.D.); (C.W.)
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu 610213, China
- Correspondence:
| |
Collapse
|
16
|
Lawson J, Nakhleh M, Smolinska A. Reproducibility and reporting, the routes to progress in breath research - highlights from the Breath Biopsy Conference 2021. J Breath Res 2022; 16. [PMID: 35405666 DOI: 10.1088/1752-7163/ac661d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/11/2022] [Indexed: 11/11/2022]
Abstract
With the continued presence of COVID-19 worldwide, it has been a challenge for the breath research community to progress with clinical studies and travel restrictions have also limited the opportunities to meet up, share ideas and celebrate the latest advances. The Breath Biopsy Conference 2021 provided a much-needed opportunityoffered the chance to catch up with the latest breath research and to share the researchprogress that researchers in the community have been able to progress make in these difficult times. Limited opportunities for clinical research have provided opportunitiesled many in the field to look more closely at different methods for breath collection and have contributed to the growing calls for consistent standards in how results are reported, shared and even how breath studies themselves are carried out. As such, standardization was a key theme for this year's event and featured prominently in the keynotes, discussions and throughout many of the presentation sessions. With over 900 registrants, almost 400 live attendees and 16 speakers, the Breath Biopsy Conference continues to bring together breath research leaders from around the world. This article provides an overview of the highlights from this event.
Collapse
Affiliation(s)
- Jonathan Lawson
- Owlstone Medical Ltd, 183 Cambridge Science Park, Milton Road, Cambridge, Cambridgeshire, CB4 0GJ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Morad Nakhleh
- Owlstone Ltd, 183 Cambridge Science Park, Milton Road, Cambridge, CB4 0GD, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Agnieszka Smolinska
- Toxicology Department, Maastricht University, Universiteitssingel, Maastricht, Maastricht, 6229 ER, NETHERLANDS
| |
Collapse
|
17
|
Pharmacogenomics: A Step forward Precision Medicine in Childhood Asthma. Genes (Basel) 2022; 13:genes13040599. [PMID: 35456405 PMCID: PMC9031013 DOI: 10.3390/genes13040599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 02/05/2023] Open
Abstract
Personalized medicine, an approach to care in which individual characteristics are used for targeting interventions and maximizing health outcomes, is rapidly becoming a reality for many diseases. Childhood asthma is a heterogeneous disease and many children have uncontrolled symptoms. Therefore, an individualized approach is needed for improving asthma outcomes in children. The rapidly evolving fields of genomics and pharmacogenomics may provide a way to achieve asthma control and reduce future risks in children with asthma. In particular, pharmacogenomics can provide tools for identifying novel molecular mechanisms and biomarkers to guide treatment. Emergent high-throughput technologies, along with patient pheno-endotypization, will increase our knowledge of several molecular mechanisms involved in asthma pathophysiology and contribute to selecting and stratifying appropriate treatment for each patient.
Collapse
|
18
|
Haworth JJ, Pitcher CK, Ferrandino G, Hobson AR, Pappan KL, Lawson JLD. Breathing new life into clinical testing and diagnostics: perspectives on volatile biomarkers from breath. Crit Rev Clin Lab Sci 2022; 59:353-372. [PMID: 35188863 DOI: 10.1080/10408363.2022.2038075] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human breath offers several benefits for diagnostic applications, including simple, noninvasive collection. Breath is a rich source of clinically-relevant biological information; this includes a volatile fraction, where greater than 1,000 volatile organic compounds (VOCs) have been described so far, and breath aerosols that carry nucleic acids, proteins, signaling molecules, and pathogens. Many of these factors, especially VOCs, are delivered to the lung by the systemic circulation, and diffusion of candidate biomarkers from blood into breath allows systematic profiling of organismal health. Biomarkers on breath offer the capability to advance early detection and precision medicine in areas of global clinical need. Breath tests are noninvasive and can be performed at home or in a primary care setting, which makes them well-suited for the kind of public screening program that could dramatically improve the early detection of conditions such as lung cancer. Since measurements of VOCs on breath largely report on metabolic changes, this too aids in the early detection of a broader range of illnesses and can be used to detect metabolic shifts that could be targeted through precision medicine. Furthermore, the ability to perform frequent sampling has envisioned applications in monitoring treatment responses. Breath has been investigated in respiratory, liver, gut, and neurological diseases and in contexts as diverse as infectious diseases and cancer. Preclinical research studies using breath have been ongoing for some time, yet only a few breath-based diagnostics tests are currently available and in widespread clinical use. Most recently, tests assessing the gut microbiome using hydrogen and methane on breath, in addition to tests using urea to detect Helicobacter pylori infections have been released, yet there are many more applications of breath tests still to be realized. Here, we discuss the strengths of breath as a clinical sampling matrix and the technical challenges to be addressed in developing it for clinical use. Historically, a lack of standardized methodologies has delayed the discovery and validation of biomarker candidates, resulting in a proliferation of early-stage pilot studies. We will explore how advancements in breath collection and analysis are in the process of driving renewed progress in the field, particularly in the context of gastrointestinal and chronic liver disease. Finally, we will provide a forward-looking outlook for developing the next generation of clinically relevant breath tests and how they may emerge into clinical practice.
Collapse
|
19
|
Kaloumenou M, Skotadis E, Lagopati N, Efstathopoulos E, Tsoukalas D. Breath Analysis: A Promising Tool for Disease Diagnosis-The Role of Sensors. SENSORS (BASEL, SWITZERLAND) 2022; 22:1238. [PMID: 35161984 PMCID: PMC8840008 DOI: 10.3390/s22031238] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 05/07/2023]
Abstract
Early-stage disease diagnosis is of particular importance for effective patient identification as well as their treatment. Lack of patient compliance for the existing diagnostic methods, however, limits prompt diagnosis, rendering the development of non-invasive diagnostic tools mandatory. One of the most promising non-invasive diagnostic methods that has also attracted great research interest during the last years is breath analysis; the method detects gas-analytes such as exhaled volatile organic compounds (VOCs) and inorganic gases that are considered to be important biomarkers for various disease-types. The diagnostic ability of gas-pattern detection using analytical techniques and especially sensors has been widely discussed in the literature; however, the incorporation of novel nanomaterials in sensor-development has also proved to enhance sensor performance, for both selective and cross-reactive applications. The aim of the first part of this review is to provide an up-to-date overview of the main categories of sensors studied for disease diagnosis applications via the detection of exhaled gas-analytes and to highlight the role of nanomaterials. The second and most novel part of this review concentrates on the remarkable applicability of breath analysis in differential diagnosis, phenotyping, and the staging of several disease-types, which are currently amongst the most pressing challenges in the field.
Collapse
Affiliation(s)
- Maria Kaloumenou
- Department of Applied Physics, National Technical University of Athens, 15780 Athens, Greece; (M.K.); (D.T.)
| | - Evangelos Skotadis
- Department of Applied Physics, National Technical University of Athens, 15780 Athens, Greece; (M.K.); (D.T.)
| | - Nefeli Lagopati
- Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, 11527 Athens, Greece; (N.L.); (E.E.)
| | - Efstathios Efstathopoulos
- Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, 11527 Athens, Greece; (N.L.); (E.E.)
| | - Dimitris Tsoukalas
- Department of Applied Physics, National Technical University of Athens, 15780 Athens, Greece; (M.K.); (D.T.)
| |
Collapse
|
20
|
Everard ML. Precision Medicine and Childhood Asthma: A Guide for the Unwary. J Pers Med 2022; 12:82. [PMID: 35055397 PMCID: PMC8779146 DOI: 10.3390/jpm12010082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023] Open
Abstract
Many thousands of articles relating to asthma appear in medical and scientific journals each year, yet there is still no consensus as to how the condition should be defined. Some argue that the condition does not exist as an entity and that the term should be discarded. The key feature that distinguishes it from other respiratory diseases is that airway smooth muscles, which normally vary little in length, have lost their stable configuration and shorten excessively in response to a wide range of stimuli. The lungs' and airways' limited repertoire of responses results in patients with very different pathologies experiencing very similar symptoms and signs. In the absence of objective verification of airway smooth muscle (ASM) lability, over and underdiagnosis are all too common. Allergic inflammation can exacerbate symptoms but given that worldwide most asthmatics are not atopic, these are two discrete conditions. Comorbidities are common and are often responsible for symptoms attributed to asthma. Common amongst these are a chronic bacterial dysbiosis and dysfunctional breathing. For progress to be made in areas of therapy, diagnosis, monitoring and prevention, it is essential that a diagnosis of asthma is confirmed by objective tests and that all co-morbidities are accurately detailed.
Collapse
Affiliation(s)
- Mark L Everard
- Division of Child Health, Children's Hospital, Faculty of Medicine, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
21
|
Wojnowski W, Kalinowska K. Machine Learning and Electronic Noses for Medical Diagnostics. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
|
22
|
Metabolomics, Microbiota, and In Vivo and In Vitro Biomarkers in Type 2 Severe Asthma: A Perspective Review. Metabolites 2021. [PMID: 34677362 DOI: 10.3390/metabo11100647.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Precision medicine refers to the tailoring of therapeutic strategies to the individual characteristics of each patient; thus, it could be a new approach for the management of severe asthma that considers individual variability in genes, environmental exposure, and lifestyle. Precision medicine would also assist physicians in choosing the right treatment, the best timing of administration, consequently trying to maximize drug efficacy, and, possibly, reducing adverse events. Metabolomics is the systematic study of low molecular weight (bio)chemicals in a given biological system and offers a powerful approach to biomarker discovery and elucidating disease mechanisms. In this point of view, metabolomics could play a key role in targeting precision medicine.
Collapse
|
23
|
Caruso C, Colantuono S, Nicoletti A, Arasi S, Firinu D, Gasbarrini A, Coppola A, Di Michele L. Metabolomics, Microbiota, and In Vivo and In Vitro Biomarkers in Type 2 Severe Asthma: A Perspective Review. Metabolites 2021; 11:metabo11100647. [PMID: 34677362 PMCID: PMC8541451 DOI: 10.3390/metabo11100647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022] Open
Abstract
Precision medicine refers to the tailoring of therapeutic strategies to the individual characteristics of each patient; thus, it could be a new approach for the management of severe asthma that considers individual variability in genes, environmental exposure, and lifestyle. Precision medicine would also assist physicians in choosing the right treatment, the best timing of administration, consequently trying to maximize drug efficacy, and, possibly, reducing adverse events. Metabolomics is the systematic study of low molecular weight (bio)chemicals in a given biological system and offers a powerful approach to biomarker discovery and elucidating disease mechanisms. In this point of view, metabolomics could play a key role in targeting precision medicine.
Collapse
Affiliation(s)
- Cristiano Caruso
- Allergy Unit, Fondazione Policlinico A. Gemelli, IRCCS, Catholic University of the Sacred Heart, 00100 Rome, Italy;
- Correspondence:
| | - Stefania Colantuono
- Allergy Unit, Fondazione Policlinico A. Gemelli, IRCCS, Catholic University of the Sacred Heart, 00100 Rome, Italy;
- Digestive Disease Center, Medical and Surgical Sciences Department, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Sacred Heart, 00100 Rome, Italy;
| | - Alberto Nicoletti
- Internal Medicine, Gastroenterology and Hepatology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Department of Internal Medicine, Catholic University of the Sacred Heart, 00100 Rome, Italy;
| | - Stefania Arasi
- Area of Translational Research in Pediatric Specialities, Allergy Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, 09100 Cagliari, Italy;
| | - Antonio Gasbarrini
- Digestive Disease Center, Medical and Surgical Sciences Department, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Sacred Heart, 00100 Rome, Italy;
| | - Angelo Coppola
- Division of Respiratory Medicine, Ospedale San Filippo Neri-ASL Roma 1, 00100 Rome, Italy;
- UniCamillus, Saint Camillus International, University of Health Sciences, 00131 Rome, Italy
| | - Loreta Di Michele
- Pulmonary Interstitial Diseases Unit, UOSD Interstiziopatie Polmonari Az Osp. S. Camillo-Forlanini, 00100 Rome, Italy;
| |
Collapse
|
24
|
van der Sar IG, Wijbenga N, Nakshbandi G, Aerts JGJV, Manintveld OC, Wijsenbeek MS, Hellemons ME, Moor CC. The smell of lung disease: a review of the current status of electronic nose technology. Respir Res 2021; 22:246. [PMID: 34535144 PMCID: PMC8448171 DOI: 10.1186/s12931-021-01835-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023] Open
Abstract
There is a need for timely, accurate diagnosis, and personalised management in lung diseases. Exhaled breath reflects inflammatory and metabolic processes in the human body, especially in the lungs. The analysis of exhaled breath using electronic nose (eNose) technology has gained increasing attention in the past years. This technique has great potential to be used in clinical practice as a real-time non-invasive diagnostic tool, and for monitoring disease course and therapeutic effects. To date, multiple eNoses have been developed and evaluated in clinical studies across a wide spectrum of lung diseases, mainly for diagnostic purposes. Heterogeneity in study design, analysis techniques, and differences between eNose devices currently hamper generalization and comparison of study results. Moreover, many pilot studies have been performed, while validation and implementation studies are scarce. These studies are needed before implementation in clinical practice can be realised. This review summarises the technical aspects of available eNose devices and the available evidence for clinical application of eNose technology in different lung diseases. Furthermore, recommendations for future research to pave the way for clinical implementation of eNose technology are provided.
Collapse
Affiliation(s)
- I G van der Sar
- Department of Respiratory Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - N Wijbenga
- Department of Respiratory Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - G Nakshbandi
- Department of Respiratory Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - J G J V Aerts
- Department of Respiratory Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - O C Manintveld
- Department of Cardiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - M S Wijsenbeek
- Department of Respiratory Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - M E Hellemons
- Department of Respiratory Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - C C Moor
- Department of Respiratory Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
25
|
Rupani H, Fong WCG, Kyyaly A, Kurukulaaratchy RJ. Recent Insights into the Management of Inflammation in Asthma. J Inflamm Res 2021; 14:4371-4397. [PMID: 34511973 PMCID: PMC8421249 DOI: 10.2147/jir.s295038] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/17/2021] [Indexed: 12/11/2022] Open
Abstract
The present prevailing inflammatory paradigm in asthma is of T2-high inflammation orchestrated by key inflammatory cells like Type 2 helper lymphocytes, innate lymphoid cells group 2 and associated cytokines. Eosinophils are key components of this T2 inflammatory pathway and have become key therapeutic targets. Real-world evidence on the predominant T2-high nature of severe asthma is emerging. Various inflammatory biomarkers have been adopted in clinical practice to aid asthma characterization including airway measures such as bronchoscopic biopsy and lavage, induced sputum analysis, and fractional exhaled nitric oxide. Blood measures like eosinophil counts have also gained widespread usage and multicomponent algorithms combining different parameters are now appearing. There is also growing interest in potential future biomarkers including exhaled volatile organic compounds, micro RNAs and urinary biomarkers. Additionally, there is a growing realisation that asthma is a heterogeneous state with numerous phenotypes and associated treatable traits. These may show particular inflammatory patterns and merit-specific management approaches that could improve asthma patient outcomes. Inhaled corticosteroids (ICS) remain the mainstay of asthma management but their use earlier in the course of disease is being advocated. Recent evidence suggests potential roles for ICS in combination with long-acting beta-agonists (LABA) for as needed use in mild asthma whilst maintenance and reliever therapy regimes have gained widespread acceptance. Other anti-inflammatory strategies including ultra-fine particle ICS, leukotriene receptor antagonists and macrolide antibiotics may show efficacy in particular phenotypes too. Monoclonal antibody biologic therapies have recently entered clinical practice with significant impacts on asthma outcomes. Understanding of the efficacy and use of those agents is becoming clearer with a growing body of real-world evidence as is their potential applicability to other treatable comorbid traits. In conclusion, the evolving understanding of T2 driven inflammation alongside a treatable traits disease model is enhancing therapeutic approaches to address inflammation in asthma.
Collapse
Affiliation(s)
- Hitasha Rupani
- Department of Respiratory Medicine, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - Wei Chern Gavin Fong
- Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight NHS Trust, Isle of Wight, UK
| | - Aref Kyyaly
- Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight NHS Trust, Isle of Wight, UK
| | - Ramesh J Kurukulaaratchy
- Department of Respiratory Medicine, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
- Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight NHS Trust, Isle of Wight, UK
- NIHR Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
26
|
Su Y, Chen G, Chen C, Gong Q, Xie G, Yao M, Tai H, Jiang Y, Chen J. Self-Powered Respiration Monitoring Enabled By a Triboelectric Nanogenerator. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101262. [PMID: 34240473 DOI: 10.1002/adma.202101262] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/23/2021] [Indexed: 05/26/2023]
Abstract
In mammals, physiological respiration involves respiratory cycles of inhaled and exhaled breaths, which has traditionally been an underutilized resource potentially encompassing a wealth of physiologically relevant information as well as clues to potential diseases. Recently, triboelectric nanogenerators (TENGs) have been widely adopted for self-powered respiration monitoring owing to their compelling features, such as decent biocompatibility, wearing comfort, low-cost, and high sensitivity to respiration activities in the aspect of low frequency and slight amplitude body motions. Physiological respiration behaviors and exhaled chemical regents can be precisely and continuously monitored by TENG-based respiration sensors for personalized health care. This article presents an overview of TENG enabled self-powered respiration monitoring, with a focus on the working principle, sensing materials, functional structures, and related applications in both physical respiration motion detection and chemical breath analysis. Concepts and approaches for acquisition of physical information associated with respiratory rate and depth are covered in the first part. Then the sensing mechanism, theoretical modeling, and applications related to detection of chemicals released from breathing gases are systemically summarized. Finally, the opportunities and challenges of triboelectric effect enabled self-powered respiration monitoring are comprehensively discussed and criticized.
Collapse
Affiliation(s)
- Yuanjie Su
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Guorui Chen
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Chunxu Chen
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Qichen Gong
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Guangzhong Xie
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Mingliang Yao
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Huiling Tai
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yadong Jiang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
27
|
Metabolic Phenotypes in Asthmatic Adults: Relationship with Inflammatory and Clinical Phenotypes and Prognostic Implications. Metabolites 2021; 11:metabo11080534. [PMID: 34436475 PMCID: PMC8400680 DOI: 10.3390/metabo11080534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/26/2022] Open
Abstract
Bronchial asthma is a chronic disease that affects individuals of all ages. It has a high prevalence and is associated with high morbidity and considerable levels of mortality. However, asthma is not a single disease, and multiple subtypes or phenotypes (clinical, inflammatory or combinations thereof) can be detected, namely in aggregated clusters. Most studies have characterised asthma phenotypes and clusters of phenotypes using mainly clinical and inflammatory parameters. These studies are important because they may have clinical and prognostic implications and may also help to tailor personalised treatment approaches. In addition, various metabolomics studies have helped to further define the metabolic features of asthma, using electronic noses or targeted and untargeted approaches. Besides discriminating between asthma and a healthy state, metabolomics can detect the metabolic signatures associated with some asthma subtypes, namely eosinophilic and non-eosinophilic phenotypes or the obese asthma phenotype, and this may prove very useful in point-of-care application. Furthermore, metabolomics also discriminates between asthma and other “phenotypes” of chronic obstructive airway diseases, such as chronic obstructive pulmonary disease (COPD) or Asthma–COPD Overlap (ACO). However, there are still various aspects that need to be more thoroughly investigated in the context of asthma phenotypes in adequately designed, homogeneous, multicentre studies, using adequate tools and integrating metabolomics into a multiple-level approach.
Collapse
|
28
|
Lammers A, Brinkman P, te Nijenhuis LH, Vries R, Dagelet YWF, Duijvelaar E, Xu B, Abdel‐Aziz MI, Vijverberg SJ, Neerincx AH, Frey U, Lutter R, Maitland‐van der Zee AH, Sterk PJ, Sinha A. Increased day-to-day fluctuations in exhaled breath profiles after a rhinovirus challenge in asthma. Allergy 2021; 76:2488-2499. [PMID: 33704785 PMCID: PMC8360186 DOI: 10.1111/all.14811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/19/2021] [Accepted: 01/31/2021] [Indexed: 11/28/2022]
Abstract
Background Early detection/prediction of flare‐ups in asthma, commonly triggered by viruses, would enable timely treatment. Previous studies on exhaled breath analysis by electronic nose (eNose) technology could discriminate between stable and unstable episodes of asthma, using single/few time‐points. To investigate its monitoring properties during these episodes, we examined day‐to‐day fluctuations in exhaled breath profiles, before and after a rhinovirus‐16 (RV16) challenge, in healthy and asthmatic adults. Methods In this proof‐of‐concept study, 12 atopic asthmatic and 12 non‐atopic healthy adults were prospectively followed thrice weekly, 60 days before, and 30 days after a RV16 challenge. Exhaled breath profiles were detected using an eNose, consisting of 7 different sensors. Per sensor, individual means were calculated using pre‐challenge visits. Absolute deviations (|%|) from this baseline were derived for all visits. Within‐group comparisons were tested with Mann‐Whitney U tests and receiver operating characteristic (ROC) analysis. Finally, Spearman's correlations between the total change in eNose deviations and fractional exhaled nitric oxide (FeNO), cold‐like symptoms, and pro‐inflammatory cytokines were examined. Results Both groups had significantly increased eNose fluctuations post‐challenge, which in asthma started 1 day post‐challenge, before the onset of symptoms. Discrimination between pre‐ and post‐challenge reached an area under the ROC curve of 0.82 (95% CI = 0.65–0.99) in healthy and 0.97 (95% CI = 0.91–1.00) in asthmatic adults. The total change in eNose deviations moderately correlated with IL‐8 and TNFα (ρ ≈ .50–0.60) in asthmatics. Conclusion Electronic nose fluctuations rapidly increase after a RV16 challenge, with distinct differences between healthy and asthmatic adults, suggesting that this technology could be useful in monitoring virus‐driven unstable episodes in asthma.
Collapse
Affiliation(s)
- Ariana Lammers
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Paul Brinkman
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Louwrina H. te Nijenhuis
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Rianne Vries
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
- Breathomix BV Leiden The Netherlands
| | - Yennece W. F. Dagelet
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Erik Duijvelaar
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Binbin Xu
- EuroMov Digital Health in Motion Univ Montpellier IMT Mines Ales Ales France
| | - Mahmoud I. Abdel‐Aziz
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Susanne J. Vijverberg
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Anne H. Neerincx
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Urs Frey
- University Children's Hospital Basel UKBB University of Basel Basel Switzerland
| | - Rene Lutter
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
- Department of Experimental Immunology Amsterdam UMC University of Amsterdam Amsterdam Infection & Immunity Institute Amsterdam The Netherlands
| | | | - Peter J. Sterk
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Anirban Sinha
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
29
|
Ibrahim W, Natarajan S, Wilde M, Cordell R, Monks PS, Greening N, Brightling CE, Evans R, Siddiqui S. A systematic review of the diagnostic accuracy of volatile organic compounds in airway diseases and their relation to markers of type-2 inflammation. ERJ Open Res 2021; 7:00030-2021. [PMID: 34476250 PMCID: PMC8405872 DOI: 10.1183/23120541.00030-2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/27/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Asthma and COPD continue to cause considerable diagnostic and treatment stratification challenges. Volatile organic compounds (VOCs) have been proposed as feasible diagnostic and monitoring biomarkers in airway diseases. AIMS To 1) conduct a systematic review evaluating the diagnostic accuracy of VOCs in diagnosing airway diseases; 2) understand the relationship between reported VOCs and biomarkers of type-2 inflammation; 3) assess the standardisation of reporting according to STARD and TRIPOD criteria; 4) review current methods of breath sampling and analysis. METHODS A PRISMA-oriented systematic search was conducted (January 1997 to December 2020). Search terms included: "asthma", "volatile organic compound(s)", "VOC" and "COPD". Two independent reviewers examined the extracted titles against review objectives. RESULTS 44 full-text papers were included; 40/44 studies were cross-sectional and four studies were interventional in design; 17/44 studies used sensor-array technologies (e.g. eNose). Cross-study comparison was not possible across identified studies due to the heterogeneity in design. The commonest airway diseases differentiating VOCs belonged to carbonyl-containing classes (i.e. aldehydes, esters and ketones) and hydrocarbons (i.e. alkanes and alkenes). Although individual markers that are associated with clinical biomarkers of type-2 inflammation were recognised (i.e. ethane and 3,7-dimethylnonane for asthma and α-methylstyrene and decane for COPD), these were not consistently identified across studies. Only 3/44 reported following STARD or TRIPOD criteria for diagnostic accuracy and multivariate reporting, respectively. CONCLUSIONS Breath VOCs show promise as diagnostic biomarkers of airway diseases and for type-2 inflammation profiling. However, future studies should focus on transparent reporting of diagnostic accuracy and multivariate models and continue to focus on chemical identification of volatile metabolites.
Collapse
Affiliation(s)
- Wadah Ibrahim
- Leicester NIHR Biomedical Research Centre (Respiratory Theme), Glenfield Hospital, Leicester, UK
- Dept of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
- These authors contributed equally
| | - Sushiladevi Natarajan
- Leicester NIHR Biomedical Research Centre (Respiratory Theme), Glenfield Hospital, Leicester, UK
- Dept of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
- These authors contributed equally
| | - Michael Wilde
- Dept of Chemistry, University of Leicester, Leicester, UK
| | | | - Paul S. Monks
- Dept of Chemistry, University of Leicester, Leicester, UK
| | - Neil Greening
- Leicester NIHR Biomedical Research Centre (Respiratory Theme), Glenfield Hospital, Leicester, UK
- Dept of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Christopher E. Brightling
- Leicester NIHR Biomedical Research Centre (Respiratory Theme), Glenfield Hospital, Leicester, UK
- Dept of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Rachael Evans
- Leicester NIHR Biomedical Research Centre (Respiratory Theme), Glenfield Hospital, Leicester, UK
- Dept of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Salman Siddiqui
- Leicester NIHR Biomedical Research Centre (Respiratory Theme), Glenfield Hospital, Leicester, UK
- Dept of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
- See Acknowledgements for contributors
| |
Collapse
|
30
|
Abstract
Purpose of review Childhood asthma is a heterogeneous inflammatory disease comprising different phenotypes and endotypes and, particularly in its severe forms, has a large impact on the quality-of-life of patients and caregivers. The application of advanced omics technologies provides useful insights into underlying asthma endotypes and may provide potential clinical biomarkers to guide treatment and move towards a precision medicine approach. Recent findings The current article addresses how novel omics approaches have shaped our current understanding of childhood asthma and highlights recent findings from (pharmaco)genomics, epigenomics, transcriptomics, and metabolomics studies on childhood asthma and their potential clinical implications to guide treatment in severe asthmatics. Summary Until now, omics studies have largely expanded our view on asthma heterogeneity, helped understand cellular processes underlying asthma, and brought us closer towards identifying (bio)markers that will allow the prediction of treatment responsiveness and disease progression. There is a clinical need for biomarkers that will guide treatment at the individual level, particularly in the field of biologicals. The integration of multiomics data together with clinical data could be the next promising step towards development individual risk prediction models to guide treatment. However, this requires large-scale collaboration in a multidisciplinary setting.
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Finding suitable biomarkers to phenotype asthma, identify individuals at risk of worsening and guide treatment is highly prioritized in asthma research. We aimed to provide an analysis of currently used and upcoming biomarkers, focusing on developments published in the past 2 years. RECENT FINDINGS Type 2 inflammation is the most studied asthma mechanism with the most biomarkers in the pipeline. Blood eosinophils and fractional exhaled nitric oxide (FeNO) are those most used clinically. Recent developments include their ability to identify individuals at higher risk of exacerbations, faster decline in lung function and more likely to benefit from anti-IL-5 and anti-IL-4/-13 treatment. Certain patterns of urinary eicosanoid excretion also relate to type 2 inflammation. Results of recent trials investigating the use of serum periostin or dipeptidyl peptidase-4 to guide anti-IL-13 therapy were somewhat disappointing. Less is known about non-type 2 inflammation but blood neutrophils and YKL-40 may be higher in patients with evidence of non-type 2 asthma. Volatile organic compounds show promise in their ability to distinguish both eosinophilic and neutrophilic asthma. SUMMARY The ultimate panel of biomarkers for identification of activated inflammatory pathways and treatment strategies in asthma patients still lies in the future, particularly for non-type 2 asthma, but potential candidates are available.
Collapse
|
32
|
Principe S, Porsbjerg C, Bolm Ditlev S, Kjaersgaard Klein D, Golebski K, Dyhre-Petersen N, van Dijk YE, van Bragt JJMH, Dankelman LLH, Dahlen SE, Brightling CE, Vijverberg SJH, Maitland-van der Zee AH. Treating severe asthma: Targeting the IL-5 pathway. Clin Exp Allergy 2021; 51:992-1005. [PMID: 33887082 PMCID: PMC8453879 DOI: 10.1111/cea.13885] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/05/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023]
Abstract
Severe asthma is a heterogeneous disease with different phenotypes based on clinical, functional or inflammatory parameters. In particular, the eosinophilic phenotype is associated with type 2 inflammation and increased levels of interleukin (IL)-4, IL-5 and IL-13). Monoclonal antibodies that target the eosinophilic inflammatory pathways (IL-5R and IL-5), namely mepolizumab, reslizumab, and benralizumab, are effective and safe for severe eosinophilic asthma. Eosinophils threshold represents the most indicative biomarker for response to treatment with all three monoclonal antibodies. Improvement in asthma symptoms scores, lung function, the number of exacerbations, history of late-onset asthma, chronic rhinosinusitis with nasal polyposis, low oral corticosteroids use and low body mass index represent predictive clinical markers of response. Novel Omics studies are emerging with proteomics data and exhaled breath analyses. These may prove useful as biomarkers of response and non-response biologics. Moreover, future biomarker studies need to be undertaken in paediatric patients affected by severe asthma. The choice of appropriate biologic therapy for severe asthma remains challenging. The importance of finding biomarkers that can predict response continuous an open issue that needs to be further explored. This review describes the clinical effects of targeting the IL-5 pathway in severe asthma in adult and paediatric patients, focusing on predictors of response and non-response.
Collapse
Affiliation(s)
- Stefania Principe
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Dipartimento Universitario di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro"(PROMISE) c/o Pneumologia, University of Palermo, Palermo, Italy.,AOUP "Policlinico Paolo Giaccone", Palermo, Italy
| | - Celeste Porsbjerg
- Respiratory Research Unit, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Sisse Bolm Ditlev
- Respiratory Research Unit, Bispebjerg University Hospital, Copenhagen, Denmark
| | | | - Korneliusz Golebski
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Yoni E van Dijk
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatric Pulmonology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Job J M H van Bragt
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lente L H Dankelman
- Department of Pediatric Pulmonology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sven-Erik Dahlen
- The Institute of Environmental Medicine Department of Medicine, Solna Campus, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,The Center for Allergy Research, Department of Medicine, Solna Campus, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Susanne J H Vijverberg
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatric Pulmonology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anke H Maitland-van der Zee
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatric Pulmonology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Ibrahim W, Carr L, Cordell R, Wilde MJ, Salman D, Monks PS, Thomas P, Brightling CE, Siddiqui S, Greening NJ. Breathomics for the clinician: the use of volatile organic compounds in respiratory diseases. Thorax 2021; 76:514-521. [PMID: 33414240 PMCID: PMC7611078 DOI: 10.1136/thoraxjnl-2020-215667] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/28/2020] [Accepted: 12/03/2020] [Indexed: 01/17/2023]
Abstract
Exhaled breath analysis has the potential to provide valuable insight on the status of various metabolic pathways taking place in the lungs locally and other vital organs, via systemic circulation. For years, volatile organic compounds (VOCs) have been proposed as feasible alternative diagnostic and prognostic biomarkers for different respiratory pathologies.We reviewed the currently published literature on the discovery of exhaled breath VOCs and their utilisation in various respiratory diseasesKey barriers in the development of clinical breath tests include the lack of unified consensus for breath collection and analysis and the complexity of understanding the relationship between the exhaled VOCs and the underlying metabolic pathways. We present a comprehensive overview, in light of published literature and our experience from coordinating a national breathomics centre, of the progress made to date and some of the key challenges in the field and ways to overcome them. We particularly focus on the relevance of breathomics to clinicians and the valuable insights it adds to diagnostics and disease monitoring.Breathomics holds great promise and our findings merit further large-scale multicentre diagnostic studies using standardised protocols to help position this novel technology at the centre of respiratory disease diagnostics.
Collapse
Affiliation(s)
- Wadah Ibrahim
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, Leicester, UK
| | - Liesl Carr
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, Leicester, UK
| | | | | | - Dahlia Salman
- Department of Chemistry, Loughborough University, Loughborough, UK
| | - Paul S Monks
- School of Chemistry, University of Leicester, Leicester, UK
| | - Paul Thomas
- Department of Chemistry, Loughborough University, Loughborough, UK
| | - Chris E Brightling
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, Leicester, UK
| | - Salman Siddiqui
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, Leicester, UK
| | - Neil J Greening
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, Leicester, UK
| |
Collapse
|
34
|
Sharma R, Zang W, Zhou M, Schafer N, Begley LA, Huang YJ, Fan X. Real Time Breath Analysis Using Portable Gas Chromatography for Adult Asthma Phenotypes. Metabolites 2021; 11:265. [PMID: 33922762 PMCID: PMC8145057 DOI: 10.3390/metabo11050265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/24/2022] Open
Abstract
Asthma is heterogeneous but accessible biomarkers to distinguish relevant phenotypes remain lacking, particularly in non-Type 2 (T2)-high asthma. Moreover, common clinical characteristics in both T2-high and T2-low asthma (e.g., atopy, obesity, inhaled steroid use) may confound interpretation of putative biomarkers and of underlying biology. This study aimed to identify volatile organic compounds (VOCs) in exhaled breath that distinguish not only asthmatic and non-asthmatic subjects, but also atopic non-asthmatic controls and also by variables that reflect clinical differences among asthmatic adults. A total of 73 participants (30 asthma, eight atopic non-asthma, and 35 non-asthma/non-atopic subjects) were recruited for this pilot study. A total of 79 breath samples were analyzed in real-time using an automated portable gas chromatography (GC) device developed in-house. GC-mass spectrometry was also used to identify the VOCs in breath. Machine learning, linear discriminant analysis, and principal component analysis were used to identify the biomarkers. Our results show that the portable GC was able to complete breath analysis in 30 min. A set of nine biomarkers distinguished asthma and non-asthma/non-atopic subjects, while sets of two and of four biomarkers, respectively, further distinguished asthmatic from atopic controls, and between atopic and non-atopic controls. Additional unique biomarkers were identified that discriminate subjects by blood eosinophil levels, obese status, inhaled corticosteroid treatment, and also acute upper respiratory illnesses within asthmatic groups. Our work demonstrates that breath VOC profiling can be a clinically accessible tool for asthma diagnosis and phenotyping. A portable GC system is a viable option for rapid assessment in asthma.
Collapse
Affiliation(s)
- Ruchi Sharma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (R.S.); (W.Z.); (M.Z.)
| | - Wenzhe Zang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (R.S.); (W.Z.); (M.Z.)
| | - Menglian Zhou
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (R.S.); (W.Z.); (M.Z.)
| | - Nicole Schafer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (N.S.); (L.A.B.)
| | - Lesa A. Begley
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (N.S.); (L.A.B.)
| | - Yvonne J. Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (N.S.); (L.A.B.)
| | - Xudong Fan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (R.S.); (W.Z.); (M.Z.)
| |
Collapse
|
35
|
Pulmonary Health Effects of Indoor Volatile Organic Compounds-A Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041578. [PMID: 33562372 PMCID: PMC7914726 DOI: 10.3390/ijerph18041578] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/26/2022]
Abstract
Volatile organic compounds (VOCs) are commonly found in consumer products, including furniture, sealants and paints. Thus, indoor VOCs have become a public health concern, especially in high-income countries (HICs), where people spend most of their time indoors, and indoor and outdoor air exchange is minimal due to a lack of ventilation. VOCs produce high levels of reaction with the airway epithelium and mucosa membrane and is linked with pulmonary diseases. This paper takes a stock of the literature to assess the strength of association (measured by effect size) between VOCs and pulmonary diseases with the focus on asthma and its related symptoms by conducting a meta-analysis. The literature was searched using the PubMed database. A total of 49 studies that measured VOCs or VOC types and pulmonary health outcomes were included in the analysis. The results of these studies were tabulated, and standard effect size of each study was computed. Most studies were conducted in high-income countries, including France (n = 7), Japan (n = 7) and the United States (n = 6). Our analysis suggests that VOCs have a medium-sized effect on pulmonary diseases, including the onset of asthma (effect size (or Cohen's d) ~0.37; 95% confidence interval (CI) = 0.25-0.49; n = 23) and wheezing (effective size ~0.26; 95% CI = 0.10-0.42; n = 10). The effect size also varied by country, age and disease type. Multiple stakeholders must be engaged in strategies to mitigate and manage VOC exposure and its associated pulmonary disease burden.
Collapse
|
36
|
Abstract
Purpose of review Severe pediatric asthma exerts a substantial burden on patients, their families and society. This review provides an update on the latest insights and needs regarding the implementation of precision medicine in severe pediatric asthma. Recent findings Biologicals targeting underlying inflammatory pathways are increasingly available to treat children with severe asthma, holding the promise to enable precision medicine in this heterogeneous patient population with high unmet clinical needs. However, the current understanding of which child would benefit from which type or combination of biologicals is still limited, as most evidence comes from adult studies and might not be generalizable to the pediatric population. Studies in pediatric severe asthma are scarce due to the time-consuming effort to diagnose severe asthma and the challenge to recruit sufficient study participants. The application of innovative systems medicine approaches in international consortia might provide novel leads for – preferably noninvasive – new biomarkers to guide precision medicine in severe pediatric asthma. Summary Despite the increased availability of targeted treatments for severe pediatric asthma, clinical decision-making tools to guide these therapies are still lacking for the individual pediatric patient.
Collapse
|
37
|
Belizário JE, Faintuch J, Malpartida MG. Breath Biopsy and Discovery of Exclusive Volatile Organic Compounds for Diagnosis of Infectious Diseases. Front Cell Infect Microbiol 2021; 10:564194. [PMID: 33520731 PMCID: PMC7839533 DOI: 10.3389/fcimb.2020.564194] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/16/2020] [Indexed: 01/13/2023] Open
Abstract
Exhaled breath contains thousand metabolites and volatile organic compounds (VOCs) that originated from both respiratory tract and internal organ systems and their microbiomes. Commensal and pathogenic bacteria and virus of microbiomes are capable of producing VOCs of different chemical classes, and some of them may serve as biomarkers for installation and progression of various common human diseases. Here we describe qualitative and quantitative methods for measuring VOC fingerprints generated by cellular and microbial metabolic and pathologic pathways. We describe different chemical classes of VOCs and their role in the host cell-microbial interactions and their impact on infection disease pathology. We also update on recent progress on VOC signatures emitted by isolated bacterial species and microbiomes, and VOCs identified in exhaled breath of patients with respiratory tract and gastrointestinal diseases, and inflammatory syndromes, including the acute respiratory distress syndrome and sepsis. The VOC curated databases and instrumentations have been developed through statistically robust breathomic research in large patient populations. Scientists have now the opportunity to find potential biomarkers for both triage and diagnosis of particular human disease.
Collapse
Affiliation(s)
- José E Belizário
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Joel Faintuch
- Department of Gastroenterology of Medical School, University of Sao Paulo, São Paulo, Brazil
| | | |
Collapse
|
38
|
Lammers A, van Bragt J, Brinkman P, Neerincx A, Bos L, Vijverberg S, Maitland-van der Zee A. Breathomics in Chronic Airway Diseases. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11589-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
39
|
Machine Learning and Electronic Noses for Medical Diagnostics. Artif Intell Med 2021. [DOI: 10.1007/978-3-030-58080-3_329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Licht JC, Grasemann H. Potential of the Electronic Nose for the Detection of Respiratory Diseases with and without Infection. Int J Mol Sci 2020; 21:E9416. [PMID: 33321951 PMCID: PMC7763696 DOI: 10.3390/ijms21249416] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Respiratory tract infections are common, and when affecting the lower airways and lungs, can result in significant morbidity and mortality. There is an unfilled need for simple, non-invasive tools that can be used to screen for such infections at the clinical point of care. The electronic nose (eNose) is a novel technology that detects volatile organic compounds (VOCs). Early studies have shown that certain diseases and infections can result in characteristic changes in VOC profiles in the exhaled breath. This review summarizes current knowledge on breath analysis by the electronic nose and its potential for the detection of respiratory diseases with and without infection.
Collapse
Affiliation(s)
- Johann-Christoph Licht
- Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Translational Medicine Research Program, Hospital for Sick Children Research Institute, Toronto, ON M5G 1X8, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hartmut Grasemann
- Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Translational Medicine Research Program, Hospital for Sick Children Research Institute, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
41
|
Wilkinson M, White IR, Hamshere K, Holz O, Schuchardt S, Bellagambi FG, Lomonaco T, Biagini D, Di Francesco F, Fowler SJ. The peppermint breath test: a benchmarking protocol for breath sampling and analysis using GC-MS. J Breath Res 2020; 15. [PMID: 33302258 DOI: 10.1088/1752-7163/abd28c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/10/2020] [Indexed: 11/11/2022]
Abstract
Exhaled breath contains hundreds of volatile organic compounds (VOCs) which offers the potential for diagnosing and monitoring a wide range of diseases. As the breath research field has grown, sampling and analytical practices have become highly varied between groups. Standardisation would allow meta-analyses of data from multiple studies and greater confidence in published results. The Peppermint Consortium has been formed to address this task of standardisation. In the current study we aimed to generate initial benchmark values for thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) analysis of breath samples containing peppermint-derived VOCs. Headspace analysis of peppermint oil capsules was performed to determine compounds of interest. Ten healthy participants were recruited by three groups. Each participant provided a baseline breath sample prior to taking a peppermint capsule, with further samples collected at 60, 90, 165, 285 and 360 min following ingestion. Sampling and analytical protocols were different for each institution, in line with their usual practice. Samples were analysed by TD-GC-MS and benchmarking values determined for the time taken for detected peppermint VOCs to return to baseline values. Sixteen compounds were identified in the capsule headspace. Additionally, 2,3-dehydro-1,8-cineole was uniquely found in the breath samples, with a washout profile that suggested it was a product of peppermint metabolism. Five compounds (α-pinene, β-pinene, eucalyptol, menthol and menthone) were quantified by all three groups. Differences in recovery were observed between the groups, particularly for menthone and menthol. The average time taken for VOCs to return to baseline was selected as the benchmark and were 441, 648, 1736, 643 and 375 min for α-pinene, β-pinene, eucalyptol, menthone and menthol respectively. An initial set of easy-to-measure benchmarking values for assessing the performance of TD-GC-MS systems for the analysis of VOCs in breath is presented. These values will be updated when more groups provide additional data.
Collapse
Affiliation(s)
- Maxim Wilkinson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Iain R White
- Laboratory of Environmental and Life Sciences, University of Nova Gorica, Nova Gorica, 5000, SLOVENIA
| | - Katie Hamshere
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Olaf Holz
- Member of the German Center for Lung Research (BREATH), Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, GERMANY
| | - Sven Schuchardt
- Member of the German Center for Lung Research (BREATH), Fraunhofer-Institut fur Toxikologie und Experimentelle Medizin, Hannover, GERMANY
| | - Francesca G Bellagambi
- Institut des Sciences Analytiques, Université Claude Bernard Lyon 1, 5, rue de la Doua, Villeurbanne, FRANCE, 69100, FRANCE
| | - Tommaso Lomonaco
- Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Pisa, ITALY
| | - Denise Biagini
- Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Pisa, ITALY
| | - Fabio Di Francesco
- Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Pisa, ITALY
| | - Stephen J Fowler
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
42
|
Kalidoss R, Surya VJ, Sivalingam Y. Recent Progress in Graphene Derivatives/Metal Oxides Binary Nanocomposites Based Chemi-resistive Sensors for Disease Diagnosis by Breath Analysis. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411017999201125203955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background::
The scientific and clinical interest of breath analysis for non-invasive disease diagnosis has been focused by the scientific community over the past decade. This was due to the exhalation of prominent volatile organic compounds (VOCs) corresponding to the metabolic activities in the body and their concentration variation. To identify these biomarkers, various analytical techniques have been used in the past and the threshold concentration was established between a healthy and diseased state. Subsequently, various nanomaterials-based gas sensors were explored for their demand in quantifying these biomarkers for real-time, low cost and portable breathalyzers along with the essential sensor performances.
Methods::
We focus on the classification of graphene derivatives and their composites’ gas sensing efficiency for the application in the development of breathalyzers. The review begins with the feasibility of the application of nanomaterial gas sensors for healthcare applications. Then, we systematically report the gas sensing performance of various graphene derivatives/semiconductor metal oxides (SMO) binary nanocomposites and their optimizing strategies in selective detection of biomarkers specific to diseases. Finally, we provide insights on the challenges, opportunity and future research directions for the development of breathalyzers using other graphene derivatives/SMO binary nanocomposites.
Results::
On the basis of these analyses, graphene and its derivatives/metal oxides based binary nanocomposites have been a choice for gas sensing material owing to their high electrical conductivity and extraordinary thickness-dependent physicochemical properties. Moreover, the presence of oxygen vacancies in SMO does not only alter the conductivity but also accelerates the carrier transport rate and influence the adsorption behavior of target analyte on the sensing materials. Hence researchers are exploring the search of ultrathin graphene and metal oxide counterpart for high sensing performances.
Conclusion::
Their impressive properties compared to their bulk counterpart have been uncovered towards sensitive and selective detection of biomarkers for its use in portable breathalyzers.
Collapse
Affiliation(s)
- Ramji Kalidoss
- Department of Biomedical Engineering, Bharath Institute of Higher Education and Research, Selaiyur, 600073, Tamil Nadu,, India
| | - Velappa Jayaraman Surya
- Department of Physics and Nanotechnology, Novel, Advanced, and Applied Materials (NAAM) Laboratory, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu,, India
| | - Yuvaraj Sivalingam
- Department of Physics and Nanotechnology, Laboratory for Sensors, Energy and Electronic Devices (Lab SEED), SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu 603203,, India
| |
Collapse
|
43
|
eNose breathprints as composite biomarker for real-time phenotyping of complex respiratory diseases. J Allergy Clin Immunol 2020; 146:995-996. [PMID: 32745557 DOI: 10.1016/j.jaci.2020.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
|
44
|
Tenero L, Sandri M, Piazza M, Paiola G, Zaffanello M, Piacentini G. Electronic nose in discrimination of children with uncontrolled asthma. J Breath Res 2020; 14:046003. [PMID: 32512553 DOI: 10.1088/1752-7163/ab9ab0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Measuring biomarkers (e.g. volatile organic compounds [VOCs]) in exhaled breath is an attractive approach to monitor airway inflammation in asthma and other lung diseases. Olfactive technology by electronic nose (e-Nose) has been applied to identify VOCs in exhaled breath. We compared e-Nose respiratory patterns in a pediatric cohort with asthma classificate children with different asthma control. This cross-sectional study involved 38 children: 28 with asthma and 10 healthy controls . The asthmatic patients were categorized as having controlled (AC), partially controlled (APC) or uncontrolled asthma (ANC) based on level of asthma symptom control according to Global Initiative for Asthma (GINA). Clinical exams, exhaled breath collection for generating e-Nose VOC profiles, and spirometry were performed. Exhaled breath samples were obtained using a commercial electronic nose (Cyranose 320; Smith Detections, Pasadena, CA, USA). The discriminative ability of breathprints were investigated by principal component analysis and penalized logistic regression. The e-Nose was able to discriminate between the CON (controls) + AC and the ANC + APC group with an area under the curve [AUC] of 0.85 (95% confidence interval [CI] 0.72 to 0.98) and a cross-validated AUC of 0.80 (95% CI 0.70 to 0.85). Sensitivity and specificity calculated using the Youden index were 0.79 and 0.84, respectively. Exhaled biomarker patterns were easy to obtain with the device and were able to differentiate children with uncontrolled symptomatic asthma from asymptomatic controls.
Collapse
Affiliation(s)
- Laura Tenero
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
| | | | | | | | | | | |
Collapse
|
45
|
Sarandi E, Thanasoula M, Anamaterou C, Papakonstantinou E, Geraci F, Papamichael MM, Itsiopoulos C, Tsoukalas D. Metabolic profiling of organic and fatty acids in chronic and autoimmune diseases. Adv Clin Chem 2020; 101:169-229. [PMID: 33706889 DOI: 10.1016/bs.acc.2020.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabolomics is a powerful tool of omics that permits the simultaneous identification of metabolic perturbations in several autoimmune and chronic diseases. Several parameters can affect a metabolic profile, from the population characteristics to the selection of the analytical method. In the current chapter, we summarize the main analytical methods and results of the metabolic profiling of fatty and organic acids performed in human metabolomic studies for asthma, COPD, psoriasis and Hashimoto's thyroiditis. We discuss the most significant metabolic alterations associated with these diseases, after comparison of either a single patient's group with healthy controls or several patient's subgroups of different disease severity and phenotype with healthy controls or of a patient's group before and after treatment. Finally, we present critical metabolic patterns that are associated with each disease and their potency for the unraveling of disease pathogenesis, prediction, diagnosis, patient stratification and treatment selection.
Collapse
Affiliation(s)
- Evangelia Sarandi
- Metabolomic Medicine Clinic, Athens, Greece; Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Maria Thanasoula
- Metabolomic Medicine Clinic, Athens, Greece; European Institute of Nutritional Medicine, E.I.Nu.M, Rome, Italy
| | | | | | - Francesco Geraci
- European Institute of Nutritional Medicine, E.I.Nu.M, Rome, Italy
| | - Maria Michelle Papamichael
- Department of Rehabilitation, Nutrition & Sport, La Trobe University, School of Allied Health, Melbourne, VIC, Australia
| | - Catherine Itsiopoulos
- Department of Rehabilitation, Nutrition & Sport, La Trobe University, School of Allied Health, Melbourne, VIC, Australia
| | - Dimitris Tsoukalas
- Metabolomic Medicine Clinic, Athens, Greece; European Institute of Nutritional Medicine, E.I.Nu.M, Rome, Italy.
| |
Collapse
|
46
|
de Groot LES, Liu D, Dierdorp BS, Fens N, van de Pol MA, Sterk PJ, Kulik W, Gerlofs-Nijland ME, Cassee FR, Pinelli E, Lutter R. Ex vivo innate responses to particulate matter from livestock farms in asthma patients and healthy individuals. Environ Health 2020; 19:78. [PMID: 32620109 PMCID: PMC7333268 DOI: 10.1186/s12940-020-00632-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Asthma patients suffer from periodic acute worsening of symptoms (i.e. loss of asthma control or exacerbations), triggered by a variety of exogenous stimuli. With the growing awareness that air pollutants impact respiratory diseases, we investigated whether particulate matter (PM) derived from various livestock farms (BioPM) differentially affected innate and oxidative stress responses in asthma and health. METHODS Peripheral blood mononuclear cells (PBMCs), collected from patients sequentially before and during loss of asthma control and from healthy individuals, were exposed to BioPM collected from chicken, goat and pig farms (1 and 5 μg/ml), with or without pre-treatment with antioxidants. Cytokine release and oxidative stress were assessed. RESULTS PBMCs produced IFNγ, IL-1β, IL-10 and TNFα upon stimulation with BioPM, with that from pig farms inducing the highest cytokine levels. Overall, cytokine production was irrespective of the presence or state of disease. However, PBMCs from stable asthma patients upon exposure to the three BioPM showed more extreme TNFα responses than those from healthy subjects. Furthermore, PBMCs obtained during loss of asthma control that were exposed to BioPM from pig farms showed enhanced IFNγ release as well as decreased oxidative stress levels upon pre-treatment with N-acetylcysteine (NAC) compared to stable disease. NAC, but not superoxide dismutase and catalase, also counteracted BioPM-induced cytokine release, indicating the importance of intracellular reactive oxygen species in the production of cytokines. CONCLUSIONS BioPM triggered enhanced pro-inflammatory responses by PBMCs from both healthy subjects and asthma patients, with those from patients during loss of asthma control showing increased susceptibility to BioPM from pig farms in particular.
Collapse
Affiliation(s)
- Linsey E S de Groot
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Experimental Immunology (Amsterdam Infection & Immunity Institute), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - Dingyu Liu
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Barbara S Dierdorp
- Department of Experimental Immunology (Amsterdam Infection & Immunity Institute), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Niki Fens
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marianne A van de Pol
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter J Sterk
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Wim Kulik
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Miriam E Gerlofs-Nijland
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Flemming R Cassee
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Elena Pinelli
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - René Lutter
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology (Amsterdam Infection & Immunity Institute), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Farraia M, Cavaleiro Rufo J, Paciência I, Castro Mendes F, Rodolfo A, Rama T, Rocha SM, Delgado L, Brinkman P, Moreira A. Human volatilome analysis using eNose to assess uncontrolled asthma in a clinical setting. Allergy 2020; 75:1630-1639. [PMID: 31997360 DOI: 10.1111/all.14207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 12/18/2019] [Accepted: 01/06/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Analyses of exhaled volatile organic compounds (VOCs) have shown promising results when distinguishing individuals with asthma. Currently, there are no biomarkers for uncontrolled asthma. Therefore, we aimed to assess, in a real-life clinical setting, the ability of the exhaled VOC analysis, using an electronic nose (eNose), to identify individuals with uncontrolled asthma. METHODS A cross-sectional study was conducted, and breath samples from 199 participants (130 females, aged 6-78, 66% with asthma) were analysed using an eNose. A multivariate unsupervised cluster analysis, using the resistance data from 32 sensors, could distinguish three clusters of VOC patterns in the training and testing groups. Comparisons between the clusters were performed using the one-way ANOVA, Kruskal-Wallis and chi-squared tests. RESULTS In the training set (n = 121), three different clusters covering asthma, lung function, symptoms in the previous 4 weeks and age were identified. The pairwise comparisons showed significant differences with respect to chest tightness during exercise, dyspnoea and gender. These findings were confirmed in the testing set (n = 78) where the training model identified three clusters. The participants who reported fewer respiratory symptoms (dyspnoea and night-time awakenings) were grouped into one cluster, while the others comprised participants who showed similar poor control over symptoms with the distribution of the individuals with asthma being significantly different between them. CONCLUSIONS In a clinical setting, the analysis of the exhaled VOC profiles using an eNose could be used as a fast and noninvasive complementary assessment tool for the detection of uncontrolled asthma symptoms.
Collapse
Affiliation(s)
- Mariana Farraia
- EPIUnit‐Instituto de Saúde Pública Universidade do Porto Porto Portugal
- Serviço de Imunologia Básica e Clínica Departamento de Patologia Faculdade de Medicina da Universidade do Porto Porto Portugal
| | - João Cavaleiro Rufo
- EPIUnit‐Instituto de Saúde Pública Universidade do Porto Porto Portugal
- Serviço de Imunologia Básica e Clínica Departamento de Patologia Faculdade de Medicina da Universidade do Porto Porto Portugal
| | - Inês Paciência
- EPIUnit‐Instituto de Saúde Pública Universidade do Porto Porto Portugal
- Serviço de Imunologia Básica e Clínica Departamento de Patologia Faculdade de Medicina da Universidade do Porto Porto Portugal
- Institute of Science and Innovation in Mechanical Engineering and Industrial Management (INEGI) Porto Portugal
| | - Francisca Castro Mendes
- Serviço de Imunologia Básica e Clínica Departamento de Patologia Faculdade de Medicina da Universidade do Porto Porto Portugal
| | - Ana Rodolfo
- Serviço de Imunologia Básica e Clínica Departamento de Patologia Faculdade de Medicina da Universidade do Porto Porto Portugal
- Departamento de Imunoalergologia Centro Hospitalar Universitário de S. João EPE Porto Portugal
| | - Tiago Rama
- Serviço de Imunologia Básica e Clínica Departamento de Patologia Faculdade de Medicina da Universidade do Porto Porto Portugal
- Departamento de Imunoalergologia Centro Hospitalar Universitário de S. João EPE Porto Portugal
| | - Sílvia M. Rocha
- Departamento de Química & QOPNA‐LAQV‐REQUINTEUniversidade de Aveiro Aveiro Portugal
| | - Luís Delgado
- Serviço de Imunologia Básica e Clínica Departamento de Patologia Faculdade de Medicina da Universidade do Porto Porto Portugal
- Departamento de Imunoalergologia Centro Hospitalar Universitário de S. João EPE Porto Portugal
| | - Paul Brinkman
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam the Netherlands
| | - André Moreira
- EPIUnit‐Instituto de Saúde Pública Universidade do Porto Porto Portugal
- Serviço de Imunologia Básica e Clínica Departamento de Patologia Faculdade de Medicina da Universidade do Porto Porto Portugal
- Departamento de Imunoalergologia Centro Hospitalar Universitário de S. João EPE Porto Portugal
- Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto Porto Portugal
| |
Collapse
|
48
|
Peel AM, Wilkinson M, Sinha A, Loke YK, Fowler SJ, Wilson AM. Volatile organic compounds associated with diagnosis and disease characteristics in asthma - A systematic review. Respir Med 2020; 169:105984. [PMID: 32510334 DOI: 10.1016/j.rmed.2020.105984] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 03/30/2020] [Accepted: 04/19/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Metabolomics refers to study of the metabolome, the entire set of metabolites produced by a biological system. The application of metabolomics to exhaled breath samples - breathomics - is a rapidly growing field with potential application to asthma diagnosis and management. OBJECTIVES We aimed to review the adult asthma breathomic literature and present a comprehensive list of volatile organic compounds identified by asthma breathomic models. METHODS We undertook a systematic search for literature on exhaled volatile organic compounds in adult asthma. We assessed the quality of studies and performed a qualitative synthesis. RESULTS We identified twenty studies; these were methodologically heterogenous with a variable risk of bias. Studies almost universally reported breathomics to be capable of differentiating - with moderate or greater accuracy - between samples from healthy controls and those with asthma; and to be capable of phenotyping disease. However, there was little concordance in the compounds upon which discriminatory models were based. CONCLUSION Results to-date are promising but validation in independent prospective cohorts is needed. This may be challenging given the high levels of inter-individual variation. However, large-scale, multi-centre studies are underway and validation efforts have been aided by the publication of technical standards likely to increase inter-study comparability. Successful validation of breathomic models for diagnosis and phenotyping would constitute an important step towards personalised medicine in asthma.
Collapse
Affiliation(s)
- Adam M Peel
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Maxim Wilkinson
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester; Manchester Academic Health Science Centre and NIHR Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Ashnish Sinha
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Yoon K Loke
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester; Manchester Academic Health Science Centre and NIHR Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Andrew M Wilson
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
49
|
Colas L, Hassoun D, Magnan A. Needs for Systems Approaches to Better Treat Individuals With Severe Asthma: Predicting Phenotypes and Responses to Treatments. Front Med (Lausanne) 2020; 7:98. [PMID: 32296705 PMCID: PMC7137032 DOI: 10.3389/fmed.2020.00098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/05/2020] [Indexed: 01/19/2023] Open
Abstract
Asthma is a frequent heterogeneous multifactorial chronic disease whose severe forms remain largely uncontrolled despite the availability of many drugs and educational therapy. Several phenotypes and endotypes of severe asthma have been described over the last two decades. Typical type-2-immunity-driven asthma remains the most frequent phenotype, and several targeted therapies have been developed and are now available. On the contrary, non-type-2 immunity-driven severe asthma is less understood and still requires efficient innovative therapies. A personalized approach would allow improving asthma control with the help of robust biomarkers able to predict phenotypes/endotypes, exacerbations, response to targeted treatments and, in the future, possible curative options. Some data from large multicenter cohorts have emerged in recent years, especially in transcriptomics. These data have to be integrated and reproduced longitudinally to provide a systems approach for asthma care. In this focused review, the needs for such an approach and the available data will be reviewed as well as the next steps for achieving personalized medicine in asthma.
Collapse
Affiliation(s)
- Luc Colas
- Nantes Université, CHU de Nantes, Plateforme Transversale d'Allergologie, Nantes, France.,Nantes Université, INSERM UMR 1087, CNRS UMR 6291, Nantes, France.,Nantes Université, Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Nantes, France
| | - Dorian Hassoun
- Nantes Université, INSERM UMR 1087, CNRS UMR 6291, Nantes, France.,Nantes Université, CHU de Nantes, Service de Pneumologie, Nantes, France
| | - Antoine Magnan
- Nantes Université, INSERM UMR 1087, CNRS UMR 6291, Nantes, France.,Nantes Université, CHU de Nantes, Service de Pneumologie, Nantes, France
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW The long-term management goals of the inflammatory airway diseases asthma and chronic obstructive pulmonary disease (COPD) are similar and focus on symptom control and reduction of exacerbation frequency and severity. Treatable traits have recently been postulated as a management concept which complements the traditional diagnostic labels 'asthma' and 'COPD', thereby focusing on therapy targeted to a patients' individual disease-associated characteristics. Exhaled volatile organic compounds (VOCs) may be utilized as noninvasive biomarker for disease activity or manifestation in asthma and COPD. In this review, we provide an overview of the current achievements concerning exhaled breath analysis in the field of uncontrolled chronic airways diseases. RECENT FINDINGS Monitoring of (airway) inflammation and identification of (molecular) phenotypic characteristics in asthma and COPD through exhaled VOC analysis by either mass spectrometry (MS) based or sensor-driven electronic nose technology (eNose) seems to be feasible, however pending confirmation could hamper the valorization of breathomics into clinical tests. SUMMARY Exhaled VOC analysis and the management of asthma and COPD through the concept of pulmonary treatable traits are an interesting match. To develop exhaled breath analysis into an added value for pulmonary treatable traits, multicentre studies are required following international standards for study populations, sampling methods and analytical strategies enabling external validation.
Collapse
|