1
|
Zerrouk N, Alcraft R, Hall BA, Augé F, Niarakis A. Large-scale computational modelling of the M1 and M2 synovial macrophages in rheumatoid arthritis. NPJ Syst Biol Appl 2024; 10:10. [PMID: 38272919 PMCID: PMC10811231 DOI: 10.1038/s41540-024-00337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
Macrophages play an essential role in rheumatoid arthritis. Depending on their phenotype (M1 or M2), they can play a role in the initiation or resolution of inflammation. The M1/M2 ratio in rheumatoid arthritis is higher than in healthy controls. Despite this, no treatment targeting specifically macrophages is currently used in clinics. Thus, devising strategies to selectively deplete proinflammatory macrophages and promote anti-inflammatory macrophages could be a promising therapeutic approach. State-of-the-art molecular interaction maps of M1 and M2 macrophages in rheumatoid arthritis are available and represent a dense source of knowledge; however, these maps remain limited by their static nature. Discrete dynamic modelling can be employed to study the emergent behaviours of these systems. Nevertheless, handling such large-scale models is challenging. Due to their massive size, it is computationally demanding to identify biologically relevant states in a cell- and disease-specific context. In this work, we developed an efficient computational framework that converts molecular interaction maps into Boolean models using the CaSQ tool. Next, we used a newly developed version of the BMA tool deployed to a high-performance computing cluster to identify the models' steady states. The identified attractors are then validated using gene expression data sets and prior knowledge. We successfully applied our framework to generate and calibrate the M1 and M2 macrophage Boolean models for rheumatoid arthritis. Using KO simulations, we identified NFkB, JAK1/JAK2, and ERK1/Notch1 as potential targets that could selectively suppress proinflammatory macrophages and GSK3B as a promising target that could promote anti-inflammatory macrophages in rheumatoid arthritis.
Collapse
Affiliation(s)
- Naouel Zerrouk
- GenHotel, Laboratoire Européen de Recherche Pour La Polyarthrite Rhumatoïde, University Paris-Saclay, University Evry, Evry, France
- Sanofi R&D Data and Data Science, Artificial Intelligence & Deep Analytics, Omics Data Science, 1, Av Pierre Brossolette, 91385, Chilly-Mazarin, France
| | - Rachel Alcraft
- Advanced Research Computing Centre, University College London, London, UK
| | - Benjamin A Hall
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Franck Augé
- Sanofi R&D Data and Data Science, Artificial Intelligence & Deep Analytics, Omics Data Science, 1, Av Pierre Brossolette, 91385, Chilly-Mazarin, France
| | - Anna Niarakis
- GenHotel, Laboratoire Européen de Recherche Pour La Polyarthrite Rhumatoïde, University Paris-Saclay, University Evry, Evry, France.
- Lifeware Group, Inria Saclay, Palaiseau, France.
| |
Collapse
|
2
|
Hoch M, Ehlers L, Bannert K, Stanke C, Brauer D, Caton V, Lamprecht G, Wolkenhauer O, Jaster R, Wolfien M. In silico investigation of molecular networks linking gastrointestinal diseases, malnutrition, and sarcopenia. Front Nutr 2022; 9:989453. [DOI: 10.3389/fnut.2022.989453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Malnutrition (MN) is a common primary or secondary complication in gastrointestinal diseases. The patient’s nutritional status also influences muscle mass and function, which can be impaired up to the degree of sarcopenia. The molecular interactions in diseases leading to sarcopenia are complex and multifaceted, affecting muscle physiology, the intestine (nutrition), and the liver at different levels. Although extensive knowledge of individual molecular factors is available, their regulatory interplay is not yet fully understood. A comprehensive overall picture of pathological mechanisms and resulting phenotypes is lacking. In silico approaches that convert existing knowledge into computationally readable formats can help unravel mechanisms, underlying such complex molecular processes. From public literature, we manually compiled experimental evidence for molecular interactions involved in the development of sarcopenia into a knowledge base, referred to as the Sarcopenia Map. We integrated two diseases, namely liver cirrhosis (LC), and intestinal dysfunction, by considering their effects on nutrition and blood secretome. We demonstrate the performance of our model by successfully simulating the impact of changing dietary frequency, glycogen storage capacity, and disease severity on the carbohydrate and muscle systems. We present the Sarcopenia Map as a publicly available, open-source, and interactive online resource, that links gastrointestinal diseases, MN, and sarcopenia. The map provides tools that allow users to explore the information on the map and perform in silico simulations.
Collapse
|
3
|
Network- and enrichment-based inference of phenotypes and targets from large-scale disease maps. NPJ Syst Biol Appl 2022; 8:13. [PMID: 35473910 PMCID: PMC9042890 DOI: 10.1038/s41540-022-00222-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/22/2022] [Indexed: 01/09/2023] Open
Abstract
Complex diseases are inherently multifaceted, and the associated data are often heterogeneous, making linking interactions across genes, metabolites, RNA, proteins, cellular functions, and clinically relevant phenotypes a high-priority challenge. Disease maps have emerged as knowledge bases that capture molecular interactions, disease-related processes, and disease phenotypes with standardized representations in large-scale molecular interaction maps. Various tools are available for disease map analysis, but an intuitive solution to perform in silico experiments on the maps in a wide range of contexts and analyze high-dimensional data is currently missing. To this end, we introduce a two-dimensional enrichment analysis (2DEA) approach to infer downstream and upstream elements through the statistical association of network topology parameters and fold changes from molecular perturbations. We implemented our approach in a plugin suite for the MINERVA platform, providing an environment where experimental data can be mapped onto a disease map and predict potential regulatory interactions through an intuitive graphical user interface. We show several workflows using this approach and analyze two RNA-seq datasets in the Atlas of Inflammation Resolution (AIR) to identify enriched downstream processes and upstream transcription factors. Our work improves the usability of disease maps and increases their functionality by facilitating multi-omics data integration and exploration.
Collapse
|
4
|
Collin CB, Gebhardt T, Golebiewski M, Karaderi T, Hillemanns M, Khan FM, Salehzadeh-Yazdi A, Kirschner M, Krobitsch S, Kuepfer L. Computational Models for Clinical Applications in Personalized Medicine—Guidelines and Recommendations for Data Integration and Model Validation. J Pers Med 2022; 12:jpm12020166. [PMID: 35207655 PMCID: PMC8879572 DOI: 10.3390/jpm12020166] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
The future development of personalized medicine depends on a vast exchange of data from different sources, as well as harmonized integrative analysis of large-scale clinical health and sample data. Computational-modelling approaches play a key role in the analysis of the underlying molecular processes and pathways that characterize human biology, but they also lead to a more profound understanding of the mechanisms and factors that drive diseases; hence, they allow personalized treatment strategies that are guided by central clinical questions. However, despite the growing popularity of computational-modelling approaches in different stakeholder communities, there are still many hurdles to overcome for their clinical routine implementation in the future. Especially the integration of heterogeneous data from multiple sources and types are challenging tasks that require clear guidelines that also have to comply with high ethical and legal standards. Here, we discuss the most relevant computational models for personalized medicine in detail that can be considered as best-practice guidelines for application in clinical care. We define specific challenges and provide applicable guidelines and recommendations for study design, data acquisition, and operation as well as for model validation and clinical translation and other research areas.
Collapse
Affiliation(s)
- Catherine Bjerre Collin
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 N Copenhagen, Denmark; (C.B.C.); (T.K.)
| | - Tom Gebhardt
- Department of Systems Biology and Bioinformatics, University of Rostock, 18057 Rostock, Germany; (T.G.); (M.H.); (F.M.K.)
| | - Martin Golebiewski
- Heidelberg Institute for Theoretical Studies gGmbH, 69118 Heidelberg, Germany;
| | - Tugce Karaderi
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 N Copenhagen, Denmark; (C.B.C.); (T.K.)
- Center for Health Data Science, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 N Copenhagen, Denmark
| | - Maximilian Hillemanns
- Department of Systems Biology and Bioinformatics, University of Rostock, 18057 Rostock, Germany; (T.G.); (M.H.); (F.M.K.)
| | - Faiz Muhammad Khan
- Department of Systems Biology and Bioinformatics, University of Rostock, 18057 Rostock, Germany; (T.G.); (M.H.); (F.M.K.)
| | | | - Marc Kirschner
- Forschungszentrum Jülich GmbH, Project Management Jülich, 52425 Jülich, Germany; (M.K.); (S.K.)
| | - Sylvia Krobitsch
- Forschungszentrum Jülich GmbH, Project Management Jülich, 52425 Jülich, Germany; (M.K.); (S.K.)
| | | | - Lars Kuepfer
- Institute for Systems Medicine with Focus on Organ Interaction, University Hospital RWTH Aachen, 52074 Aachen, Germany
- Correspondence: ; Tel.: +49-241-8085900
| |
Collapse
|
5
|
Pereira C, Mazein A, Farinha CM, Gray MA, Kunzelmann K, Ostaszewski M, Balaur I, Amaral MD, Falcao AO. CyFi-MAP: an interactive pathway-based resource for cystic fibrosis. Sci Rep 2021; 11:22223. [PMID: 34782688 PMCID: PMC8592983 DOI: 10.1038/s41598-021-01618-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is a life-threatening autosomal recessive disease caused by more than 2100 mutations in the CF transmembrane conductance regulator (CFTR) gene, generating variability in disease severity among individuals with CF sharing the same CFTR genotype. Systems biology can assist in the collection and visualization of CF data to extract additional biological significance and find novel therapeutic targets. Here, we present the CyFi-MAP-a disease map repository of CFTR molecular mechanisms and pathways involved in CF. Specifically, we represented the wild-type (wt-CFTR) and the F508del associated processes (F508del-CFTR) in separate submaps, with pathways related to protein biosynthesis, endoplasmic reticulum retention, export, activation/inactivation of channel function, and recycling/degradation after endocytosis. CyFi-MAP is an open-access resource with specific, curated and continuously updated information on CFTR-related pathways available online at https://cysticfibrosismap.github.io/ . This tool was developed as a reference CF pathway data repository to be continuously updated and used worldwide in CF research.
Collapse
Affiliation(s)
- Catarina Pereira
- Faculty of Sciences, BioISI-Biosystems Integrative Sciences Institute, University of Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
- LASIGE, Faculty of Sciences, University of Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Alexander Mazein
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, 4367, Belvaux, Luxembourg
- CIRI UMR5308, CNRS-ENS-UCBL-INSERM, European Institute for Systems Biology and Medicine, Université de Lyon, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Carlos M Farinha
- Faculty of Sciences, BioISI-Biosystems Integrative Sciences Institute, University of Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Michael A Gray
- Biosciences Institute, University Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | | | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, 4367, Belvaux, Luxembourg
| | - Irina Balaur
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, 4367, Belvaux, Luxembourg
- CIRI UMR5308, CNRS-ENS-UCBL-INSERM, European Institute for Systems Biology and Medicine, Université de Lyon, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Margarida D Amaral
- Faculty of Sciences, BioISI-Biosystems Integrative Sciences Institute, University of Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Andre O Falcao
- Faculty of Sciences, BioISI-Biosystems Integrative Sciences Institute, University of Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.
- LASIGE, Faculty of Sciences, University of Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.
| |
Collapse
|
6
|
Glavaški M, Velicki L. Humans and machines in biomedical knowledge curation: hypertrophic cardiomyopathy molecular mechanisms' representation. BioData Min 2021; 14:45. [PMID: 34600580 PMCID: PMC8487578 DOI: 10.1186/s13040-021-00279-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/14/2021] [Indexed: 11/25/2022] Open
Abstract
Background Biomedical knowledge is dispersed in scientific literature and is growing constantly. Curation is the extraction of knowledge from unstructured data into a computable form and could be done manually or automatically. Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease, with genotype–phenotype associations still incompletely understood. We compared human- and machine-curated HCM molecular mechanisms’ models and examined the performance of different machine approaches for that task. Results We created six models representing HCM molecular mechanisms using different approaches and made them publicly available, analyzed them as networks, and tried to explain the models’ differences by the analysis of factors that affect the quality of machine-curated models (query constraints and reading systems’ performance). A result of this work is also the Interactive HCM map, the only publicly available knowledge resource dedicated to HCM. Sizes and topological parameters of the networks differed notably, and a low consensus was found in terms of centrality measures between networks. Consensus about the most important nodes was achieved only with respect to one element (calcium). Models with a reduced level of noise were generated and cooperatively working elements were detected. REACH and TRIPS reading systems showed much higher accuracy than Sparser, but at the cost of extraction performance. TRIPS proved to be the best single reading system for text segments about HCM, in terms of the compromise between accuracy and extraction performance. Conclusions Different approaches in curation can produce models of the same disease with diverse characteristics, and they give rise to utterly different conclusions in subsequent analysis. The final purpose of the model should direct the choice of curation techniques. Manual curation represents the gold standard for information extraction in biomedical research and is most suitable when only high-quality elements for models are required. Automated curation provides more substance, but high level of noise is expected. Different curation strategies can reduce the level of human input needed. Biomedical knowledge would benefit overwhelmingly, especially as to its rapid growth, if computers were to be able to assist in analysis on a larger scale. Supplementary Information The online version contains supplementary material available at 10.1186/s13040-021-00279-2.
Collapse
Affiliation(s)
- Mila Glavaški
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.
| | - Lazar Velicki
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.,Institute of Cardiovascular Diseases Vojvodina, Sremska Kamenica, Serbia
| |
Collapse
|
7
|
Touré V, Flobak Å, Niarakis A, Vercruysse S, Kuiper M. The status of causality in biological databases: data resources and data retrieval possibilities to support logical modeling. Brief Bioinform 2021; 22:bbaa390. [PMID: 33378765 PMCID: PMC8294520 DOI: 10.1093/bib/bbaa390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
Causal molecular interactions represent key building blocks used in computational modeling, where they facilitate the assembly of regulatory networks. Logical regulatory networks can be used to predict biological and cellular behaviors by system perturbations and in silico simulations. Today, broad sets of causal interactions are available in a variety of biological knowledge resources. However, different visions, based on distinct biological interests, have led to the development of multiple ways to describe and annotate causal molecular interactions. It can therefore be challenging to efficiently explore various resources of causal interaction and maintain an overview of recorded contextual information that ensures valid use of the data. This review lists the different types of public resources with causal interactions, the different views on biological processes that they represent, the various data formats they use for data representation and storage, and the data exchange and conversion procedures that are available to extract and download these interactions. This may further raise awareness among the targeted audience, i.e. logical modelers and other scientists interested in molecular causal interactions, but also database managers and curators, about the abundance and variety of causal molecular interaction data, and the variety of tools and approaches to convert them into one interoperable resource.
Collapse
Affiliation(s)
- Vasundra Touré
- Department of Biology of the Norwegian University of Science and Technology
| | | | - Anna Niarakis
- Department of Biology, Univ Evry, University of Paris-Saclay, affiliated with the laboratory GenHotel in Genopole campus, and a delegate at the Lifeware Group, INRIA Saclay
| | - Steven Vercruysse
- Researcher in computer science and computational biology and focuses on building a bridge between human and computer understanding
| | - Martin Kuiper
- systems biology at the Department of Biology of the Norwegian University of Science and Technology
| |
Collapse
|
8
|
Aghamiri SS, Singh V, Naldi A, Helikar T, Soliman S, Niarakis A. Automated inference of Boolean models from molecular interaction maps using CaSQ. Bioinformatics 2021; 36:4473-4482. [PMID: 32403123 PMCID: PMC7575051 DOI: 10.1093/bioinformatics/btaa484] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/17/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022] Open
Abstract
Motivation Molecular interaction maps have emerged as a meaningful way of representing biological mechanisms in a comprehensive and systematic manner. However, their static nature provides limited insights to the emerging behaviour of the described biological system under different conditions. Computational modelling provides the means to study dynamic properties through in silico simulations and perturbations. We aim to bridge the gap between static and dynamic representations of biological systems with CaSQ, a software tool that infers Boolean rules based on the topology and semantics of molecular interaction maps built with CellDesigner. Results We developed CaSQ by defining conversion rules and logical formulas for inferred Boolean models according to the topology and the annotations of the starting molecular interaction maps. We used CaSQ to produce executable files of existing molecular maps that differ in size, complexity and the use of Systems Biology Graphical Notation (SBGN) standards. We also compared, where possible, the manually built logical models corresponding to a molecular map to the ones inferred by CaSQ. The tool is able to process large and complex maps built with CellDesigner (either following SBGN standards or not) and produce Boolean models in a standard output format, Systems Biology Marked Up Language-qualitative (SBML-qual), that can be further analyzed using popular modelling tools. References, annotations and layout of the CellDesigner molecular map are retained in the obtained model, facilitating interoperability and model reusability. Availability and implementation The present tool is available online: https://lifeware.inria.fr/∼soliman/post/casq/ and distributed as a Python package under the GNU GPLv3 license. The code can be accessed here: https://gitlab.inria.fr/soliman/casq. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sara Sadat Aghamiri
- GenHotel, Département de Biologie, Univ. èvry, Université Paris-Saclay, Genopole, èvry 91025, France
| | - Vidisha Singh
- GenHotel, Département de Biologie, Univ. èvry, Université Paris-Saclay, Genopole, èvry 91025, France
| | - Aurélien Naldi
- Département de Biologie, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), ècole Normale Supérieure, CNRS, INSERM, Université PSL, Paris 75005, France
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Sylvain Soliman
- Lifeware Group, Inria Saclay-île de France, Palaiseau 91120, France
| | - Anna Niarakis
- GenHotel, Département de Biologie, Univ. èvry, Université Paris-Saclay, Genopole, èvry 91025, France
| |
Collapse
|
9
|
Touré V, Dräger A, Luna A, Dogrusoz U, Rougny A. The Systems Biology Graphical Notation: Current Status and Applications in Systems Medicine. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11515-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
10
|
Henry V, Moszer I, Dameron O, Vila Xicota L, Dubois B, Potier MC, Hofmann-Apitius M, Colliot O. Converting disease maps into heavyweight ontologies: general methodology and application to Alzheimer's disease. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2021:6137817. [PMID: 33590873 DOI: 10.1093/database/baab004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 01/17/2021] [Accepted: 01/27/2021] [Indexed: 11/12/2022]
Abstract
Omics technologies offer great promises for improving our understanding of diseases. The integration and interpretation of such data pose major challenges, calling for adequate knowledge models. Disease maps provide curated knowledge about disorders' pathophysiology at the molecular level adapted to omics measurements. However, the expressiveness of disease maps could be increased to help in avoiding ambiguities and misinterpretations and to reinforce their interoperability with other knowledge resources. Ontology is an adequate framework to overcome this limitation, through their axiomatic definitions and logical reasoning properties. We introduce the Disease Map Ontology (DMO), an ontological upper model based on systems biology terms. We then propose to apply DMO to Alzheimer's disease (AD). Specifically, we use it to drive the conversion of AlzPathway, a disease map devoted to AD, into a formal ontology: Alzheimer DMO. We demonstrate that it allows one to deal with issues related to redundancy, naming, consistency, process classification and pathway relationships. Furthermore, we show that it can store and manage multi-omics data. Finally, we expand the model using elements from other resources, such as clinical features contained in the AD Ontology, resulting in an enriched model called ADMO-plus. The current versions of DMO, ADMO and ADMO-plus are freely available at http://bioportal.bioontology.org/ontologies/ADMO.
Collapse
Affiliation(s)
- Vincent Henry
- Inria Paris, Aramis Project-Team, Paris 75013, France.,Institut du Cerveau et de la Moelle épinière, ICM, Paris 75013, France.,Inserm, U 1127, Paris 75013, France.,CNRS, UMR 7225, Paris 75013, France.,Sorbonne Université, Paris 75013, France.,ICONICS Core Facility, Paris Brain Institute, Paris 75013, France
| | - Ivan Moszer
- Institut du Cerveau et de la Moelle épinière, ICM, Paris 75013, France.,Inserm, U 1127, Paris 75013, France.,CNRS, UMR 7225, Paris 75013, France.,Sorbonne Université, Paris 75013, France.,ICONICS Core Facility, Paris Brain Institute, Paris 75013, France
| | - Olivier Dameron
- Univ Rennes, CNRS, Inria, IRISA-UMR 6074, Rennes 35000, France
| | - Laura Vila Xicota
- Institut du Cerveau et de la Moelle épinière, ICM, Paris 75013, France.,Inserm, U 1127, Paris 75013, France.,CNRS, UMR 7225, Paris 75013, France.,Sorbonne Université, Paris 75013, France.,Alzheimer's and Prion Diseases Team, Paris Brain Institute, Paris 75013, France
| | - Bruno Dubois
- Institut du Cerveau et de la Moelle épinière, ICM, Paris 75013, France.,Inserm, U 1127, Paris 75013, France.,CNRS, UMR 7225, Paris 75013, France.,Sorbonne Université, Paris 75013, France.,AP-HP, Hôpital de la Pitié-Salpêtrière, Department of Neurology, Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Paris 75013, France
| | - Marie-Claude Potier
- Institut du Cerveau et de la Moelle épinière, ICM, Paris 75013, France.,Inserm, U 1127, Paris 75013, France.,CNRS, UMR 7225, Paris 75013, France.,Sorbonne Université, Paris 75013, France.,Alzheimer's and Prion Diseases Team, Paris Brain Institute, Paris 75013, France
| | | | - Olivier Colliot
- Inria Paris, Aramis Project-Team, Paris 75013, France.,Institut du Cerveau et de la Moelle épinière, ICM, Paris 75013, France.,Inserm, U 1127, Paris 75013, France.,CNRS, UMR 7225, Paris 75013, France.,Sorbonne Université, Paris 75013, France
| | | |
Collapse
|
11
|
Mazein A, Ivanova O, Balaur I, Ostaszewski M, Berzhitskaya V, Serebriyskaya T, Ligon T, Hasenauer J, De Meulder B, Overall RW, Roy L, Knowles RG, Wheelock CE, Dahlen SE, Chung KF, Adcock IM, Roberts G, Djukanovic R, Pellet J, Gawron P, Balling R, Maitland-van der Zee AH, Schneider R, Sterk PJ, Auffray C. AsthmaMap: An interactive knowledge repository for mechanisms of asthma. J Allergy Clin Immunol 2020; 147:853-856. [PMID: 33309742 DOI: 10.1016/j.jaci.2020.11.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/17/2020] [Accepted: 11/10/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Alexander Mazein
- European Institute for Systems Biology and Medicine, Université de Lyon, Lyon, France; Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow, Russia; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg.
| | - Olga Ivanova
- European Institute for Systems Biology and Medicine, Université de Lyon, Lyon, France; Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Irina Balaur
- European Institute for Systems Biology and Medicine, Université de Lyon, Lyon, France
| | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | | | | | - Thomas Ligon
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich, Germany
| | - Jan Hasenauer
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany; Faculty of Mathematics and Natural Sciences, University of Bonn, Endenicher, Bonn, Germany
| | - Bertrand De Meulder
- European Institute for Systems Biology and Medicine, Université de Lyon, Lyon, France
| | - Rupert W Overall
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany; German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Ludovic Roy
- European Institute for Systems Biology and Medicine, Université de Lyon, Lyon, France
| | - Richard G Knowles
- Knowles Consulting, Stevenage Bioscience Catalyst, Stevenage, United Kingdom
| | - Craig E Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Sven-Erik Dahlen
- Unit for Experimental Asthma and Allergy Research, Institute of Environmental Medicine (IMM), Karolinska Institutet, Solna, Sweden
| | - Kian Fan Chung
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Ian M Adcock
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Graham Roberts
- Clinical and Experimental Sciences and Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, Southampton, United Kingdom
| | - Ratko Djukanovic
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Respiratory Biomedical Research Unit, Southampton University Hospital, Southampton, United Kingdom
| | - Johann Pellet
- European Institute for Systems Biology and Medicine, Université de Lyon, Lyon, France
| | - Piotr Gawron
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Anke H Maitland-van der Zee
- Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Reinhard Schneider
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Peter J Sterk
- Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Charles Auffray
- European Institute for Systems Biology and Medicine, Université de Lyon, Lyon, France
| | | | | |
Collapse
|
12
|
Three Major Efforts to Phenotype Asthma: Severe Asthma Research Program, Asthma Disease Endotyping for Personalized Therapeutics, and Unbiased Biomarkers for the Prediction of Respiratory Disease Outcome. Clin Chest Med 2020; 40:13-28. [PMID: 30691708 DOI: 10.1016/j.ccm.2018.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The SARP, ADEPT, and U-BIOPRED programs are all significant efforts in characterizing asthma and reporting clusters that will assist in designing personalized therapies for asthma, and especially severe asthma. Key aspects of the design of these programs are summarized and major findings are reported in this review.
Collapse
|
13
|
Abdel-Aziz MI, Neerincx AH, Vijverberg SJ, Kraneveld AD, Maitland-van der Zee AH. Omics for the future in asthma. Semin Immunopathol 2020; 42:111-126. [PMID: 31942640 DOI: 10.1007/s00281-019-00776-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/22/2019] [Indexed: 12/31/2022]
Abstract
Asthma is a common, complex, multifaceted disease. It comprises multiple phenotypes, which might benefit from treatment with different types of innovative targeted therapies. Refining these phenotypes and understanding their underlying biological structure would help to apply precision medicine approaches. Using different omics methods, such as (epi)genomics, transcriptomics, proteomics, metabolomics, microbiomics, and exposomics, allowed to view and investigate asthma from diverse angles. Technological advancement led to a large increase in the application of omics studies in the asthma field. Although the use of omics technologies has reduced the gap between bench to bedside, several design and methodological challenges still need to be tackled before omics can be applied in asthma patient care. Collaborating under a centralized harmonized work frame (such as in consortia, under consistent methodologies) could help worldwide research teams to tackle these challenges. In this review, we discuss the transition of single biomarker research to multi-omics studies. In addition, we deliberate challenges such as the lack of standardization of sampling and analytical methodologies and validation of findings, which comes in between omics and personalized patient care. The future of omics in asthma is encouraging but not completely clear with some unanswered questions, which have not been adequately addressed before. Therefore, we highlight these questions and emphasize on the importance of fulfilling them.
Collapse
Affiliation(s)
- Mahmoud I Abdel-Aziz
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands.,Department of Clinical Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Anne H Neerincx
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Susanne J Vijverberg
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Anke H Maitland-van der Zee
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands. .,Department of Pediatric Respiratory Medicine, Emma Children's Hospital, Amsterdam UMC, Amsterdam, Netherlands.
| |
Collapse
|
14
|
Singh V, Kalliolias GD, Ostaszewski M, Veyssiere M, Pilalis E, Gawron P, Mazein A, Bonnet E, Petit-Teixeira E, Niarakis A. RA-map: building a state-of-the-art interactive knowledge base for rheumatoid arthritis. Database (Oxford) 2020; 2020:baaa017. [PMID: 32311035 PMCID: PMC7170216 DOI: 10.1093/database/baaa017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/21/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023]
Abstract
Rheumatoid arthritis (RA) is a progressive, inflammatory autoimmune disease of unknown aetiology. The complex mechanism of aetiopathogenesis, progress and chronicity of the disease involves genetic, epigenetic and environmental factors. To understand the molecular mechanisms underlying disease phenotypes, one has to place implicated factors in their functional context. However, integration and organization of such data in a systematic manner remains a challenging task. Molecular maps are widely used in biology to provide a useful and intuitive way of depicting a variety of biological processes and disease mechanisms. Recent large-scale collaborative efforts such as the Disease Maps Project demonstrate the utility of such maps as versatile tools to organize and formalize disease-specific knowledge in a comprehensive way, both human and machine-readable. We present a systematic effort to construct a fully annotated, expert validated, state-of-the-art knowledge base for RA in the form of a molecular map. The RA map illustrates molecular and signalling pathways implicated in the disease. Signal transduction is depicted from receptors to the nucleus using the Systems Biology Graphical Notation (SBGN) standard representation. High-quality manual curation, use of only human-specific studies and focus on small-scale experiments aim to limit false positives in the map. The state-of-the-art molecular map for RA, using information from 353 peer-reviewed scientific publications, comprises 506 species, 446 reactions and 8 phenotypes. The species in the map are classified to 303 proteins, 61 complexes, 106 genes, 106 RNA entities, 2 ions and 7 simple molecules. The RA map is available online at ramap.elixir-luxembourg.org as an open-access knowledge base allowing for easy navigation and search of molecular pathways implicated in the disease. Furthermore, the RA map can serve as a template for omics data visualization.
Collapse
Affiliation(s)
- Vidisha Singh
- Laboratoire Européen de Recherche pour la Polyarthrite Rhumatoïde - Genhotel, Univ Evry, Université Paris-Saclay, 2, rue Gaston Crémieux, 91057 EVRY-GENOPOLE cedex, Evry, France
| | - George D Kalliolias
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
- Weill Cornell Medical Center, Weill Department of Medicine, 525 East 68th Street, New York, NY 10065, USA
| | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Maëva Veyssiere
- Laboratoire Européen de Recherche pour la Polyarthrite Rhumatoïde - Genhotel, Univ Evry, Université Paris-Saclay, 2, rue Gaston Crémieux, 91057 EVRY-GENOPOLE cedex, Evry, France
| | - Eleftherios Pilalis
- eNIOS Applications P.C., R&D department, Alexandrou Pantou 25, 17671, Kallithea-Athens, Greece
| | - Piotr Gawron
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Alexander Mazein
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Eric Bonnet
- Centre National de Recherche en Génomique Humaine (CNRGH), CEA, 2 rue Gaston Crémieux, CP5706 91057 EVRY-GENOPOLE cedex, Evry, France
| | - Elisabeth Petit-Teixeira
- Laboratoire Européen de Recherche pour la Polyarthrite Rhumatoïde - Genhotel, Univ Evry, Université Paris-Saclay, 2, rue Gaston Crémieux, 91057 EVRY-GENOPOLE cedex, Evry, France
| | - Anna Niarakis
- Laboratoire Européen de Recherche pour la Polyarthrite Rhumatoïde - Genhotel, Univ Evry, Université Paris-Saclay, 2, rue Gaston Crémieux, 91057 EVRY-GENOPOLE cedex, Evry, France
| |
Collapse
|
15
|
Roberts G. A summer's tale. Clin Exp Allergy 2019; 48:910-911. [PMID: 30133859 DOI: 10.1111/cea.13221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- G Roberts
- Clinical and Experimental Sciences and Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Isle of Wight, UK
| |
Collapse
|
16
|
Ivanova O, Richards LB, Vijverberg SJ, Neerincx AH, Sinha A, Sterk PJ, Maitland‐van der Zee AH. What did we learn from multiple omics studies in asthma? Allergy 2019; 74:2129-2145. [PMID: 31004501 DOI: 10.1111/all.13833] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/25/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022]
Abstract
More than a decade has passed since the finalization of the Human Genome Project. Omics technologies made a huge leap from trendy and very expensive to routinely executed and relatively cheap assays. Simultaneously, we understood that omics is not a panacea for every problem in the area of human health and personalized medicine. Whilst in some areas of research omics showed immediate results, in other fields, including asthma, it only allowed us to identify the incredibly complicated molecular processes. Along with their possibilities, omics technologies also bring many issues connected to sample collection, analyses and interpretation. It is often impossible to separate the intrinsic imperfection of omics from asthma heterogeneity. Still, many insights and directions from applied omics were acquired-presumable phenotypic clusters of patients, plausible biomarkers and potential pathways involved. Omics technologies develop rapidly, bringing improvements also to asthma research. These improvements, together with our growing understanding of asthma subphenotypes and underlying cellular processes, will likely play a role in asthma management strategies.
Collapse
Affiliation(s)
- Olga Ivanova
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
| | - Levi B. Richards
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
| | - Susanne J. Vijverberg
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
| | - Anne H. Neerincx
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
| | - Anirban Sinha
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
| | - Peter J. Sterk
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
| | - Anke H. Maitland‐van der Zee
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
- Department of Paediatric Pulmonology Amsterdam UMC/ Emma Children's Hospital Amsterdam the Netherlands
| |
Collapse
|