1
|
Ehx G, Ritacco C, Baron F. Pathophysiology and preclinical relevance of experimental graft-versus-host disease in humanized mice. Biomark Res 2024; 12:139. [PMID: 39543777 PMCID: PMC11566168 DOI: 10.1186/s40364-024-00684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Graft-versus-host disease (GVHD) is a life-threatening complication of allogeneic hematopoietic cell transplantations (allo-HCT) used for the treatment of hematological malignancies and other blood-related disorders. Until recently, the discovery of actionable molecular targets to treat GVHD and their preclinical testing was almost exclusively based on modeling allo-HCT in mice by transplanting bone marrow and splenocytes from donor mice into MHC-mismatched recipient animals. However, due to fundamental differences between human and mouse immunology, the translation of these molecular targets into the clinic can be limited. Therefore, humanized mouse models of GVHD were developed to circumvent this limitation. In these models, following the transplantation of human peripheral blood mononuclear cells (PBMCs) into immunodeficient mice, T cells recognize and attack mouse organs, inducing GVHD. Thereby, humanized mice provide a platform for the evaluation of the effects of candidate therapies on GVHD mediated by human immune cells in vivo. Understanding the pathophysiology of this xenogeneic GVHD is therefore crucial for the design and interpretation of experiments performed with this model. In this article, we comprehensively review the cellular and molecular mechanisms governing GVHD in the most commonly used model of xenogeneic GVHD: PBMC-engrafted NOD/LtSz-PrkdcscidIL2rγtm1Wjl (NSG) mice. By re-analyzing public sequencing data, we also show that the clonal expansion and the transcriptional program of T cells in humanized mice closely reflect those in humans. Finally, we highlight the strengths and limitations of this model, as well as arguments in favor of its biological relevance for studying T-cell reactions against healthy tissues or cancer cells.
Collapse
Affiliation(s)
- Grégory Ehx
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium.
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium.
| | - Caroline Ritacco
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium
| | - Frédéric Baron
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium
- Department of Medicine, Division of Hematology, CHU of Liege, University of Liege, Liege, Belgium
| |
Collapse
|
2
|
Lu Q, Yang D, Li H, Zhu Z, Zhang Z, Chen Y, Yang N, Li J, Wang Z, Niu T, Tong A. Delivery of CD47-SIRPα checkpoint blocker by BCMA-directed UCAR-T cells enhances antitumor efficacy in multiple myeloma. Cancer Lett 2024; 585:216660. [PMID: 38266806 DOI: 10.1016/j.canlet.2024.216660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
In the treatment of relapsed or refractory multiple myeloma patients, BCMA-directed autologous CAR-T cells have showed excellent anti-tumor activity. However, their widespread application is limited due to the arguably cost and time-consuming. Multiple myeloma cells highly expressed CD47 molecule and interact with the SIRPα ligand on the surface of macrophages, in which evade the clearance of macrophages through the activation of "don't eat me" signal. In this study, a BCMA-directed universal CAR-T cells, BC404-UCART, secreting a CD47-SIRPα blocker was developed using CRISPR/Cas9 gene-editing system. BC404-UCART cells significantly inhibited tumor growth and prolonged the survival of mice in the xenograft model. The anti-tumor activity of BC404-UCART cells was achieved via two mechanisms, on the one hand, the UCAR-T cells directly killed tumor cells, on the other hand, the BC404-UCART cells enhanced the phagocytosis of macrophages by secreting anti-CD47 nanobody hu404-hfc fusion that blocked the "don't eat me" signal between macrophages and tumor cells, which provides a potential strategy for the development of novel "off-the-shelf" cellular immunotherapies for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Qizhong Lu
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Donghui Yang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hexian Li
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhixiong Zhu
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zongliang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongdong Chen
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nian Yang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jia Li
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zeng Wang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Rosado-Sánchez I, Haque M, Salim K, Speck M, Fung VC, Boardman DA, Mojibian M, Raimondi G, Levings MK. Tregs integrate native and CAR-mediated costimulatory signals for control of allograft rejection. JCI Insight 2023; 8:e167215. [PMID: 37669115 PMCID: PMC10619441 DOI: 10.1172/jci.insight.167215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
Tregs expressing chimeric antigen receptors (CAR-Tregs) are a promising tool to promote transplant tolerance. The relationship between CAR structure and Treg function was studied in xenogeneic, immunodeficient mice, revealing advantages of CD28-encoding CARs. However, these models could underrepresent interactions between CAR-Tregs, antigen-presenting cells (APCs), and donor-specific Abs. We generated Tregs expressing HLA-A2-specific CARs with different costimulatory domains and compared their function in vitro and in vivo using an immunocompetent model of transplantation. In vitro, the CD28-encoding CAR had superior antigen-specific suppression, proliferation, and cytokine production. In contrast, in vivo, Tregs expressing CARs encoding CD28, ICOS, programmed cell death 1, and GITR, but not 4-1BB or OX40, all extended skin allograft survival. To reconcile in vitro and in vivo data, we analyzed effects of a CAR encoding CD3ζ but no costimulatory domain. These data revealed that exogenous costimulation from APCs can compensate for the lack of a CAR-encoded CD28 domain. Thus, Tregs expressing a CAR with or without CD28 are functionally equivalent in vivo, mediating similar extension of skin allograft survival and controlling the generation of anti-HLA-A2 alloantibodies. This study reveals a dimension of CAR-Treg biology and has important implications for the design of CARs for clinical use in Tregs.
Collapse
Affiliation(s)
- Isaac Rosado-Sánchez
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- School of Biomedical Engineering and
| | - Manjurul Haque
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Salim
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Madeleine Speck
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vivian C.W. Fung
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dominic A. Boardman
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Majid Mojibian
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Giorgio Raimondi
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Megan K. Levings
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- School of Biomedical Engineering and
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Wang W, Li Y, Lin K, Wang X, Tu Y, Zhuo Z. Progress in building clinically relevant patient-derived tumor xenograft models for cancer research. Animal Model Exp Med 2023; 6:381-398. [PMID: 37679891 PMCID: PMC10614132 DOI: 10.1002/ame2.12349] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023] Open
Abstract
Patient-derived tumor xenograft (PDX) models, a method involving the surgical extraction of tumor tissues from cancer patients and subsequent transplantation into immunodeficient mice, have emerged as a pivotal approach in translational research, particularly in advancing precision medicine. As the first stage of PDX development, the patient-derived orthotopic xenograft (PDOX) models implant tumor tissue in mice in the corresponding anatomical locations of the patient. The PDOX models have several advantages, including high fidelity to the original tumor, heightened drug sensitivity, and an elevated rate of successful transplantation. However, the PDOX models present significant challenges, requiring advanced surgical techniques and resource-intensive imaging technologies, which limit its application. And then, the humanized mouse models, as well as the zebrafish models, were developed. Humanized mouse models contain a human immune environment resembling the tumor and immune system interplay. The humanized mouse models are a hot topic in PDX model research. Regarding zebrafish patient-derived tumor xenografts (zPDX) and patient-derived organoids (PDO) as promising models for studying cancer and drug discovery, zPDX models are used to transplant tumors into zebrafish as novel personalized medical animal models with the advantage of reducing patient waiting time. PDO models provide a cost-effective approach for drug testing that replicates the in vivo environment and preserves important tumor-related information for patients. The present review highlights the functional characteristics of each new phase of PDX and provides insights into the challenges and prospective developments in this rapidly evolving field.
Collapse
Affiliation(s)
- Weijing Wang
- Department of Clinical MedicineShantou University Medical CollegeShantouChina
| | - Yongshu Li
- College of Life SciencesHubei Normal UniversityHuangshiChina
- Shenzhen Institute for Technology InnovationNational Institute of MetrologyShenzhenChina
| | - Kaida Lin
- Department of Clinical MedicineShantou University Medical CollegeShantouChina
| | - Xiaokang Wang
- Department of PharmacyShenzhen Longhua District Central HospitalShenzhenChina
| | - Yanyang Tu
- Research Center, Huizhou Central People's HospitalGuangdong Medical UniversityHuizhou CityChina
| | - Zhenjian Zhuo
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
- Laboratory Animal Center, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| |
Collapse
|
5
|
Chuprin J, Buettner H, Seedhom MO, Greiner DL, Keck JG, Ishikawa F, Shultz LD, Brehm MA. Humanized mouse models for immuno-oncology research. Nat Rev Clin Oncol 2023; 20:192-206. [PMID: 36635480 PMCID: PMC10593256 DOI: 10.1038/s41571-022-00721-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/14/2023]
Abstract
Immunotherapy has emerged as a promising treatment paradigm for many malignancies and is transforming the drug development landscape. Although immunotherapeutic agents have demonstrated clinical efficacy, they are associated with variable clinical responses, and substantial gaps remain in our understanding of their mechanisms of action and specific biomarkers of response. Currently, the number of preclinical models that faithfully recapitulate interactions between the human immune system and tumours and enable evaluation of human-specific immunotherapies in vivo is limited. Humanized mice, a term that refers to immunodeficient mice co-engrafted with human tumours and immune components, provide several advantages for immuno-oncology research. In this Review, we discuss the benefits and challenges of the currently available humanized mice, including specific interactions between engrafted human tumours and immune components, the development and survival of human innate immune populations in these mice, and approaches to study mice engrafted with matched patient tumours and immune cells. We highlight the latest advances in the generation of humanized mouse models, with the aim of providing a guide for their application to immuno-oncology studies with potential for clinical translation.
Collapse
Affiliation(s)
- Jane Chuprin
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell and Cancer Biology, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hannah Buettner
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Surgery, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Mina O Seedhom
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dale L Greiner
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | | | | | - Michael A Brehm
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
6
|
Lam AJ, Haque M, Ward-Hartstonge KA, Uday P, Wardell CM, Gillies JK, Speck M, Mojibian M, Klein Geltink RI, Levings MK. PTEN is required for human Treg suppression of costimulation in vitro. Eur J Immunol 2022; 52:1482-1497. [PMID: 35746855 DOI: 10.1002/eji.202249888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/18/2022] [Accepted: 06/10/2022] [Indexed: 11/07/2022]
Abstract
Regulatory T cell (Treg) therapy is under clinical investigation for the treatment of transplant rejection, autoimmune disease, and graft-versus-host disease. With the advent of genome editing, attention has turned to reinforcing Treg function for therapeutic benefit. A hallmark of Tregs is dampened activation of PI3K-AKT signalling, of which PTEN is a major negative regulator. Loss-of-function studies of PTEN, however, have not conclusively shown a requirement for PTEN in upholding Treg function and stability. Using CRISPR-based genome editing in human Tregs, we show that PTEN ablation does not cause a global defect in Treg function and stability; rather, it selectively blocks their ability to suppress antigen-presenting cells. PTEN-KO Tregs exhibit elevated glycolytic activity, upregulate FOXP3, maintain a Treg phenotype, and have no discernable defects in lineage stability. Functionally, PTEN is dispensable for human Treg-mediated inhibition of T cell activity in vitro and in vivo, but is required for suppression of costimulatory molecule expression by antigen-presenting cells. These data are the first to define a role for a signalling pathway in controlling a subset of human Treg activity. Moreover, they point to the functional necessity of PTEN-regulated PI3K-AKT activity for optimal human Treg function. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Avery J Lam
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Manjurul Haque
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Kirsten A Ward-Hartstonge
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Prakruti Uday
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Christine M Wardell
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Jana K Gillies
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Madeleine Speck
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Majid Mojibian
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Ramon I Klein Geltink
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.,Department of Molecular Oncology, BC Cancer Research, Vancouver, BC, V5Z 1L3, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, V6T 1Z3, Canada
| |
Collapse
|
7
|
Scheurer J, Leithäuser F, Debatin KM, Strauss G. Modeling acute graft-versus-host disease (aGVHD) in murine bone marrow transplantation (BMT) models with MHC disparity. Methods Cell Biol 2022; 168:19-39. [PMID: 35366982 DOI: 10.1016/bs.mcb.2021.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For more than 50years, hematopoietic stem cell transplantation (HSCT) has been the major curative therapy for hematological malignancies and genetic disorders, but its success is limited by the development of graft-versus-host disease (GVHD). GVHD represents a post-transplantation disorder representing the immune-mediated attack of transplant-derived T cells against recipient tissue finally leading to increased morbidity and mortality of the recipient. GVHD develops if donor and recipient are disparate in major or minor histocompatibility antigens (MHC, miHA). Most of the initial knowledge about the biology of GVHD is derived from murine bone marrow transplantation (BMT) models. Of course, GVHD mouse models do not reflect one to one the human situation, but they contribute significantly to our understanding how conditioning and danger signals activate the immune system, enlighten the role of individual molecules, e.g., cytokines, chemokines, death-inducing ligands, define the function of lymphocytes subpopulations for GVHD development and have significant impact on establishing new treatment and prevention strategies used in clinical HSCT. This chapter describes in detail the procedure of allogeneic BMT and the development of GVHD in two commonly used allogeneic murine BMT models (B6→B6.bm1, B6→B6D2F1) with different MHC disparities, which can be used as a basis for advanced studies of GVHD pathology or the development of new treatment strategies.
Collapse
Affiliation(s)
- Jasmin Scheurer
- University Medical Center Ulm, Department of Pediatrics and Adolescent Medicine, Ulm, Germany
| | | | - Klaus-Michael Debatin
- University Medical Center Ulm, Department of Pediatrics and Adolescent Medicine, Ulm, Germany
| | - Gudrun Strauss
- University Medical Center Ulm, Department of Pediatrics and Adolescent Medicine, Ulm, Germany.
| |
Collapse
|
8
|
Gao C, Gardner D, Theobalds MC, Hitchcock S, Deutsch H, Amuzie C, Cesaroni M, Sargsyan D, Rao TS, Malaviya R. Cytotoxic T lymphocyte antigen-4 regulates development of xenogenic graft versus host disease in mice via modulation of host immune responses induced by changes in human T cell engraftment and gene expression. Clin Exp Immunol 2021; 206:422-438. [PMID: 34487545 DOI: 10.1111/cei.13659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/31/2022] Open
Abstract
Graft versus host disease (GvHD) is a major clinical problem with a significant unmet medical need. We examined the role of cytotoxic T lymphocyte antigen-4 (CTLA-4) in a xenogenic GvHD (xeno-GvHD) model induced by injection of human peripheral mononuclear cells (hPBMC) into irradiated non-obese diabetic (NOD) SCID gamma (NSG) mice. Targeting the CTLA-4 pathway by treatment with CTLA-4 immunoglobulin (Ig) prevented xeno-GvHD, while anti-CTLA-4 antibody treatment exacerbated the lethality and morbidity associated with GvHD. Xeno-GvHD is associated with infiltration of hPBMCs into the lungs, spleen, stomach, liver and colon and an increase in human proinflammatory cytokines, including interferon (IFN)-γ, tumor necrosis factor (TNF)-α and interleukin (IL)-5. Infiltration of donor cells and increases in cytokines were attenuated by treatment with CTLA-4 Ig, but remained either unaffected or enhanced by anti-CTLA-4 antibody. Further, splenic human T cell phenotyping showed that CTLA-4 Ig treatment prevented the engraftment of human CD45+ cells, while anti-CTLA-4 antibody enhanced donor T cell expansion, particularly CD4+ (CD45RO+ ) subsets, including T box transcription factor TBX21 (Tbet)+ CXCR3+ and CD25+ forkhead box protein 3 (FoxP3) cells. Comprehensive analysis of transcriptional profiling of human cells isolated from mouse spleen identified a set of 417 differentially expressed genes (DEGs) by CTLA-4 Ig treatment and 13 DEGs by anti-CTLA-4 antibody treatment. The CTLA-4 Ig regulated DEGs mapped to down-regulated apoptosis, inflammasome, T helper type 17 (Th17) and regulatory T cell (Treg ) pathways and enhanced Toll-like receptor (TLR) receptor signaling, TNF family signaling, complement system and epigenetic and transcriptional regulation, whereas anti-CTLA-4 antibody produced minimal to no impact on these gene pathways. Our results show an important role of co-inhibitory CTLA-4 signaling in xeno-GvHD and suggest the therapeutic utility of other immune checkpoint co-inhibitory pathways in the treatment of immune-mediated diseases driven by hyperactive T cells.
Collapse
Affiliation(s)
- Chunxu Gao
- Immunology Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Debra Gardner
- Immunology Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Marie-Clare Theobalds
- Immunology Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Shannon Hitchcock
- Immunology Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Heather Deutsch
- Immunology Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Chidozie Amuzie
- Global Pathology-Nonclinical Safety, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Matteo Cesaroni
- World Without Disease, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Davit Sargsyan
- Translational Medicine and Early Development Statistics and Data Sciences, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Tadimeti S Rao
- Immunology Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Ravi Malaviya
- Immunology Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| |
Collapse
|
9
|
Ehx G, Ritacco C, Hannon M, Dubois S, Delens L, Willems E, Servais S, Drion P, Beguin Y, Baron F. Comprehensive analysis of the immunomodulatory effects of rapamycin on human T cells in graft-versus-host disease prophylaxis. Am J Transplant 2021; 21:2662-2674. [PMID: 33512760 DOI: 10.1111/ajt.16505] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 12/24/2020] [Accepted: 01/18/2021] [Indexed: 01/25/2023]
Abstract
Graft-versus-host disease (GVHD) is a major cause of toxicity after allogeneic hematopoietic cell transplantation (allo-HCT). While rapamycin (RAPA) is commonly used in GVHD prophylaxis in combination with a calcineurin inhibitor (CNI), the understanding of its mechanism of action on human T cells is still incomplete. Here, we performed an extensive analysis of RAPA effects on human T cells in a humanized mouse model of GVHD, in ex-vivo T cell cultures and in patients given RAPA plus tacrolimus as GVHD prophylaxis after nonmyeloablative allo-HCT. We demonstrate that RAPA mitigates GVHD by decreasing T cell engraftment and differentiation, inhibiting CD8+ T cell activation and increasing the long-term IL-2 secretion, thereby supporting regulatory T cell (Treg) proliferation. In contrast, graft-versus-leukemia effects were not abrogated, as RAPA-treated T cells had increased resistance to apoptosis and retained their effector function and proliferative capacity upon re-stimulation. Importantly, we found that RAPA impact on Treg and CD8+ T cells was closely dependent upon IL-2 signaling and that therapeutic options interfering with IL-2, such as calcineurin inhibitors, antagonize the IL-2-dependent promotion of Treg mediated by RAPA. Our results suggest that RAPA immunological efficacy could be improved in combination with drugs having possible synergistic effects such as the hypomethylating agent 5-azacytidine.
Collapse
Affiliation(s)
- Grégory Ehx
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Caroline Ritacco
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Muriel Hannon
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Sophie Dubois
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Loic Delens
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Evelyne Willems
- Department of Medicine, Division of Hematology, CHU and University of Liège, Liège, Belgium
| | - Sophie Servais
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium.,Department of Medicine, Division of Hematology, CHU and University of Liège, Liège, Belgium
| | - Pierre Drion
- Experimental Surgery, GIGA-R & Credec, University of Liège, Liège, Belgium
| | - Yves Beguin
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium.,Department of Medicine, Division of Hematology, CHU and University of Liège, Liège, Belgium
| | - Frédéric Baron
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium.,Department of Medicine, Division of Hematology, CHU and University of Liège, Liège, Belgium
| |
Collapse
|
10
|
Hess NJ, Brown ME, Capitini CM. GVHD Pathogenesis, Prevention and Treatment: Lessons From Humanized Mouse Transplant Models. Front Immunol 2021; 12:723544. [PMID: 34394131 PMCID: PMC8358790 DOI: 10.3389/fimmu.2021.723544] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/15/2021] [Indexed: 01/14/2023] Open
Abstract
Graft-vs-host disease (GVHD) is the most common cause of non-relapse mortality following allogeneic hematopoietic stem cell transplantation (HSCT) despite advances in conditioning regimens, HLA genotyping and immune suppression. While murine studies have yielded important insights into the cellular responses of GVHD, differences between murine and human biology has hindered the translation of novel therapies into the clinic. Recently, the field has expanded the ability to investigate primary human T cell responses through the transplantation of human T cells into immunodeficient mice. These xenogeneic HSCT models benefit from the human T cell receptors, CD4 and CD8 proteins having cross-reactivity to murine MHC in addition to several cytokines and co-stimulatory proteins. This has allowed for the direct assessment of key factors in GVHD pathogenesis to be investigated prior to entering clinical trials. In this review, we will summarize the current state of clinical GVHD research and discuss how xenogeneic HSCT models will aid in advancing the current pipeline of novel GVHD prophylaxis therapies into the clinic.
Collapse
Affiliation(s)
- Nicholas J. Hess
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Matthew E. Brown
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Christian M. Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| |
Collapse
|
11
|
Itacitinib prevents xenogeneic GVHD in humanized mice. Bone Marrow Transplant 2021; 56:2672-2681. [PMID: 34172892 DOI: 10.1038/s41409-021-01363-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 01/09/2023]
Abstract
We assessed the impact of the Janus Kinase (JAK) 1 inhibitor itacitinib on xenogeneic graft-versus-host disease (xGVHD). XGVHD was induced by i.v. injection 20 × 106 human peripheral blood mononuclear cells (hPBMC) in NSG mice on day 0. Itacitinib (3 mg, ≈120 mg/kg) or methylcellulose was administered by force-feeding twice a day from day 3 to day 28. Mice were followed for xGVHD score and survival. In addition, human T-cell engraftment and as well as human T-cell subtypes were monitored in blood on days 14, 21, and 28 after transplantation. We observed that itacitinib-treated mice had significantly longer survival than control mice (median 45 versus 33 days; P < 0.001). Further, they also had lower absolute numbers of human CD4+ T cells on days 21 and 28 after transplantation as well as of human CD8+ T cells on days 14, 21, and 28 after transplantation. In addition, itacitinib-treated mice had higher frequencies of human regulatory T cells (Treg) on days 21 and 28 after transplantation. In summary, our data indicate that itacitinib decreases human T-cell engraftment, increases Treg frequencies and attenuates xGVHD in NSG mice transplanted with hPBMC.
Collapse
|
12
|
Ma H, Pilvankar M, Wang J, Giragossian C, Popel AS. Quantitative Systems Pharmacology Modeling of PBMC-Humanized Mouse to Facilitate Preclinical Immuno-oncology Drug Development. ACS Pharmacol Transl Sci 2020; 4:213-225. [PMID: 33615174 DOI: 10.1021/acsptsci.0c00178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Indexed: 12/12/2022]
Abstract
Progress in immunotherapy has resulted in explosively increased new therapeutic interventions and they have shown promising results in the treatment of cancer. Animal testing is performed to provide preliminary efficacy and safety data for drugs under development prior to clinical trials. However, translational challenges remain for preclinical studies such as study design and the relevance of animal models to humans. Hence, only a small fraction of cancer patients showed response. The explosion of drug candidates and therapies makes preclinical assessment of every plausible option impossible, but it can be easily tested using Quantitative System Pharmacology (QSP) models. Here, we developed a QSP model for humanized mice. Tumor growth dynamics, T cell dynamics, cytokine release, immune checkpoint expression, and drug administration were modeled and calibrated using experimental data. Tumor growth inhibition data were used for model validation. Pharmacokinetics of T cell engager (TCE), tumor growth profile, T cell expansion in the blood and infiltration into tumor, T cell dissemination from primary tumor, cytokine release profile, and expression of additional PD-L1 induced by IFN-γ were modeled and calibrated using a variety of experimental data and showed good consistency. Mouse-specific response to T cell engager monotherapy also showed the key features of in vivo efficacy of TCE. This novel QSP model, designed for human peripheral blood mononuclear cells (PBMC) engrafted xenograft mice, incorporating the most critical components of the mouse model with key cancer and immune cells, can become an integral part of preclinical drug development.
Collapse
Affiliation(s)
- Huilin Ma
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Minu Pilvankar
- Biotherapeutics Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut 06877, United States
| | - Jun Wang
- Biotherapeutics Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut 06877, United States
| | - Craig Giragossian
- Biotherapeutics Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut 06877, United States
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland 21231, United States
| |
Collapse
|
13
|
Morillon YM, Sabzevari A, Schlom J, Greiner JW. The Development of Next-generation PBMC Humanized Mice for Preclinical Investigation of Cancer Immunotherapeutic Agents. Anticancer Res 2020; 40:5329-5341. [PMID: 32988851 DOI: 10.21873/anticanres.14540] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
Investigation of the efficacy and mechanisms of human immuno-oncology agents has been hampered due to species-specific differences when utilizing preclinical mouse models. Peripheral blood mononuclear cell (PBMC) humanized mice provide a platform for investigating the modulation of the human immune-mediated antitumor response while circumventing the limitations of syngeneic model systems. Use of humanized mice has been stymied by model-specific limitations, some of which include the development of graft versus host disease, technical difficulty and cost associated with each humanized animal, and insufficient engraftment of some human immune subsets. Recent advances have addressed many of these limitations from which have emerged humanized models that are more clinically relevant. This review characterizes the expanded usage, advantages and limitations of humanized mice and provides insights into the development of the next generation of murine humanized models to further inform clinical applications of cancer immunotherapeutic agents.
Collapse
Affiliation(s)
- Y Maurice Morillon
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Ariana Sabzevari
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, U.S.A.
| | - John W Greiner
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, U.S.A
| |
Collapse
|
14
|
Imura Y, Ando M, Kondo T, Ito M, Yoshimura A. CD19-targeted CAR regulatory T cells suppress B cell pathology without GvHD. JCI Insight 2020; 5:136185. [PMID: 32525846 DOI: 10.1172/jci.insight.136185] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Abstract
Regulatory T cells (Tregs) play essential roles in maintaining immunological self-tolerance and preventing autoimmunity. The adoptive transfer of antigen-specific Tregs has been expected to be a potent therapeutic method for autoimmune diseases, severe allergy, and rejection in organ transplantation. However, effective Treg therapy has not yet been established because of the difficulty in preparing a limited number of antigen-specific Tregs. Chimeric antigen receptor (CAR) T cells have been shown to be a powerful therapeutic method for treating B cell lymphomas, but application of CAR to Treg-mediated therapy has not yet been established. Here, we generated CD19-targeted CAR (CD19-CAR) Tregs from human PBMCs (hPBMCs) and optimized the fraction of the Treg source as CD4+CD25+CD127loCD45RA+CD45RO-. CD19-CAR Tregs could be expanded in vitro while maintaining Treg properties, including high expression of the latent form of TGF-β. CD19-CAR Tregs suppressed IgG antibody production and differentiation of B cells via a TGF-β-dependent mechanism. Unlike conventional CD19-CAR CD8+ T cells, CD19-CAR Tregs suppressed antibody production in immunodeficient mice that were reconstituted with hPBMCs, reducing the risk of graft-versus-host disease. Therefore, the adoptive transfer of CD19-CAR Tregs may provide a novel therapeutic method for treating autoantibody-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Yuki Imura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan.,Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma Corp., Yokohama, Japan
| | - Makoto Ando
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Taisuke Kondo
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan.,Pediatric Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Minako Ito
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Diaz MF, Horton PD, Kumar A, Livingston M, Mohammadalipour A, Xue H, Skibber MA, Ewere A, Toledano Furman NE, Aroom KR, Zhang S, Gill BS, Cox CS, Wenzel PL. Injury intensifies T cell mediated graft-versus-host disease in a humanized model of traumatic brain injury. Sci Rep 2020; 10:10729. [PMID: 32612177 PMCID: PMC7330041 DOI: 10.1038/s41598-020-67723-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/10/2020] [Indexed: 12/29/2022] Open
Abstract
The immune system plays critical roles in promoting tissue repair during recovery from neurotrauma but is also responsible for unchecked inflammation that causes neuronal cell death, systemic stress, and lethal immunodepression. Understanding the immune response to neurotrauma is an urgent priority, yet current models of traumatic brain injury (TBI) inadequately recapitulate the human immune response. Here, we report the first description of a humanized model of TBI and show that TBI places significant stress on the bone marrow. Hematopoietic cells of the marrow are regionally decimated, with evidence pointing to exacerbation of underlying graft-versus-host disease (GVHD) linked to presence of human T cells in the marrow. Despite complexities of the humanized mouse, marrow aplasia caused by TBI could be alleviated by cell therapy with human bone marrow mesenchymal stromal cells (MSCs). We conclude that MSCs could be used to ameliorate syndromes triggered by hypercytokinemia in settings of secondary inflammatory stimulus that upset marrow homeostasis such as TBI. More broadly, this study highlights the importance of understanding how underlying immune disorders including immunodepression, autoimmunity, and GVHD might be intensified by injury.
Collapse
Affiliation(s)
- Miguel F Diaz
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Paulina D Horton
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Akshita Kumar
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Megan Livingston
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Amina Mohammadalipour
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Hasen Xue
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Max A Skibber
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Adesuwa Ewere
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,School of Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Naama E Toledano Furman
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Kevin R Aroom
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Songlin Zhang
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Brijesh S Gill
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Charles S Cox
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Pamela L Wenzel
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA. .,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA. .,Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
16
|
Tripathi T, Yin W, Xue Y, Zurawski S, Fujita H, Hanabuchi S, Liu YJ, Oh S, Joo H. Central Roles of OX40L-OX40 Interaction in the Induction and Progression of Human T Cell-Driven Acute Graft-versus-Host Disease. Immunohorizons 2019; 3:110-120. [PMID: 31240276 DOI: 10.4049/immunohorizons.1900001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Graft-versus-host disease (GVHD) is one of the major obstacles for the success of allogeneic hematopoietic stem cell transplantation. Here, we report that the interaction between OX40L and OX40 is of critical importance for both induction and progression of acute GVHD (aGVHD) driven by human T cells. Anti-human OX40L monoclonal antibody (hOX40L) treatment could thus effectively reduce the disease severity in a xenogeneic-aGVHD (x-aGVHD) model in both preventative and therapeutic modes. Mechanistically, blocking OX40L-OX40 interaction with an anti-hOX40L antibody reduces infiltration of human T cells in target organs, including liver, gut, lung, and skin. It also decreases IL-21- and TNF-producing T cell responses, while promoting regulatory T cell (Treg) responses without compromising the cytolytic activity of CD8+ T cells. Single blockade of hOX40L was thus more effective than dual blockade of IL-21 and TNF in reducing the severity of aGVHD as well as mortality. Data from this study indicate that OX40L-OX40 interactions play a central role in the pathogenesis of aGVHD induced by human T cells. Therapeutic strategies that can efficiently interrupt OX40L-OX40 interaction in patients might have potential to provide patients with an improved clinical benefit.
Collapse
Affiliation(s)
- Trivendra Tripathi
- Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259.,Baylor Institute for Immunology Research, Dallas, TX 75204; and
| | - Wenjie Yin
- Baylor Institute for Immunology Research, Dallas, TX 75204; and
| | - Yaming Xue
- Baylor Institute for Immunology Research, Dallas, TX 75204; and
| | - Sandra Zurawski
- Baylor Institute for Immunology Research, Dallas, TX 75204; and
| | - Haruyuki Fujita
- Baylor Institute for Immunology Research, Dallas, TX 75204; and
| | - Shino Hanabuchi
- Baylor Institute for Immunology Research, Dallas, TX 75204; and
| | - Yong-Jun Liu
- Baylor Institute for Immunology Research, Dallas, TX 75204; and.,Sanofi, Cambridge, MA 01701
| | - SangKon Oh
- Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259.,Baylor Institute for Immunology Research, Dallas, TX 75204; and
| | - HyeMee Joo
- Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259; .,Baylor Institute for Immunology Research, Dallas, TX 75204; and
| |
Collapse
|
17
|
Marin E, Bouchet-Delbos L, Renoult O, Louvet C, Nerriere-Daguin V, Managh AJ, Even A, Giraud M, Vu Manh TP, Aguesse A, Bériou G, Chiffoleau E, Alliot-Licht B, Prieur X, Croyal M, Hutchinson JA, Obermajer N, Geissler EK, Vanhove B, Blancho G, Dalod M, Josien R, Pecqueur C, Cuturi MC, Moreau A. Human Tolerogenic Dendritic Cells Regulate Immune Responses through Lactate Synthesis. Cell Metab 2019; 30:1075-1090.e8. [PMID: 31801055 DOI: 10.1016/j.cmet.2019.11.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/17/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022]
Abstract
Cell therapy is a promising strategy for treating patients suffering from autoimmune or inflammatory diseases or receiving a transplant. Based on our preclinical studies, we have generated human autologous tolerogenic dendritic cells (ATDCs), which are being tested in a first-in-man clinical trial in kidney transplant recipients. Here, we report that ATDCs represent a unique subset of monocyte-derived cells based on phenotypic, transcriptomic, and metabolic analyses. ATDCs are characterized by their suppression of T cell proliferation and their expansion of Tregs through secreted factors. ATDCs produce high levels of lactate that shape T cell responses toward tolerance. Indeed, T cells take up ATDC-secreted lactate, leading to a decrease of their glycolysis. In vivo, ATDCs promote elevated levels of circulating lactate and delay graft-versus-host disease by reducing T cell proliferative capacity. The suppression of T cell immunity through lactate production by ATDCs is a novel mechanism that distinguishes ATDCs from other cell-based immunotherapies.
Collapse
Affiliation(s)
- Eros Marin
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France
| | - Laurence Bouchet-Delbos
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France
| | - Ophélie Renoult
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers UMR1232, INSERM, Université de Nantes, Nantes, France
| | - Cédric Louvet
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France
| | - Véronique Nerriere-Daguin
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Amy J Managh
- Centre for Analytical Science, Department of Chemistry, Loughborough University, Loughborough, UK
| | - Amandine Even
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France
| | - Matthieu Giraud
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France
| | - Thien Phong Vu Manh
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Audrey Aguesse
- UMR 1280 PhAN, Mass Spectrometry Core Facility, INRA, CRNHO, West Human Nutrition Research Center, Nantes, France
| | - Gaelle Bériou
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France
| | - Elise Chiffoleau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France
| | - Brigitte Alliot-Licht
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France; Faculté d'Odontologie, Université de Nantes, Nantes, France
| | - Xavier Prieur
- Institut du Thorax, INSERM, CNRS, Université de Nantes, Nantes, France
| | - Mikael Croyal
- UMR 1280 PhAN, Mass Spectrometry Core Facility, INRA, CRNHO, West Human Nutrition Research Center, Nantes, France
| | - James A Hutchinson
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Natasa Obermajer
- Division of Surgical Oncology, University of Pittsburgh, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Edward K Geissler
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Bernard Vanhove
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Gilles Blancho
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France
| | - Marc Dalod
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Régis Josien
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France; Laboratoire d'Immunologie, CHU Nantes, Nantes Université, Nantes, France
| | - Claire Pecqueur
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers UMR1232, INSERM, Université de Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Maria-Cristina Cuturi
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Aurélie Moreau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, ITUN, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.
| |
Collapse
|
18
|
Walcher L, Müller C, Hilger N, Kretschmer A, Stahl L, Wigge S, Rengelshausen J, Müller AM, Fricke S. Effect of combined sublethal X-ray irradiation and cyclosporine A treatment in NOD scid gamma (NSG) mice. Exp Anim 2019; 68:1-11. [PMID: 30078790 PMCID: PMC6389519 DOI: 10.1538/expanim.18-0056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cyclosporine A (CsA) is used in hematopoietic stem cell transplantations (HSCT) to
prevent graft-versus-host disease (GvHD). GvHD is the most severe side effect of
allogeneic HSCT and efficient therapies are lacking. Mouse models are an essential tool
for assessing potential new therapeutic strategies. Our aim is to mimic a clinical setting
as close as possible using CsA treatment after sublethal irradiation in NSG mice and
thereby evaluate the feasibility of this mouse model for GvHD studies. The effect of CsA
(7.5 mg/kg body weight) on sublethally X-ray irradiated (2 Gy) and non-irradiated NSG mice
was tested. CsA was administered orally every twelve hours for nine days. Animals
irradiated and treated with CsA showed a shorter survival (n=3/10) than irradiated animals
treated with NaCl (n=10/10). Furthermore, combined therapy resulted in severe weight loss
(82 ± 6% of initial weight, n=7, day 8), with weight recovery after the CsA application
was ceased. A high number of apoptotic events in the liver was observed in these mice
(0.431 ± 0.371 apoptotic cells/cm2, n=2, compared to 0.027 ± 0.034 apoptotic
cells/cm2, n=5, in the non-irradiated group). Other adverse effects,
including a decrease in white blood cell counts were non-CsA-specific manifestations of
irradiation. The combination of CsA treatment with irradiation has a hepatotoxic and
lethal effect on NSG mice, whereas the treatment without irradiation is tolerated.
Therefore, when using in vivo models of GvHD in NSG mice, a combined
treatment with CsA and X-ray irradiation should be avoided or carefully evaluated.
Collapse
Affiliation(s)
- Lia Walcher
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, 04103 Leipzig, Germany
| | - Claudia Müller
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, 04103 Leipzig, Germany
| | - Nadja Hilger
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, 04103 Leipzig, Germany.,Institute for Clinical Immunology, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | - Anna Kretschmer
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, 04103 Leipzig, Germany
| | - Lilly Stahl
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, 04103 Leipzig, Germany
| | - Simone Wigge
- Grünenthal GmbH, Zieglerstrasse 6, 52078 Aachen, Germany
| | | | - Anne M Müller
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, 04103 Leipzig, Germany
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, 04103 Leipzig, Germany
| |
Collapse
|
19
|
In Vitro Th17-Polarized Human CD4 + T Cells Exacerbate Xenogeneic Graft-versus-Host Disease. Biol Blood Marrow Transplant 2018; 25:204-215. [PMID: 30326279 DOI: 10.1016/j.bbmt.2018.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022]
Abstract
Acute graft-versus-host disease (aGVHD) is a severe complication of allogeneic hematopoietic stem cell transplantation. The role of Th17 cells in its pathophysiology remains a matter of debate. In this study, we assessed whether enrichment of human peripheral blood mononuclear cells (PBMCs) with in vitro Th17-polarized CD4+ T cells would exacerbate xenogeneic GVHD (xGVHD) into NOD-scid IL-2Rγ null (NSG) mice. Naive human CD4+ T cells were stimulated under Th17-skewing conditions for 8 to 10 days and then coinjected in NSG mice with fresh PBMCs from the same donor. We observed that Th17-polarized cells engrafted and migrated toward xGVHD target organs. They also acquired a double-expressing IL-17A+IFNγ+ profile in vivo. Importantly, cotransfer of Th17-polarized cells (1 × 106) with PBMCs (1 × 106) exacerbated xGVHD compared with transplantation of PBMCs alone (2 × 106). Furthermore, PBMC cotransfer with Th17-polarized cells was more potent for xGVHD induction than cotransfer with naive CD4+ T cells stimulated in nonpolarizing conditions (Th0 cells, 1 × 106 + 1 × 106 PBMCs) or with Th1-polarized cells (1 × 106 + 1 × 106 PBMCs). In summary, our results suggest that human Th17-polarized cells can cooperate with PBMCs and be pathogenic in the NSG xGVHD model.
Collapse
|
20
|
Ehx G, Somja J, Warnatz HJ, Ritacco C, Hannon M, Delens L, Fransolet G, Delvenne P, Muller J, Beguin Y, Lehrach H, Belle L, Humblet-Baron S, Baron F. Xenogeneic Graft-Versus-Host Disease in Humanized NSG and NSG-HLA-A2/HHD Mice. Front Immunol 2018; 9:1943. [PMID: 30214443 PMCID: PMC6125392 DOI: 10.3389/fimmu.2018.01943] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/07/2018] [Indexed: 12/30/2022] Open
Abstract
Despite the increasing use of humanized mouse models to study new approaches of graft-versus-host disease (GVHD) prevention, the pathogenesis of xenogeneic GVHD (xGVHD) in these models remains misunderstood. The aim of this study is to describe this pathogenesis in NOD/LtSz-PrkdcscidIL2rγtm1Wjl (NSG) mice infused with human PBMCs and to assess the impact of the expression of HLA-A0201 by NSG mice cells (NSG-HLA-A2/HHD mice) on xGVHD and graft-versus-leukemia (GvL) effects, by taking advantage of next-generation technologies. We found that T cells recovered from NSG mice after transplantation had upregulated expression of genes involved in cell proliferation, as well as in TCR, co-stimulatory, IL-2/STAT5, mTOR and Aurora kinase A pathways. T cells had mainly an effector memory or an effector phenotype and exhibited a Th1/Tc1-skewed differentiation. TCRβ repertoire diversity was markedly lower both in the spleen and lungs (a xGVHD target organ) than at infusion. There was no correlation between the frequencies of specific clonotypes at baseline and in transplanted mice. Finally, expression of HLA-A0201 by NSG mice led to more severe xGVHD and enhanced GvL effects toward HLA-A2+ leukemic cells. Altogether our data demonstrate that the pathogenesis of xGVHD shares important features with human GVHD and that NSG-HLA-A2/HHD mice could serve as better model to study GVHD and GvL effects.
Collapse
Affiliation(s)
- Grégory Ehx
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Joan Somja
- Department of Pathology, CHU of Liège, Liège, Belgium
| | - Hans-Jörg Warnatz
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Caroline Ritacco
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Muriel Hannon
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Loïc Delens
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Gilles Fransolet
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | | | - Joséphine Muller
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Yves Beguin
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium.,Department of Medicine, Division of Hematology, CHU of Liège, Liège, Belgium
| | | | - Ludovic Belle
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Stéphanie Humblet-Baron
- Translational Immunology Laboratory, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Frédéric Baron
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium.,Department of Medicine, Division of Hematology, CHU of Liège, Liège, Belgium
| |
Collapse
|
21
|
Ehx G, Fransolet G, de Leval L, D'Hondt S, Lucas S, Hannon M, Delens L, Dubois S, Drion P, Beguin Y, Humblet-Baron S, Baron F. Azacytidine prevents experimental xenogeneic graft-versus-host disease without abrogating graft-versus-leukemia effects. Oncoimmunology 2017. [PMID: 28638744 DOI: 10.1080/2162402x.2017.1314425] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The demethylating agent 5-azacytidine (AZA) has proven its efficacy in the treatment of myelodysplastic syndrome and acute myeloid leukemia. In addition, AZA can demethylate FOXP3 intron 1 (FOXP3i1) leading to the generation of regulatory T cells (Treg). Here, we investigated the impact of AZA on xenogeneic graft-vs.-host disease (xGVHD) and graft-vs.-leukemia effects in a humanized murine model of transplantation (human PBMCs-infused NSG mice), and described the impact of the drug on human T cells in vivo. We observed that AZA improved both survival and xGVHD scores. Further, AZA significantly decreased human T-cell proliferation as well as IFNγ and TNF-α serum levels, and reduced the expression of GRANZYME B and PERFORIN 1 by cytotoxic T cells. In addition, AZA significantly increased Treg frequency through hypomethylation of FOXP3i1 as well as increased Treg proliferation. The latter was subsequent to higher STAT5 signaling in Treg from AZA-treated mice, which resulted from higher IL-2 secretion by conventional T cells from AZA-treated mice itself secondary to demethylation of the IL-2 gene promoter by AZA. Importantly, Tregs harvested from AZA-treated mice were suppressive and stable over time since they persisted at high frequency in secondary transplant experiments. Finally, graft-vs.-leukemia effects (assessed by growth inhibition of THP-1 cells, transfected to express the luciferase gene) were not abrogated by AZA. In summary, our data demonstrate that AZA prevents xGVHD without abrogating graft-vs.-leukemia effects. These findings could serve as basis for further studies of GVHD prevention by AZA in acute myeloid leukemia patients offered an allogeneic transplantation.
Collapse
Affiliation(s)
- Grégory Ehx
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Gilles Fransolet
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Laurence de Leval
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Stéphanie D'Hondt
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Sophie Lucas
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Muriel Hannon
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Loïc Delens
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Sophie Dubois
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Pierre Drion
- Experimental Surgery unit, GIGA & Credec, University of Liege, Liège, Belgium
| | - Yves Beguin
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium.,Department of Medicine, Division of Hematology, University of Liège, Liège, Belgium
| | - Stéphanie Humblet-Baron
- VIB Center for Brain & Disease Research, Leuven; KU Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| | - Frédéric Baron
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium.,Department of Medicine, Division of Hematology, University of Liège, Liège, Belgium
| |
Collapse
|
22
|
Saito M, Tanaka R, Fujii H, Kodama A, Takahashi Y, Matsuzaki T, Takashima H, Tanaka Y. The neutralizing function of the anti-HTLV-1 antibody is essential in preventing in vivo transmission of HTLV-1 to human T cells in NOD-SCID/γcnull (NOG) mice. Retrovirology 2014; 11:74. [PMID: 25163482 PMCID: PMC4180130 DOI: 10.1186/s12977-014-0074-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 08/13/2014] [Indexed: 02/06/2023] Open
Abstract
Background Human T-cell leukemia virus type 1 (HTLV-1) causes both neoplastic and inflammatory diseases, including adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Because these life-threatening and disabling diseases are not yet curable, it is important to prevent new HTLV-1 infections. Findings In this study, we have established a simple humanized mouse model of HTLV-1 infection for evaluating prophylactic and therapeutic interventions. In this model, HTLV-1-negative normal human peripheral blood mononuclear cells (PBMCs) are transplanted directly into the spleens of severely immunodeficient NOD-SCID/γcnull (NOG) mice, together with mitomycin-treated HTLV-1-producing T cells. Using this model, we tested the efficacy of monoclonal antibodies (mAbs) specific to HTLV-1 as well as human IgG isolated from HAM/TSP patients (HAM-IgG) in preventing HTLV-1-infection. One hour before and 24 h after transplantation of the human cells, each antibody sample was inoculated intraperitoneally. On day 14, human PBMCs isolated from the mouse spleens were tested for HTLV-1 infection. Whereas fresh CD4-positive and CD8-positive T cells isolated from untreated mice or mice treated with isotype control mAb, HTLV-1 non-neutralizing mAbs to envelope gp46, gag p19, and normal human IgG were all infected with HTLV-1; the mice treated with either HTLV-1 neutralizing anti-gp46 mAb or HAM-IgG did not become infected. Conclusions Our data indicate that the neutralizing function of the antibody, but not the antigen specificity, is essential for preventing the in vivo transmission of HTLV-1. The present animal model will also be useful for the in vivo evaluation of the efficacy of candidate molecules to be used as prophylactic and therapeutic intervention against HTLV-1 infection. Electronic supplementary material The online version of this article (doi:10.1186/s12977-014-0074-z) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Cox JH, Hussell S, Søndergaard H, Roepstorff K, Bui JV, Deer JR, Zhang J, Li ZG, Lamberth K, Kvist PH, Padkjær S, Haase C, Zahn S, Odegard VH. Antibody-mediated targeting of the Orai1 calcium channel inhibits T cell function. PLoS One 2013; 8:e82944. [PMID: 24376610 PMCID: PMC3871607 DOI: 10.1371/journal.pone.0082944] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/08/2013] [Indexed: 01/03/2023] Open
Abstract
Despite the attractiveness of ion channels as therapeutic targets, there are no examples of monoclonal antibodies directed against ion channels in clinical development. Antibody-mediated inhibition of ion channels could offer a directed, specific therapeutic approach. To investigate the potential of inhibiting ion channel function with an antibody, we focused on Orai1, the pore subunit of the calcium channel responsible for store-operated calcium entry (SOCE) in T cells. Effector T cells are key drivers of autoimmune disease pathogenesis and calcium signaling is essential for T cell activation, proliferation, and cytokine production. We show here the generation of a specific anti-human Orai1 monoclonal antibody (mAb) against an extracellular loop of the plasma membrane-spanning protein. The anti-Orai1 mAb binds native Orai1 on lymphocytes and leads to cellular internalization of the channel. As a result, T cell proliferation, and cytokine production is inhibited in vitro. In vivo, anti-Orai1 mAb is efficacious in a human T cell-mediated graft-versus host disease (GvHD) mouse model. This study demonstrates the feasibility of antibody-mediated inhibition of Orai1 function and, more broadly, reveals the possibility of targeting ion channels with biologics for the treatment of autoimmunity and other diseases.
Collapse
Affiliation(s)
- Jennifer H. Cox
- Department of Cellular Immunology, Novo Nordisk Research Center, Seattle, Washington, United States of America
| | - Scott Hussell
- Department of Cellular Immunology, Novo Nordisk Research Center, Seattle, Washington, United States of America
| | | | | | - John-Vu Bui
- Department of Cellular Immunology, Novo Nordisk Research Center, Seattle, Washington, United States of America
| | - Jen Running Deer
- Department of Molecular Immunology, Novo Nordisk Research Center, Seattle, Washington, United States of America
| | - Jun Zhang
- Department of Cell Biology, Beijing Novo Nordisk Pharmaceuticals Science & Technology Co., Beijing, China
| | - Zhan-Guo Li
- Department of Rheumatology & Immunology, Beijing University People’s Hospital, Beijing, China
| | - Kasper Lamberth
- Department of Screening and Cell Technology, Novo Nordisk A/S, Maløv, Denmark
| | | | - Søren Padkjær
- Department of Protein Structure and Biophysics, Novo Nordisk A/S, Maløv, Denmark
| | - Claus Haase
- Department of Immunopharmacology, Novo Nordisk A/S, Maløv, Denmark
| | - Stefan Zahn
- Department of Antibody Technology, Novo Nordisk A/S, Maløv, Denmark
| | - Valerie H. Odegard
- Department of Cellular Immunology, Novo Nordisk Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|