1
|
Laoubi L, Lacoffrette M, Valsesia S, Lenief V, Guironnet-Paquet A, Mosnier A, Dubois G, Cartier A, Monti L, Marvel J, Espinosa E, Malissen B, Henri S, Mondoulet L, Sampson HA, Nosbaum A, Nicolas JF, Dioszeghy V, Vocanson M. Epicutaneous allergen immunotherapy induces a profound and selective modulation in skin dendritic cell subsets. J Allergy Clin Immunol 2022; 150:1194-1208. [PMID: 35779666 DOI: 10.1016/j.jaci.2022.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/03/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Epicutaneous immunotherapy (EPIT) protocols have recently been developed to restore tolerance in patients with food allergy (FA). The mechanisms by which EPIT protocols promote desensitization rely on a profound immune deviation of pathogenic T and B cell responses. OBJECTIVE To date, little is known about the contribution of skin dendritic cells (skDCs) to T cell remodeling and EPIT efficacy. METHODS We capitalized on a preclinical model of food allergy to ovalbumin (OVA) to characterize the phenotype and functions of OVA+ skDCs throughout the course of EPIT. RESULTS Our results showed that both Langerhans cells (LCs) and dermal conventional cDC1 and cDC2 subsets retained their ability to capture OVA in the skin and to migrate toward the skin-draining lymph nodes during EPIT. However, their activation/maturation status was significantly impaired, as evidenced by the gradual and selective reduction of CD86, CD40, and OVA protein expression in respective subsets. Phenotypic changes during EPIT were also characterized by a progressive diversification of single cell gene signatures within each DC subset. Interestingly, we observed that OVA+ LCs progressively lost their capacity to prime CD4+ TEFF, but gained TREG stimulatory properties. In contrast, cDC1 were inefficient in priming CD4+ TEFF or in reactivating TMEMin vitro, while cDC2 retained moderate stimulatory properties, and progressively biased type-2 immunity toward type-1 and type-17 responses. CONCLUSIONS Our results therefore emphasize that the acquisition of distinct phenotypic and functional specializations by skDCs during EPIT is at the cornerstone of the desensitization process.
Collapse
Affiliation(s)
- Léo Laoubi
- CIRI-Centre International de Recherche en Infectiologie; INSERM, U1111; Univ Lyon; Université de Lyon 1; Ecole Normale Supérieure de Lyon; CNRS, UMR 5308, Lyon, France; DBV Technologies, Montrouge, France
| | - Morgane Lacoffrette
- CIRI-Centre International de Recherche en Infectiologie; INSERM, U1111; Univ Lyon; Université de Lyon 1; Ecole Normale Supérieure de Lyon; CNRS, UMR 5308, Lyon, France
| | - Séverine Valsesia
- CIRI-Centre International de Recherche en Infectiologie; INSERM, U1111; Univ Lyon; Université de Lyon 1; Ecole Normale Supérieure de Lyon; CNRS, UMR 5308, Lyon, France
| | - Vanina Lenief
- CIRI-Centre International de Recherche en Infectiologie; INSERM, U1111; Univ Lyon; Université de Lyon 1; Ecole Normale Supérieure de Lyon; CNRS, UMR 5308, Lyon, France
| | - Aurélie Guironnet-Paquet
- CIRI-Centre International de Recherche en Infectiologie; INSERM, U1111; Univ Lyon; Université de Lyon 1; Ecole Normale Supérieure de Lyon; CNRS, UMR 5308, Lyon, France
| | - Amandine Mosnier
- CIRI-Centre International de Recherche en Infectiologie; INSERM, U1111; Univ Lyon; Université de Lyon 1; Ecole Normale Supérieure de Lyon; CNRS, UMR 5308, Lyon, France
| | - Gwendoline Dubois
- CIRI-Centre International de Recherche en Infectiologie; INSERM, U1111; Univ Lyon; Université de Lyon 1; Ecole Normale Supérieure de Lyon; CNRS, UMR 5308, Lyon, France
| | - Anna Cartier
- CIRI-Centre International de Recherche en Infectiologie; INSERM, U1111; Univ Lyon; Université de Lyon 1; Ecole Normale Supérieure de Lyon; CNRS, UMR 5308, Lyon, France
| | - Laurine Monti
- CIRI-Centre International de Recherche en Infectiologie; INSERM, U1111; Univ Lyon; Université de Lyon 1; Ecole Normale Supérieure de Lyon; CNRS, UMR 5308, Lyon, France
| | - Jacqueline Marvel
- CIRI-Centre International de Recherche en Infectiologie; INSERM, U1111; Univ Lyon; Université de Lyon 1; Ecole Normale Supérieure de Lyon; CNRS, UMR 5308, Lyon, France
| | - Eric Espinosa
- Inserm, U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Toulouse F-31037, France; Université de Toulouse, Université Paul Sabatier, Toulouse, F-31062, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Sandrine Henri
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | | | - Hugh A Sampson
- DBV Technologies, Montrouge, France; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Audrey Nosbaum
- CIRI-Centre International de Recherche en Infectiologie; INSERM, U1111; Univ Lyon; Université de Lyon 1; Ecole Normale Supérieure de Lyon; CNRS, UMR 5308, Lyon, France; Allergology and Clinical Immunology Department, Lyon Sud University Hospital, Pierre Bénite, France
| | - Jean-François Nicolas
- CIRI-Centre International de Recherche en Infectiologie; INSERM, U1111; Univ Lyon; Université de Lyon 1; Ecole Normale Supérieure de Lyon; CNRS, UMR 5308, Lyon, France; Allergology and Clinical Immunology Department, Lyon Sud University Hospital, Pierre Bénite, France
| | | | - Marc Vocanson
- CIRI-Centre International de Recherche en Infectiologie; INSERM, U1111; Univ Lyon; Université de Lyon 1; Ecole Normale Supérieure de Lyon; CNRS, UMR 5308, Lyon, France.
| |
Collapse
|
2
|
Suzuki S, Sakurai D, Sakurai T, Yonekura S, Iinuma T, Okuma Y, Ihara F, Arai T, Hanazawa T, Fukuda-Kawaguchi E, Ishii Y, Okamoto Y. Sublingual administration of liposomes enclosing alpha-galactosylceramide as an effective adjuvant of allergen immunotherapy in a murine model of allergic rhinitis. Allergol Int 2019; 68:352-362. [PMID: 30803854 DOI: 10.1016/j.alit.2019.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/21/2018] [Accepted: 01/17/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Sublingual immunotherapy (SLIT) is an established efficacious approach for the treatment of allergic rhinitis (AR). However, SLIT requires a long administration period to establish stable and adequate responses. This study investigated the efficacy of the sublingual administration of an allergen with liposomes enclosing α-GalCer (α-GC-liposome) as a potential adjuvant in mice with AR. METHODS Mice with AR induced by OVA received the sublingual administration of OVA, α-GC-liposomes, or OVA plus α-GC-liposomes for 7 days. After nasal re-challenge with OVA, nasal symptoms were evaluated. The serum levels of OVA-specific Ig, the cytokine production of CD4+ T cells in the cultures of cervical lymph node (CLN) cells, and the gene expression of CLNs were analyzed. RESULTS Although IL-4, IL-5 and IL-13 production from CD4+ T cells in CLN cells was significantly inhibited by the sublingual administration of OVA alone in mice with AR induced by OVA, their nasal symptoms were not significantly diminished. However, the combined sublingual administration of α-GC-liposomes and OVA completely suppressed nasal symptoms, downregulated Th2 and Th17 type cytokine production in CD4+ T cells as well as Th2 and Th17 gene expressions, and upregulated Th1 type cytokine production as well as Th1 gene expressions in CLN cells. Additionally, the serum levels of specific IgG2a were promoted, and specific IgE and IgG1 were inhibited. CONCLUSIONS Our findings suggest that the sublingual administration of an allergen with α-GC-liposomes as an adjuvant might increase the therapeutic efficacy and effectiveness of this treatment method.
Collapse
|
3
|
Miyoshi F, Sato K, Mimura T. Changes in the pattern of cytokine production from peripheral blood mononuclear cells in patients with rheumatoid arthritis treated with infliximab and their relation to plasma arginase activity. Int J Rheum Dis 2016; 21:1907-1914. [PMID: 30592386 DOI: 10.1111/1756-185x.12864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIM The aim of this study was to quantify the production of T-cell cytokines from the peripheral blood mononuclear cells (PBMCs) of RA patients before and after treatment with anti-tumor necrosis factor (TNF)-α infliximab (IFX). METHOD We stimulated the PBMCs of RA patients (n = 24) in vitro and quantified the cytokines in the culture supernatant using enzyme-linked immunosorbent assay. RESULTS Unexpectedly, the cytokines tested, interferon (IFN)-γ, interleukin (IL)-4 and IL-17, were all found to have increased, rather than decreased, after the treatment. When the patients were divided into two groups according to the plasma activity of arginase, which is implicated in the immune-suppressive function of myeloid-derived suppressor cells, the substantial increase in the cytokine production ex vivo was only detected in the group in which the arginase activity was decreased after the treatment with IFX. In fact, although the ex vivo production of IL-21 increased along with the other cytokines, the plasma concentration of IL-21 decreased significantly after IFX treatment. CONCLUSION It is important to exercise caution in interpreting ex vivo cytokine production data, in that they can be negatively influenced by the immune-suppressive mechanisms that prevent excessive inflammation. Thus, to analyze the T-cell response accurately, T-cell markers that are detectable in the serum or plasma need to be discovered. The concentrations of IFN-γ, IL-4 and IL-17 were all below detection limits, but that of IL-21 was detectable in the plasma and inversely correlated with the production of IL-21 ex vivo. This may indicate the involvement of Th17 response in the pathogenesis of RA.
Collapse
Affiliation(s)
- Fumihiko Miyoshi
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Kojiro Sato
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Toshihide Mimura
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
4
|
Park HJ, Lee SW, Park SH, Hong S. iNKT Cells Are Responsible for the Apoptotic Reduction of Basophils That Mediate Th2 Immune Responses Elicited by Papain in Mice Following γPGA Stimulation. PLoS One 2016; 11:e0152189. [PMID: 27049954 PMCID: PMC4822947 DOI: 10.1371/journal.pone.0152189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/08/2016] [Indexed: 11/22/2022] Open
Abstract
Recent studies have demonstrated that Bacillus subtilis-derived poly-gamma glutamic acid (γPGA) treatment suppresses the development of allergic diseases such as atopic dermatitis (AD). Although basophils, an innate immune cell, are known to play critical roles in allergic immune responses and repeated long-term administration of γPGA results in decreased splenic basophils in an AD murine model, the underlying mechanisms by which γPGA regulates basophil frequency remain unclear. To investigate how γPGA modulates basophils, we employed basophil-mediated Th2 induction in vivo model elicited by the allergen papain protease. Repeated injection of γPGA reduced the abundance of basophils and their production of IL4 in mice, consistent with our previous study using NC/Nga AD model mice. The depletion of basophils by a single injection of γPGA was dependent on the TLR4/DC/IL12 axis. CD1d-dependent Vα14 TCR invariant natural killer T (iNKT) cells are known to regulate a variety of immune responses, such as allergy. Because iNKT cell activation is highly sensitive to IL12 produced by DCs, we evaluated whether the effect of γPGA on basophils is mediated by iNKT cell activation. We found that in vivo γPGA treatment did not induce the reduction of basophils in iNKT cell-deficient CD1d KO mice, suggesting the critical role of iNKT cells in γPGA-mediated basophil depletion at the early time points. Furthermore, increased apoptotic basophil reduction triggered by iNKT cells upon γPGA stimulation was mainly attributed to Th1 cytokines such as IFNγ and TNFα, consequently resulting in inhibition of papain-induced Th2 differentiation via diminishing basophil-derived IL4. Taken together, our results clearly demonstrate that γPGA-induced iNKT cell polarization toward the Th1 phenotype induces apoptotic basophil depletion, leading to the suppression of Th2 immune responses. Thus, elucidation of the crosstalk between innate immune cells will contribute to the design and development of new therapeutics for Th2-mediated immune diseases such as AD.
Collapse
Affiliation(s)
- Hyun Jung Park
- Department of Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, 143–747, Korea
| | - Sung Won Lee
- Department of Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, 143–747, Korea
- School of Life Sciences and Biotechnology, Korea University, Seoul, 136–701, Korea
| | - Se-Ho Park
- School of Life Sciences and Biotechnology, Korea University, Seoul, 136–701, Korea
| | - Seokmann Hong
- Department of Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, 143–747, Korea
- * E-mail:
| |
Collapse
|
5
|
Miao W, Roohi Ahangarani R, Carlier V, Vander Elst L, Saint-Remy JM. Suppression of Immune Response to Adenovirus Serotype 5 Vector by Immunization with Peptides Containing an MHC Class II Epitope and a Thio-Oxidoreductase Motif. Hum Gene Ther 2016; 27:230-43. [PMID: 26711172 DOI: 10.1089/hum.2015.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The main obstacle to viral vector-mediated gene therapy remains the elicitation of an immune response to the vector, resulting in clearance of transgene and resistance to further transgenesis. Specific antibody production contributes to such immune responses. A single class II-restricted epitope of adenovirus serotype 5 (Ad5) vector hexon-6 capsid protein containing a thiol-oxidoreductase motif was used in an attempt to prevent specific antibody production in response to Ad5 vectors. We demonstrate here that such immunization carried out before intravenous administration of Ad5 vectors prevents antibody production to the ensemble of Ad5 vector proteins in both BALB/c and C57BL/6 mice. The antibody response to Ad5 is dependent on innate immune activation, seemingly involving natural killer T (NKT) cells. We observed that immunization with a class II-restricted Ad5 peptide prevents such NKT cell activation. Increased transgenesis and prolonged transgene expression result from such immunization, providing a simple protocol for improving gene therapy.
Collapse
Affiliation(s)
- Wei Miao
- 1 Center for Molecular and Vascular Biology, University of Leuven , Leuven, Belgium.,2 Imcyse SA, Leuven, Belgium
| | | | | | | | - Jean-Marie Saint-Remy
- 1 Center for Molecular and Vascular Biology, University of Leuven , Leuven, Belgium.,2 Imcyse SA, Leuven, Belgium
| |
Collapse
|