1
|
Wahlenmayer ER, Hammers DE. Streptococcal peptides and their roles in host-microbe interactions. Front Cell Infect Microbiol 2023; 13:1282622. [PMID: 37915845 PMCID: PMC10617681 DOI: 10.3389/fcimb.2023.1282622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
The genus Streptococcus encompasses many bacterial species that are associated with hosts, ranging from asymptomatic colonizers and commensals to pathogens with a significant global health burden. Streptococci produce numerous factors that enable them to occupy their host-associated niches, many of which alter their host environment to the benefit of the bacteria. The ability to manipulate host immune systems to either evade detection and clearance or induce a hyperinflammatory state influences whether bacteria are able to survive and persist in a given environment, while also influencing the propensity of the bacteria to cause disease. Several bacterial factors that contribute to this inter-species interaction have been identified. Recently, small peptides have become increasingly appreciated as factors that contribute to Streptococcal relationships with their hosts. Peptides are utilized by streptococci to modulate their host environment in several ways, including by directly interacting with host factors to disrupt immune system function and signaling to other bacteria to control the expression of genes that contribute to immune modulation. In this review, we discuss the many contributions of Streptococcal peptides in terms of their ability to contribute to pathogenesis and disruption of host immunity. This discussion will highlight the importance of continuing to elucidate the functions of these Streptococcal peptides and pursuing the identification of new peptides that contribute to modulation of host environments. Developing a greater understanding of how bacteria interact with their hosts has the potential to enable the development of techniques to inhibit these peptides as therapeutic approaches against Streptococcal infections.
Collapse
Affiliation(s)
| | - Daniel E. Hammers
- Biology Department, Houghton University, Houghton, NY, United States
| |
Collapse
|
2
|
Freydlin IS, Starikova EA, Lebedeva AM. Overcoming the protective functions of macrophages by Streptococcus pyogenes virulence factors. BULLETIN OF SIBERIAN MEDICINE 2019. [DOI: 10.20538/1682-0363-2019-1-109-118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The review is devoted to the analysis of molecular mechanisms of action ofS. pyogenesvirulence factors aimed at overcoming the protective functions of macrophages. The review describes in detail the main protective functions of macrophages and the mechanisms of their implementation in the course of streptococcal infection. The virulence factors ofS. pyogenes,which prevent the recruitment of macrophages to the site of infection, are examined. Particular attention is paid to the analysis of molecular effects that suppress the pathogen by the process of phagocytosis, intracellular bactericidal activity and the production of cytokines by macrophages. The analysis of molecular genetic mechanisms of regulation of the expression ofS. pyogenesvirulence factors that provide adaptation of the pathogen to changing conditions in the site of inflammation is carried out.
Collapse
Affiliation(s)
- I. S. Freydlin
- Institute of Experimental Medicine; Pavlov First Saint Petersburg State Medical University
| | | | | |
Collapse
|
3
|
Pancholi V. Group A Streptococcus-Mediated Host Cell Signaling. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0021-2018. [PMID: 30767846 PMCID: PMC11590744 DOI: 10.1128/microbiolspec.gpp3-0021-2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Indexed: 12/14/2022] Open
Abstract
In the past decade, the field of the cellular microbiology of group A Streptococcus (S. pyogenes) infection has made tremendous advances and touched upon several important aspects of pathogenesis, including receptor biology, invasive and evasive phenomena, inflammasome activation, strain-specific autophagic bacterial killing, and virulence factor-mediated programmed cell death. The noteworthy aspect of S. pyogenes-mediated cell signaling is the recognition of the role of M protein in a variety of signaling events, starting with the targeting of specific receptors on the cell surface and on through the induction and evasion of NETosis, inflammasome, and autophagy/xenophagy to pyroptosis and apoptosis. Variations in reports on S. pyogenes-mediated signaling events highlight the complex mechanism of pathogenesis and underscore the importance of the host cell and S. pyogenes strain specificity, as well as in vitro/in vivo experimental parameters. The severity of S. pyogenes infection is, therefore, dependent on the virulence gene expression repertoire in the host environment and on host-specific dynamic signaling events in response to infection. Commonly known as an extracellular pathogen, S. pyogenes finds host macrophages as safe havens wherein it survives and even multiplies. The fact that endothelial cells are inherently deficient in autophagic machinery compared to epithelial cells and macrophages underscores the invasive nature of S. pyogenes and its ability to cause severe systemic diseases. S. pyogenes is still one of the top 10 causes of infectious mortality. Understanding the orchestration of dynamic host signaling networks will provide a better understanding of the increasingly complex mechanism of S. pyogenes diseases and novel ways of therapeutically intervening to thwart severe and often fatal infections.
Collapse
Affiliation(s)
- Vijay Pancholi
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH 43210
| |
Collapse
|
4
|
Webster A, Chintala SK, Kim J, Ngan M, Itakura T, Panjwani N, Argüeso P, Barr JT, Jeong S, Fini ME. Dynasore protects the ocular surface against damaging oxidative stress. PLoS One 2018; 13:e0204288. [PMID: 30303976 PMCID: PMC6179211 DOI: 10.1371/journal.pone.0204288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/04/2018] [Indexed: 02/04/2023] Open
Abstract
Water soluble "vital" dyes are commonly used clinically to evaluate health of the ocular surface; however, staining mechanisms remain poorly understood. Recent evidence suggests that sublethal damage stimulates vital dye uptake by individual living cells. Since cell damage can also stimulate reparative plasma membrane remodeling, we hypothesized that dye uptake occurs via endocytic vesicles. In support of this idea, we show here that application of oxidative stress to relatively undifferentiated monolayer cultures of human corneal epithelial cells stimulates both dye uptake and endocytosis, and that dye uptake is blocked by co-treatment with three different endocytosis inhibitors. Stress application to stratified and differentiated corneal epithelial cell cultures, which are a better model of the ocular surface, also stimulated dye uptake; however, endocytosis was not stimulated, and two of the endocytosis inhibitors did not block dye uptake. The exception was Dynasore and its more potent analogue Dyngo-4a, both small molecules developed to target dynamin family GTPases, but also having off-target effects on the plasma membrane. Significantly, while Dynasore blocked stress-stimulated dye uptake at the ocular surface of ex vivo mouse eyes when treatment was performed at the same time as eyes were stressed, it had no effect when used after stress was applied and the ocular surface was already damaged. Thus, Dynasore could not be working by inhibiting endocytosis. Employing cytotoxicity and western blotting assays, we went on to demonstrate an alternative mechanism. We show that Dynasore is remarkably protective of cells and their surface glycocalyx, preventing damage due to stress, and thus precluding dye entry. These unexpected and novel findings provide greater insight into the mechanisms of vital dye uptake and point the direction for future study. Significantly, they also suggest that Dynasore and its analogues might be used therapeutically to protect the ocular surface and to treat ocular surface disease.
Collapse
Affiliation(s)
- Andrew Webster
- USC Institute for Genetic Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Shravan K. Chintala
- USC Institute for Genetic Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Jasmine Kim
- Program in Biological Sciences, USC Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, United States of America
| | - Michelle Ngan
- Program in Preventive Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Tatsuo Itakura
- USC Institute for Genetic Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Noorjahan Panjwani
- New England Eye Center/Department of Ophthalmology and Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Pablo Argüeso
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States of America
| | - Joseph T. Barr
- The Ohio State University College of Optometry, Columbus, OH, United States of America
| | - Shinwu Jeong
- USC Institute for Genetic Medicine and USC Roski Eye Institute/Department of Ophthalmology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - M. Elizabeth Fini
- USC Institute for Genetic Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
5
|
Cytosolic Recognition of Microbes and Pathogens: Inflammasomes in Action. Microbiol Mol Biol Rev 2018; 82:82/4/e00015-18. [PMID: 30209070 DOI: 10.1128/mmbr.00015-18] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Infection is a dynamic biological process underpinned by a complex interplay between the pathogen and the host. Microbes from all domains of life, including bacteria, viruses, fungi, and protozoan parasites, have the capacity to cause infection. Infection is sensed by the host, which often leads to activation of the inflammasome, a cytosolic macromolecular signaling platform that mediates the release of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18 and cleavage of the pore-forming protein gasdermin D, leading to pyroptosis. Host-mediated sensing of the infection occurs when pathogens inject or carry pathogen-associated molecular patterns (PAMPs) into the cytoplasm or induce damage that causes cytosolic liberation of danger-associated molecular patterns (DAMPs) in the host cell. Recognition of PAMPs and DAMPs by inflammasome sensors, including NLRP1, NLRP3, NLRC4, NAIP, AIM2, and Pyrin, initiates a cascade of events that culminate in inflammation and cell death. However, pathogens can deploy virulence factors capable of minimizing or evading host detection. This review presents a comprehensive overview of the mechanisms of microbe-induced activation of the inflammasome and the functional consequences of inflammasome activation in infectious diseases. We also explore the microbial strategies used in the evasion of inflammasome sensing at the host-microbe interaction interface.
Collapse
|
6
|
Kolter J, Feuerstein R, Spoeri E, Gharun K, Elling R, Trieu-Cuot P, Goldmann T, Waskow C, Chen ZJ, Kirschning CJ, Deshmukh SD, Henneke P. Streptococci Engage TLR13 on Myeloid Cells in a Site-Specific Fashion. THE JOURNAL OF IMMUNOLOGY 2016; 196:2733-41. [PMID: 26873993 DOI: 10.4049/jimmunol.1501014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 01/14/2016] [Indexed: 12/11/2022]
Abstract
Streptococci are common human colonizers with a species-specific mucocutaneous distribution. At the same time, they are among the most important and most virulent invasive bacterial pathogens. Thus, site-specific cellular innate immunity, which is predominantly executed by resident and invading myeloid cells, has to be adapted with respect to streptococcal sensing, handling, and response. In this article, we show that TLR13 is the critical mouse macrophage (MΦ) receptor in the response to group B Streptococcus, both in bone marrow-derived MΦs and in mature tissue MΦs, such as those residing in the lamina propria of the colon and the dermis, as well as in microglia. In contrast, TLR13 and its chaperone UNC-93B are dispensable for a potent cytokine response of blood monocytes to group B Streptococcus, although monocytes serve as the key progenitors of intestinal and dermal MΦs. Furthermore, a specific role for TLR13 with respect to MΦ function is supported by the response to staphylococci, where TLR13 and UNC-93B limit the cytokine response in bone marrow-derived MΦs and microglia, but not in dermal MΦs. In summary, TLR13 is a critical and site-specific receptor in the single MΦ response to β-hemolytic streptococci.
Collapse
Affiliation(s)
- Julia Kolter
- Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Reinhild Feuerstein
- Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Evelyne Spoeri
- Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Kourosh Gharun
- Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Roland Elling
- Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655
| | - Patrick Trieu-Cuot
- Institute Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, CNRS ERL3526, 75724 Paris Cedex 15, France
| | - Tobias Goldmann
- Institute of Neuropathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Claudia Waskow
- Regeneration in Hematopoiesis and Animal Models of Hematopoiesis, Faculty of Medicine, Technical University, 01307 Dresden, Germany
| | - Zhijian J Chen
- Southwestern Medical School, University of Texas, Dallas, TX 75390
| | - Carsten J Kirschning
- Institute of Medical Microbiology, Medical Center, University of Essen, 45147 Essen, Germany
| | - Sachin D Deshmukh
- Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Center for Sepsis Control and Care, Medical Center, University of Jena, 07747 Jena, Germany; and
| | - Philipp Henneke
- Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Center for Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
7
|
Dinis M, Plainvert C, Longo M, Guignot J, Gabriel C, Poyart C, Fouet A. Group A Streptococcus emm3 strains induce early macrophage cell death. Pathog Dis 2015; 74:ftv124. [PMID: 26702632 DOI: 10.1093/femspd/ftv124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2015] [Indexed: 01/05/2023] Open
Abstract
Group A Streptococcus (GAS) infections present high morbidity and mortality rates and consequently remain a significant health problem. The emm3 isolates induce more severe pathologies than all others. In this study, we tested, on a collection of invasive and non-invasive emm3 clinical isolates, whether in that genotype the invasive status of the strains affects the innate immune response. We show that phagocytosis is dependent on the invasiveness of the isolates. Interestingly, all emm3 isolates compromise macrophage integrity, already noticeable 1 h after infection. Inflammatory modulators (IL-6, TNF-α and IFN-β) are nevertheless detected during at least 6 h post-infection. This is a likely consequence of the macrophages not being all infected. The efficient and rapid induction of macrophage death could explain the virulence of the emm3 strains.
Collapse
Affiliation(s)
- Márcia Dinis
- INSERM U 1016, Institut Cochin, Unité FRM 'Barrières et Pathogènes' F-75014 Paris, France CNRS UMR 8104, F-75014 Paris, France Université Paris Descartes, Sorbonne Paris Cité, F-75014 Paris, France
| | - Céline Plainvert
- INSERM U 1016, Institut Cochin, Unité FRM 'Barrières et Pathogènes' F-75014 Paris, France CNRS UMR 8104, F-75014 Paris, France Université Paris Descartes, Sorbonne Paris Cité, F-75014 Paris, France Centre National de Référence des Streptocoques, F-75014 Paris, France Hôpitaux Universitaires Paris Centre, Assistance Publique Hôpitaux de Paris, F-75014 Paris, France
| | - Magalie Longo
- INSERM U 1016, Institut Cochin, Unité FRM 'Barrières et Pathogènes' F-75014 Paris, France CNRS UMR 8104, F-75014 Paris, France Université Paris Descartes, Sorbonne Paris Cité, F-75014 Paris, France
| | - Julie Guignot
- INSERM U 1016, Institut Cochin, Unité FRM 'Barrières et Pathogènes' F-75014 Paris, France CNRS UMR 8104, F-75014 Paris, France Université Paris Descartes, Sorbonne Paris Cité, F-75014 Paris, France
| | - Christelle Gabriel
- INSERM U 1016, Institut Cochin, Unité FRM 'Barrières et Pathogènes' F-75014 Paris, France CNRS UMR 8104, F-75014 Paris, France Université Paris Descartes, Sorbonne Paris Cité, F-75014 Paris, France
| | - Claire Poyart
- INSERM U 1016, Institut Cochin, Unité FRM 'Barrières et Pathogènes' F-75014 Paris, France CNRS UMR 8104, F-75014 Paris, France Université Paris Descartes, Sorbonne Paris Cité, F-75014 Paris, France Centre National de Référence des Streptocoques, F-75014 Paris, France Hôpitaux Universitaires Paris Centre, Assistance Publique Hôpitaux de Paris, F-75014 Paris, France
| | - Agnès Fouet
- INSERM U 1016, Institut Cochin, Unité FRM 'Barrières et Pathogènes' F-75014 Paris, France CNRS UMR 8104, F-75014 Paris, France Université Paris Descartes, Sorbonne Paris Cité, F-75014 Paris, France Centre National de Référence des Streptocoques, F-75014 Paris, France
| |
Collapse
|
8
|
Mäkelä SM, Österlund P, Westenius V, Latvala S, Diamond MS, Gale M, Julkunen I. RIG-I Signaling Is Essential for Influenza B Virus-Induced Rapid Interferon Gene Expression. J Virol 2015; 89:12014-25. [PMID: 26378160 PMCID: PMC4645339 DOI: 10.1128/jvi.01576-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/13/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Influenza B virus causes annual epidemics and, along with influenza A virus, accounts for substantial disease and economic burden throughout the world. Influenza B virus infects only humans and some marine mammals and is not responsible for pandemics, possibly due to a very low frequency of reassortment and a lower evolutionary rate than that of influenza A virus. Influenza B virus has been less studied than influenza A virus, and thus, a comparison of influenza A and B virus infection mechanisms may provide new insight into virus-host interactions. Here we analyzed the early events in influenza B virus infection and interferon (IFN) gene expression in human monocyte-derived macrophages and dendritic cells. We show that influenza B virus induces IFN regulatory factor 3 (IRF3) activation and IFN-λ1 gene expression with faster kinetics than does influenza A virus, without a requirement for viral protein synthesis or replication. Influenza B virus-induced activation of IRF3 required the fusion of viral and endosomal membranes, and nuclear accumulation of IRF3 and viral NP occurred concurrently. In comparison, immediate early IRF3 activation was not observed in influenza A virus-infected macrophages. Experiments with RIG-I-, MDA5-, and RIG-I/MDA5-deficient mouse fibroblasts showed that RIG-I is the critical pattern recognition receptor needed for the influenza B virus-induced activation of IRF3. Our results show that innate immune mechanisms are activated immediately after influenza B virus entry through the endocytic pathway, whereas influenza A virus avoids early IRF3 activation and IFN gene induction. IMPORTANCE Recently, a great deal of interest has been paid to identifying the ligands for RIG-I under conditions of natural infection, as many previous studies have been based on transfection of cells with different types of viral or synthetic RNA structures. We shed light on this question by analyzing the earliest step in innate immune recognition of influenza B virus by human macrophages. We show that influenza B virus induces IRF3 activation, leading to IFN gene expression after viral RNPs (vRNPs) are released into the cytosol and are recognized by RIG-I receptor, meaning that the incoming influenza B virus is already able to activate IFN gene expression. In contrast, influenza A (H3N2) virus failed to activate IRF3 at very early times of infection, suggesting that there are differences in innate immune recognition between influenza A and B viruses.
Collapse
Affiliation(s)
- Sanna M Mäkelä
- Viral Infections Unit, Department of Infectious Diseases, National Institute for Health and Welfare, Helsinki, Finland
| | - Pamela Österlund
- Viral Infections Unit, Department of Infectious Diseases, National Institute for Health and Welfare, Helsinki, Finland
| | - Veera Westenius
- Viral Infections Unit, Department of Infectious Diseases, National Institute for Health and Welfare, Helsinki, Finland
| | - Sinikka Latvala
- Viral Infections Unit, Department of Infectious Diseases, National Institute for Health and Welfare, Helsinki, Finland
| | - Michael S Diamond
- Departments of Medicine, Pathology and Immunology, and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Ilkka Julkunen
- Viral Infections Unit, Department of Infectious Diseases, National Institute for Health and Welfare, Helsinki, Finland Department of Virology, University of Turku, Turku, Finland
| |
Collapse
|