1
|
Liu J, Yue WL, Fan HZ, Luo YS, Feng GW, Li JF. Correlation of cTfh cells and memory B cells with AMR after renal transplantation. Transpl Immunol 2024; 86:102095. [PMID: 39038741 DOI: 10.1016/j.trim.2024.102095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/25/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Renal transplantation is the preferred treatment option for patients with end-stage renal disease (ESRD) in a clinical setting. Antibody mediated rejection (AMR) is one of the leading causes of graft dysfunction. To address the current shortcomings in the early diagnosis and treatment of AMR in clinical practice, this article analyzes the distribution of different circulating T follicular helper (cTfh) cell subtypes and B cell subpopulations in peripheral blood and detects the cytokine levels of chemokine ligand 13 (CXCL13), interleukin-21 (IL-21), and interleukin-4 (IL-4) related to cTfh cells in peripheral blood of kidney transplant recipients. Moreover, we also explore the correlation between cTfh cells, peripheral blood memory B cells, and AMR, their value as early predictive indicators of AMR, and explore potential therapeutic targets for AMR patients. Our results indicate that the proportion of cTfh cells increased at the onset of AMR, which plays an important role in antigen-specific B-cell immune regulation. Activation of cTfh cells in AMR patients correlates with phenotypes of memory B cells and plasma blasts. cTfh cells and memory B cells have promising diagnostic efficacies and predictive values for AMR. The proportion of cTfh cells to CD4+ T cells and the proportion of memory B cells to CD19+ B cells are correlated with serum creatinine levels, indicating that cTfh cells and memory B cells may be involved in the progression of AMR. In addition, the CXCL13, IL-21, and IL-4, which were associated with cTfh cells, may be involved in the onset of AMR.
Collapse
Affiliation(s)
- Jia Liu
- Henan Medical College, Dietetics Teaching and Research Section, Zhengzhou, China
| | - Wen-Long Yue
- The First Affiliated Hospital of Zhengzhou University, Department of Renal Transplantation, Zhengzhou, China
| | - Hong-Zhao Fan
- The First Affiliated Hospital of Zhengzhou University, Department of Renal Transplantation, Zhengzhou, China
| | - Yong-Sheng Luo
- The First Affiliated Hospital of Zhengzhou University, Department of Renal Transplantation, Zhengzhou, China
| | - Gui-Wen Feng
- The First Affiliated Hospital of Zhengzhou University, Department of Renal Transplantation, Zhengzhou, China.
| | - Jin-Feng Li
- The First Affiliated Hospital of Zhengzhou University, Department of Renal Transplantation, Zhengzhou, China.
| |
Collapse
|
2
|
Shalekoff S, Loubser S, Dias BDC, Strehlau R, Shiau S, Wang S, He Y, Abrams EJ, Kuhn L, Tiemessen CT. Normalization of B Cell Subsets but Not T Follicular Helper Phenotypes in Infants With Very Early Antiretroviral Treatment. Front Pediatr 2021; 9:618191. [PMID: 33996678 PMCID: PMC8118125 DOI: 10.3389/fped.2021.618191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/01/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Infant HIV-1-infection is associated with high morbidity and mortality if antiretroviral treatment (ART) is not initiated promptly. We characterized development of circulating T follicular helper cells (cTfh) and their relationship to naïve/memory B cell subsets in a cohort of neonates initiating ART within the first week of life. Methods: Infants were diagnosed within 48 hours of birth and started ART as soon as possible. The frequency and phenotype of cTfh and B cells were analyzed at enrollment (birth -19 days) and at 4, 12, and 72 weeks of age in blood of 27 HIV-1-intrauterine-infected and 25 HIV-1 exposed uninfected (HEU) infants as part of a study in Johannesburg, South Africa. cTfh cells were divided into Tfh1, Tfh2, and Tfh17 subsets. B cell phenotypes were defined as naïve, resting memory, activated memory and tissue-like memory cells. Results: HIV-1-infected infants had higher frequencies of cTfh cells than HEU infants up to 12 weeks of age and these cTfh cells were polarized toward the Tfh1 subset. Higher frequencies of Tfh1 and lower frequencies of Tfh2 and Tfh17 correlated with lower CD4+ T cell percentages. Lower frequencies of resting memory, with corresponding higher frequencies of activated memory B cells, were observed with HIV-1 infection. Importantly, dysregulations in B cell, but not cTfh cell, subsets were normalized by 72 weeks. Conclusion: Very early ART initiation in HIV-1-infected infants normalizes B cell subsets but does not fully normalize perturbations in cTfh cell subsets which remain Tfh1 polarized at 72 weeks. It remains to be determined if very early ART improves vaccine antibody responses despite the cTfh and B cell perturbations observed over the time course of this study.
Collapse
Affiliation(s)
- Sharon Shalekoff
- Centre for HIV & STIs, National Institute for Communicable Diseases and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shayne Loubser
- Centre for HIV & STIs, National Institute for Communicable Diseases and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Bianca Da Costa Dias
- Centre for HIV & STIs, National Institute for Communicable Diseases and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Renate Strehlau
- Empilweni Services and Research Unit, Rahima Moosa Mother and Child Hospital, Department of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stephanie Shiau
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, United States
| | - Shuang Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York City, NY, United States
| | - Yun He
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York City, NY, United States
| | - Elaine J. Abrams
- ICAP at Columbia University, Mailman School of Public Health, and Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York City, NY, United States
| | - Louise Kuhn
- Gertrude H. Sergievsky Center, Vagelos College of Physicians and Surgeons, and Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York City, NY, United States
| | - Caroline T. Tiemessen
- Centre for HIV & STIs, National Institute for Communicable Diseases and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Ruschil C, Gabernet G, Lepennetier G, Heumos S, Kaminski M, Hracsko Z, Irmler M, Beckers J, Ziemann U, Nahnsen S, Owens GP, Bennett JL, Hemmer B, Kowarik MC. Specific Induction of Double Negative B Cells During Protective and Pathogenic Immune Responses. Front Immunol 2020; 11:606338. [PMID: 33391273 PMCID: PMC7775384 DOI: 10.3389/fimmu.2020.606338] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/17/2020] [Indexed: 01/12/2023] Open
Abstract
Double negative (DN) (CD19+CD20lowCD27-IgD-) B cells are expanded in patients with autoimmune and infectious diseases; however their role in the humoral immune response remains unclear. Using systematic flow cytometric analyses of peripheral blood B cell subsets, we observed an inflated DN B cell population in patients with variety of active inflammatory conditions: myasthenia gravis, Guillain-Barré syndrome, neuromyelitis optica spectrum disorder, meningitis/encephalitis, and rheumatic disorders. Furthermore, we were able to induce DN B cells in healthy subjects following vaccination against influenza and tick borne encephalitis virus. Transcriptome analysis revealed a gene expression profile in DN B cells that clustered with naïve B cells, memory B cells, and plasmablasts. Immunoglobulin VH transcriptome sequencing and analysis of recombinant antibodies revealed clonal expansion of DN B cells that were targeted against the vaccine antigen. Our study suggests that DN B cells are expanded in multiple inflammatory neurologic diseases and represent an inducible B cell population that responds to antigenic stimulation, possibly through an extra-follicular maturation pathway.
Collapse
Affiliation(s)
- Christoph Ruschil
- Department of Neurology and Stroke, Eberhard-Karls University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Eberhard-Karls University, Tübingen, Germany
| | - Gisela Gabernet
- Quantitative Biology Center (QBiC), Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Gildas Lepennetier
- Department of Neurology, Technische Universität München, Munich, Germany
| | - Simon Heumos
- Quantitative Biology Center (QBiC), Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Miriam Kaminski
- Department of Psychiatry and Psychotherapy, Charite Universitätsmedizin, Berlin, Germany
| | - Zsuzsanna Hracsko
- Department of Internal Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Chair of Experimental Genetics, Technische Universität München, Freising, Germany
| | - Ulf Ziemann
- Department of Neurology and Stroke, Eberhard-Karls University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Eberhard-Karls University, Tübingen, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Gregory P. Owens
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO, United States
| | - Jeffrey L. Bennett
- Department of Neurology, Programs in Neuroscience and Immunology University of Colorado School of Medicine, Aurora, CO, United States
- Department of Ophthalmology, Programs in Neuroscience and Immunology University of Colorado School of Medicine, Aurora, CO, United States
| | - Bernhard Hemmer
- Department of Neurology, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Markus C. Kowarik
- Department of Neurology and Stroke, Eberhard-Karls University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Eberhard-Karls University, Tübingen, Germany
- Department of Neurology, Technische Universität München, Munich, Germany
| |
Collapse
|
4
|
Wang Y, Liu Z, Wu J, Li F, Li G, Dong N. Profiling circulating T follicular helper cells and their effects on B cells in post-cardiac transplant recipients. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1369. [PMID: 33313114 PMCID: PMC7723658 DOI: 10.21037/atm-20-3027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background To evaluate circulating T follicular helper (cTfh) cells and characterize their function in chronic-phase recipients after heart transplantation. Methods Participants were divided into healthy control (HC, n=40), preoperative (Pre, n=40), and post-transplantation chronic-phase recipient (1-year, n=40) groups. The percentages of cTfh cell subsets and CD19+ B cell subsets were measured using flow cytometry. In vitro co-culture experiments were performed using cTfh cells and B cells isolated by fluorescence-activated cell sorting. Plasma concentrations of IL-21, chemokine ligand 13 (CXCL13), immunoglobulin G1 (IgG1), and immunoglobulin G3 (IgG3) were quantified using enzyme-linked immunosorbent assays (ELISA). Results cTfh and programmed cell death protein 1-positive (PD-1+) cTfh cells, the cTfh17/cTfh ratio, and class-switched memory B cells in peripheral blood were significantly increased in the 1-year group versus the HC and Pre groups (P<0.01), whereas the cTfh1/cTfh ratio and number of naïve B cells were significantly decreased in the 1-year group. Co-culture experiments showed that cTfh cells promoted B cell differentiation to plasmablasts. In the 1-year group, cTfh and PD-1+ cTfh cell numbers were positively correlated with plasmablasts in CD19+ B cells (P<0.01). The cTfh17/cTfh ratio was positively correlated with IgG3 concentrations in plasma (P<0.01). The plasma concentrations of interleukin-21 (IL-21) and CXCL13 in the 1-year group were increased compared to the HC and Pre groups (P<0.05). Chronic-phase recipients had increased proportions of CD4+CXCR5+ and CD4+CXCR5+PD-1+ cTfh cells, with a cTfh1-to-cTfh17 subtype conversion. An increased number of cTfh cells was positively correlated with B cell differentiation to plasmablasts, class-switched memory B cells, and greater IgG production. Conclusions During the chronic phase, the proportion of cTfh cells increased and enhanced B cell responses. The cTfh-related soluble factors CXCL13 and IL-21 may regulate the immunopathogenesis of chronic immune injury. Thus, cTfh cells may drive long-term immune rejection in chronic-phase recipients after heart transplantation.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zongtao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Geng Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
You X, Zhang R, Shao M, He J, Chen J, Liu J, Zhang X, Liu X, Jia R, Sun X, Li Z. Double Negative B Cell Is Associated With Renal Impairment in Systemic Lupus Erythematosus and Acts as a Marker for Nephritis Remission. Front Med (Lausanne) 2020; 7:85. [PMID: 32318574 PMCID: PMC7155774 DOI: 10.3389/fmed.2020.00085] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/02/2020] [Indexed: 12/23/2022] Open
Abstract
Objective: Recent studies on double negative B cells (DN B cells) suggested that they have potential pathogenic roles in systemic lupus erythematosus (SLE). This study aimed to determine the circulating DN B cells in SLE patients and analyzed the clinical significance of this cell subset. Methods: Fifty-seven SLE patients and fifty healthy controls (HCs) were recruited in this study. Among the 57 SLE patients, 25 had lupus nephritis (LN). All patients were followed up for 24 weeks. Peripheral B cell subsets were analyzed by flow cytometry. Results: DN B cells were significantly elevated in the SLE patients, especially in the patients with LN (p < 0.01). DN B showed a positive correlation with 24-h urine protein excretion (24 h-UPE) levels (r = 0.444, p = 0.034) in LN patients, and inversely correlated with evaluated glomerular filtration rate (eGFR) (r = -0.351, p = 0.011). DN B cells had a positive correlation with plasma cells (r = 0.484, p < 0.001) and memory B cells (r = 0.703, p < 0.001). After treatment, decreased DN B cells were associated with LN alleviation (p = 0.002). In the follow-up, the remission rate of LN patients with decreased DN B cells was significantly higher than LN patients with increased DN B cells (83.33 vs. 25.00%, p = 0.030) at week 24. Conclusions: This study suggests that the peripheral DN B cells are positively correlated with the severity of renal damage in LN patients and may potentially be used as a prognostic marker in LN.
Collapse
Affiliation(s)
- Xujie You
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Ruijun Zhang
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Miao Shao
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Jiali Chen
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Jiajia Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Xia Zhang
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Xu Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Rulin Jia
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| |
Collapse
|
6
|
Min YG, Park C, Kwon YN, Shin JY, Sung JJ, Hong YH. B Cell Immunophenotyping and Transcriptional Profiles of Memory B Cells in Patients with Myasthenia Gravis. Exp Neurobiol 2019; 28:720-726. [PMID: 31902159 PMCID: PMC6946110 DOI: 10.5607/en.2019.28.6.720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune neuromuscular junction disorders mediated by various autoantibodies. Although most patients with MG require chronic immunosuppressive treatment to control disease activity, appropriate surveillance biomarkers that monitor disease activity or potential toxicity of immunosuppressants are yet to be developed. Herein, we investigated quantitative distribution of peripheral blood B cell subsets and transcriptional profiles of memory B cells (CD19+ CD27+) in several subgroups of MG patients classified according to the Myasthenia Gravis Foundation of America (MGFA) Clinical Classification. This study suggests potential immunologic B-cell markers that may guide treatment decision in future clinical settings.
Collapse
Affiliation(s)
- Young Gi Min
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Korea
| | - Canaria Park
- Seoul National University College of Medicine and Neuroscience Research Institute, Seoul National University Medical Research Council, Seoul 03080, Korea
| | - Young-Nam Kwon
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Korea.,Department of Neurology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 07061, Korea
| | - Je-Young Shin
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Korea
| | - Jung-Joon Sung
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Korea.,Seoul National University College of Medicine and Neuroscience Research Institute, Seoul National University Medical Research Council, Seoul 03080, Korea
| | - Yoon-Ho Hong
- Seoul National University College of Medicine and Neuroscience Research Institute, Seoul National University Medical Research Council, Seoul 03080, Korea.,Department of Neurology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 07061, Korea
| |
Collapse
|
7
|
OMIC Technologies and Vaccine Development: From the Identification of Vulnerable Individuals to the Formulation of Invulnerable Vaccines. J Immunol Res 2019; 2019:8732191. [PMID: 31183393 PMCID: PMC6512027 DOI: 10.1155/2019/8732191] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 12/16/2022] Open
Abstract
Routine vaccination is among the most effective clinical interventions to prevent diseases as it is estimated to save over 3 million lives every year. However, the full potential of global immunization programs is not realised because population coverage is still suboptimal. This is also due to the inadequate immune response and paucity of informative correlates of protection upon immunization of vulnerable individuals such as newborns, preterm infants, pregnant women, and elderly individuals as well as those patients affected by chronic and immune compromising medical conditions. In addition, these groups are undervaccinated for a number of reasons, including lack of awareness of vaccine-preventable diseases and uncertainty or misconceptions about the safety and efficacy of vaccination by parents and healthcare providers. The presence of these nonresponders/undervaccinated individuals represents a major health and economic burden to society, which will become particularly difficult to address in settings with limited public resources. This review describes innovative and experimental approaches that can help identify specific genomic profiles defining nonresponder individuals for whom specific interventions might be needed. We will provide examples that show how such information can be useful to identify novel biomarkers of safety and immunogenicity for future vaccine trials. Finally, we will discuss how system biology “OMICs” data can be used to design bioinformatic tools to predict the vaccination outcome providing genetic and molecular “signatures” of protective immune response. This strategy may soon enable identification of signatures highly predictive of vaccine safety, immunogenicity, and efficacy/protection thereby informing personalized vaccine interventions in vulnerable populations.
Collapse
|
8
|
Nelson CS, Fouda GG, Permar SR. Pediatric HIV-1 Acquisition and Lifelong Consequences of Infant Infection. CURRENT IMMUNOLOGY REVIEWS 2019; 15:131-138. [PMID: 33223981 PMCID: PMC7678020 DOI: 10.2174/1573395514666180531074047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/11/2018] [Accepted: 05/24/2018] [Indexed: 11/22/2022]
Abstract
Increased availability of antiretroviral therapy to pregnant and breastfeeding women in resource-limited areas has proven remarkably successful at reducing HIV vertical transmission rates over the past several decades. Yet, still more than 170,000 children are infected annually due to failures in therapy implementation, monitoring, and adherence. Mother-to-child transmission (MTCT) of HIV-1 can occur at one of several distinct stages of infant development - intrauterine, intrapartum, and postpartum. The heterogeneity of the maternal-fetal interface at each of these modes of transmission poses a challenge for the implementation of immune interventions to prevent all modes of HIV MTCT. However, using mother-infant human cohorts and nonhuman primate models of infant simian immunodeficiency virus (SIV) acquisition, investigators have made important observation about the biology of pediatric HIV infection and have identified unique protective immune factors for each mode of transmission. Knowledge of immune factors protective against HIV MTCT will be critical to the development of targeted immune therapies to prevent infant HIV acquisition and to bring an end to the pediatric AIDS epidemic.
Collapse
Affiliation(s)
- Cody S. Nelson
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Genevieve G.A. Fouda
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Sallie R. Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
9
|
McCarty B, Mwamzuka M, Marshed F, Generoso M, Alvarez P, Ilmet T, Kravietz A, Ahmed A, Borkowsky W, Unutmaz D, Khaitan A. Low Peripheral T Follicular Helper Cells in Perinatally HIV-Infected Children Correlate With Advancing HIV Disease. Front Immunol 2018; 9:1901. [PMID: 30197641 PMCID: PMC6117426 DOI: 10.3389/fimmu.2018.01901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/01/2018] [Indexed: 12/17/2022] Open
Abstract
Background T follicular helper (Tfh) cells are crucial for B cell differentiation and antigen-specific antibody production. Dysregulation of Tfh-mediated B cell help weakens B cell responses in HIV infection. Moreover, Tfh cells in the lymph node and peripheral blood comprise a significant portion of the latent HIV reservoir. There is limited data on the effects of perinatal HIV infection on Tfh cells in children. We examined peripheral Tfh (pTfh) cell frequencies and phenotype in HIV-infected children and their associations with disease progression, immune activation, and B cell differentiation. Methods In a Kenyan cohort of 76 perinatally HIV-infected children, comprised of 43 treatment-naïve (ART−) and 33 on antiretroviral therapy (ART+), and 42 healthy controls (HIV−), we identified memory pTfh cells, T cell activation markers, and B cell differentiation states using multi-parameter flow cytometry. Soluble CD163 and intestinal fatty acid-binding protein plasma levels were quantified by ELISA. Results ART− children had reduced levels of pTfh cells compared with HIV− children that increased with antiretroviral therapy. HIV+ children had higher programmed cell death protein 1 (PD-1) expression on pTfh cells, regardless of treatment status. Low memory pTfh cells with elevated PD-1 levels correlated with advancing HIV disease status, indicated by increasing HIV viral loads and T cell and monocyte activation, and decreasing %CD4 and CD4:CD8 ratios. Antiretroviral treatment, particularly when started at younger ages, restored pTfh cell frequency and eliminated correlations with disease progression, but failed to lower PD-1 levels on pTfh cells and their associations with CD4 T cell percentages and activation. Altered B cell subsets, with decreased naïve and resting memory B cells and increased activated and tissue-like memory B cells in HIV+ children, correlated with low memory pTfh cell frequencies. Last, HIV+ children had decreased proportions of CXCR5+ CD8 T cells that associated with low %CD4 and CD4:CD8 ratios. Conclusion Low memory pTfh cell frequencies with high PD-1 expression in HIV+ children correlate with worsening disease status and an activated and differentiated B cell profile. This perturbed memory pTfh cell population may contribute to weak vaccine and HIV-specific antibody responses in HIV+ children. Restoring Tfh cell capacity may be important for novel pediatric HIV cure and vaccine strategies.
Collapse
Affiliation(s)
- Bret McCarty
- Department of Pediatrics, Division of Infectious Diseases, New York University School of Medicine, New York, NY, United States
| | | | | | - Matthew Generoso
- Department of Pediatrics, Division of Infectious Diseases, New York University School of Medicine, New York, NY, United States
| | - Patricia Alvarez
- Department of Pediatrics, Division of Infectious Diseases, New York University School of Medicine, New York, NY, United States
| | - Tiina Ilmet
- Department of Pediatrics, Division of Infectious Diseases, New York University School of Medicine, New York, NY, United States
| | - Adam Kravietz
- Department of Pediatrics, Division of Infectious Diseases, New York University School of Medicine, New York, NY, United States
| | | | - William Borkowsky
- Department of Pediatrics, Division of Infectious Diseases, New York University School of Medicine, New York, NY, United States
| | - Derya Unutmaz
- Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Alka Khaitan
- Department of Pediatrics, Division of Infectious Diseases, New York University School of Medicine, New York, NY, United States.,Department of Microbiology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
10
|
Xu H, Ziani W, Shao J, Doyle-Meyers LA, Russell-Lodrigue KE, Ratterree MS, Veazey RS, Wang X. Impaired Development and Expansion of Germinal Center Follicular Th Cells in Simian Immunodeficiency Virus-Infected Neonatal Macaques. THE JOURNAL OF IMMUNOLOGY 2018; 201:1994-2003. [PMID: 30104244 DOI: 10.4049/jimmunol.1800235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/15/2018] [Indexed: 12/16/2022]
Abstract
Germinal center (GC) CD4+ follicular Th (Tfh) cells are critical for cognate B cell help in humoral immune responses to pathogenic infections. Although Tfh cells are expanded or depleted in HIV/SIV-infected adults, the effects of pediatric HIV/SIV infection on Tfh cells remain unclear. In this study, we examined changes in lymphoid follicle formation in lymph nodes focusing on GC Tfh cells, B cell development, and differentiation in SIV-infected neonatal rhesus macaques (Macaca mulatta) compared with age-matched cohorts. Our data showed that follicles and GCs of normal infants rapidly formed in the first few weeks of age, in parallel with increasing GC Tfh cells in various lymphoid tissues. In contrast, GC development and GC Tfh cells were markedly impaired in SIV-infected infants. There was a very low frequency of GC Tfh cells throughout SIV infection in neonates and subsequent infants, accompanied by high viremia, reduction of B cell proliferation/resting memory B cells, and displayed proinflammatory unresponsiveness. These findings indicate neonatal HIV/SIV infection compromises the development of GC Tfh cells, likely contributing to ineffective Ab responses, high viremia, and eventually rapid disease progression to AIDS.
Collapse
Affiliation(s)
- Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Widade Ziani
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Jiasheng Shao
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Lara A Doyle-Meyers
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Kasi E Russell-Lodrigue
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Marion S Ratterree
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Ronald S Veazey
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Xiaolei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| |
Collapse
|
11
|
Singh R, Mukherjee A, Singla M, Vajpayee M, Negi N, Kabra SK, Lodha R, Das BK. Impact of HIV infection and highly active antiretroviral therapy (HAART) on B cell subpopulations in children. J Med Virol 2018; 90:1222-1231. [PMID: 29575050 DOI: 10.1002/jmv.25074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/15/2018] [Indexed: 01/01/2023]
Abstract
B-cells play an important role in defending children against various infections. In view of scare data, we undertook this prospective cohort study to describe B cell compartment in HIV infected children (<5 years of age) and the effect of HAART on B cell subpopulations. HIV infected children (<5 years) from Pediatric HIV services of the Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, were recruited (April 2012-December 2015). The enrolled HIV-1 infected children (n = 59) were followed up regularly for 12 months; healthy controls (n = 51) included HIV uninfected children with no major illness. Flow cytometry was performed on fresh EDTA-treated blood samples to characterize B cell subpopulations. In HIV-infected children, marked depletion of naive (P = 0.003), non-switched memory (P = 0.02), mature (P = 0.0005), resting memory (P < 0.0001) B cells, and expansion of double negative memory (P < 0.0001), activated memory (P < 0.0001) and tissue like memory (P < 0.0001) B cells were observed as compared to healthy controls. In children started on HAART, at the end of 12 months of therapy, frequencies of non-switched memory (P = 0.04), switched memory (P = 0.01), and resting memory (P = 0.003) B cells were lower; activated memory (P = 0.04), and tissue-like memory (P = 0.0001) B cells were still higher than healthy controls. HIV infection resulted in reduced memory B cells in HIV infected children. Following HAART, there was normalization of some B cell subpopulations. The study emphasizes the need of re-vaccination in HIV infected children to maintain the memory B cell pool and adequate humoral immune response against infections.
Collapse
Affiliation(s)
- Ravinder Singh
- Department of Pediatrics, AIIMS, New Delhi, Delhi, India.,Department of Microbiology, AIIMS, New Delhi, Delhi, India
| | | | - Mohit Singla
- Department of Pediatrics, AIIMS, New Delhi, Delhi, India
| | - Madhu Vajpayee
- Department of Microbiology, AIIMS, New Delhi, Delhi, India
| | - Neema Negi
- Department of Microbiology, AIIMS, New Delhi, Delhi, India
| | - Sushil K Kabra
- Department of Pediatrics, AIIMS, New Delhi, Delhi, India
| | - Rakesh Lodha
- Department of Pediatrics, AIIMS, New Delhi, Delhi, India
| | - Bimal K Das
- Department of Microbiology, AIIMS, New Delhi, Delhi, India
| |
Collapse
|
12
|
Centuori SM, Gomes CJ, Kim SS, Putnam CW, Larsen BT, Garland LL, Mount DW, Martinez JD. Double-negative (CD27 -IgD -) B cells are expanded in NSCLC and inversely correlate with affinity-matured B cell populations. J Transl Med 2018; 16:30. [PMID: 29448960 PMCID: PMC5815250 DOI: 10.1186/s12967-018-1404-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/07/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The presence of B cells in early stage non-small cell lung cancer (NSCLC) is associated with longer survival, however, the role these cells play in the generation and maintenance of anti-tumor immunity is unclear. B cells differentiate into a variety of subsets with differing characteristics and functions. To date, there is limited information on the specific B cell subsets found within NSCLC. To better understand the composition of the B cell populations found in NSCLC we have begun characterizing B cells in lung tumors and have detected a population of B cells that are CD79A+CD27-IgD-. These CD27-IgD- (double-negative) B cells have previously been characterized as unconventional memory B cells and have been detected in some autoimmune diseases and in the elderly population but have not been detected previously in tumor tissue. METHODS A total of 15 fresh untreated NSCLC tumors and 15 matched adjacent lung control tissues were dissociated and analyzed by intracellular flow cytometry to detect the B cell-related markers CD79A, CD27 and IgD. All CD79A+ B cells subsets were classified as either naïve (CD27-IgD+), affinity-matured (CD27+IgD-), early memory/germinal center cells (CD27+IgD+) or double-negative B cells (CD27-IgD-). Association of double-negative B cells with clinical data including gender, age, smoking status, tumor diagnosis and pathologic differentiation status were also examined using the logistic regression analysis for age and student's t-test for all other variables. Associations with other B cell subpopulations were examined using Spearman's rank correlation. RESULTS We observed that double-negative B cells were frequently abundant in lung tumors compared to normal adjacent controls (13 out of 15 cases), and in some cases made up a substantial proportion of the total B cell compartment. The presence of double-negative cells was also found to be inversely related to the presence of affinity-matured B cells within the tumor, Spearman's coefficient of - 0.76. CONCLUSIONS This study is the first to observe the presence of CD27-IgD- double-negative B cells in human NSCLC and that this population is inversely correlated with traditional affinity-matured B cell populations.
Collapse
Affiliation(s)
- Sara M. Centuori
- University of Arizona Cancer Center, University of Arizona, 1515 N. Campbell Ave., Tucson, AZ 85724 USA
| | - Cecil J. Gomes
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724 USA
| | - Samuel S. Kim
- Department of Surgery, University of Arizona, Tucson, AZ 85724 USA
| | - Charles W. Putnam
- University of Arizona Cancer Center, University of Arizona, 1515 N. Campbell Ave., Tucson, AZ 85724 USA
- Department of Surgery, University of Arizona, Tucson, AZ 85724 USA
| | - Brandon T. Larsen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ 85259 USA
| | - Linda L. Garland
- University of Arizona Cancer Center, University of Arizona, 1515 N. Campbell Ave., Tucson, AZ 85724 USA
- Department of Medicine, Division of Hematology/Oncology, University of Arizona, Tucson, AZ 85724 USA
| | - David W. Mount
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85724 USA
| | - Jesse D. Martinez
- University of Arizona Cancer Center, University of Arizona, 1515 N. Campbell Ave., Tucson, AZ 85724 USA
- Cell & Molecular Medicine, University of Arizona, Tucson, AZ 85724 USA
| |
Collapse
|
13
|
Cotugno N, De Armas L, Pallikkuth S, Rinaldi S, Issac B, Cagigi A, Rossi P, Palma P, Pahwa S. Perturbation of B Cell Gene Expression Persists in HIV-Infected Children Despite Effective Antiretroviral Therapy and Predicts H1N1 Response. Front Immunol 2017; 8:1083. [PMID: 28955330 PMCID: PMC5600985 DOI: 10.3389/fimmu.2017.01083] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/21/2017] [Indexed: 12/17/2022] Open
Abstract
Despite effective antiretroviral therapy (ART), HIV-infected individuals with apparently similar clinical and immunological characteristics can vary in responsiveness to vaccinations. However, molecular mechanisms responsible for such impairment, as well as biomarkers able to predict vaccine responsiveness in HIV-infected children, remain unknown. Following the hypothesis that a B cell qualitative impairment persists in HIV-infected children (HIV) despite effective ART and phenotypic B cell immune reconstitution, the aim of the current study was to investigate B cell gene expression of HIV compared to age-matched healthy controls (HCs) and to determine whether distinct gene expression patterns could predict the ability to respond to influenza vaccine. To do so, we analyzed prevaccination transcriptional levels of a 96-gene panel in equal numbers of sort-purified B cell subsets (SPBS) isolated from peripheral blood mononuclear cells using multiplexed RT-PCR. Immune responses to H1N1 antigen were determined by hemaglutination inhibition and memory B cell ELISpot assays following trivalent-inactivated influenza vaccination (TIV) for all study participants. Although there were no differences in terms of cell frequencies of SPBS between HIV and HC, the groups were distinguishable based upon gene expression analyses. Indeed, a 28-gene signature, characterized by higher expression of genes involved in the inflammatory response and immune activation was observed in activated memory B cells (CD27+CD21−) from HIV when compared to HC despite long-term viral control (>24 months). Further analysis, taking into account H1N1 responses after TIV in HIV participants, revealed that a 25-gene signature in resting memory (RM) B cells (CD27+CD21+) was able to distinguish vaccine responders from non-responders (NR). In fact, prevaccination RM B cells of responders showed a higher expression of gene sets involved in B cell adaptive immune responses (APRIL, BTK, BLIMP1) and BCR signaling (MTOR, FYN, CD86) when compared to NR. Overall, these data suggest that a perturbation at a transcriptional level in the B cell compartment persists despite stable virus control achieved through ART in HIV-infected children. Additionally, the present study demonstrates the potential utility of transcriptional evaluation of RM B cells before vaccination for identifying predictive correlates of vaccine responses in this population.
Collapse
Affiliation(s)
- Nicola Cotugno
- Research Unit in Congenital and Perinatal Infection, Immune and Infectious Diseases Division, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy.,Miami Center for AIDS Research, Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Lesley De Armas
- Miami Center for AIDS Research, Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Suresh Pallikkuth
- Miami Center for AIDS Research, Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Stefano Rinaldi
- Research Unit in Congenital and Perinatal Infection, Immune and Infectious Diseases Division, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy.,Miami Center for AIDS Research, Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Biju Issac
- Sylvester Cancer Center, Department of Biostatistics and Bioinformatics, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Alberto Cagigi
- Research Unit in Congenital and Perinatal Infection, Immune and Infectious Diseases Division, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy.,Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Paolo Rossi
- Research Unit in Congenital and Perinatal Infection, Immune and Infectious Diseases Division, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy.,Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital-University of Rome Tor Vergata, Rome, Italy
| | - Paolo Palma
- Research Unit in Congenital and Perinatal Infection, Immune and Infectious Diseases Division, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Savita Pahwa
- Miami Center for AIDS Research, Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
14
|
de Bree GJ, Wheatley AK, Lynch RM, Prabhakaran M, Grijsen ML, Prins JM, Schmidt SD, Koup RA, Mascola JR, McDermott AB. Longitudinal dynamics of the HIV-specific B cell response during intermittent treatment of primary HIV infection. PLoS One 2017; 12:e0173577. [PMID: 28296911 PMCID: PMC5351995 DOI: 10.1371/journal.pone.0173577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/23/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Neutralizing antibodies develop in natural HIV-1 infection. Their development often takes several years and may rely on chronic virus exposure. At the same time recent studies show that treatment early in infection may provide opportunities for immune preservation. However, it is unknown how intermittent treatment in early infection affects development of the humoral immune response over time. We investigate the effect of cART in early HIV infection on the properties of the memory B cell compartment following 6 months of cART or in the absence of treatment. The patients included participated in the Primo-SHM trial where patients with an early HIV-1 infection were randomized to no treatment or treatment for 24 or 60 weeks. METHODS Primo-SHM trial patients selected for the present study were untreated (n = 23) or treated for 24 weeks (n = 24). Here we investigate memory B cell properties at viral set-point and at a late time point (respectively median 54 and 73 weeks) before (re)-initiation of treatment. RESULTS At viral set-point, the memory B cell compartment in treated patients demonstrated significantly lower fractions of antigen-primed, activated, memory B cells (p = 0.006). In contrast to untreated patients, in treated patients the humoral HIV-specific response reached a set point over time. At a transcriptional level, sets of genes that showed enhanced expression in memory B cells at viral setpoint in untreated patients, conversely showed rapid increase of expression of the same genes in treated patients at the late time point. CONCLUSION These data suggest that, although the memory B cell compartment is phenotypically preserved until viral setpoint after treatment interruption, the development of the HIV-specific antibody response may benefit from exposure to HIV. The effect of viral exposure on B cell properties is also reflected by longitudinal changes in transcriptional profile in memory B cells over time in early treated patients.
Collapse
Affiliation(s)
- Godelieve J. de Bree
- Department of Internal Medicine, Academic Medical Center, Amsterdam, the Netherlands
- Institute for Global Health and Development, University of Amsterdam, Amsterdam, The Netherlands
| | - Adam K. Wheatley
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Rebecca M. Lynch
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Madhu Prabhakaran
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Marlous L. Grijsen
- Department of Internal Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Jan M. Prins
- Department of Internal Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Stephen D. Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Adrian B. McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
15
|
Bamford A, Manno EC, Mellado MJ, Spoulou V, Marques L, Scherpbier HJ, Niehues T, Oldakowska A, Rossi P, Palma P. Immunisation practices in centres caring for children with perinatally acquired HIV: A call for harmonisation. Vaccine 2016; 34:5587-5594. [PMID: 27727030 DOI: 10.1016/j.vaccine.2016.09.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/07/2016] [Accepted: 09/17/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND Current national immunisation schedules differ between countries in terms of vaccine formulation, timing of vaccinations and immunisation programme funding and co-ordination. As a result, some HIV infected paediatric population may be left susceptible to vaccine preventable infections. Vaccines used in healthy population should be subjected to high quality ethical research and be explicitly validated for use in children with special vaccination needs such as those infected with HIV. This survey was completed to assess current vaccination practices and attitudes toward vaccination among pediatricians who care for vertically HIV infected children. METHODS An online questionnaire was completed by 46 experts in paediatric HIV-infection from the Paediatric European Network for Treatment of AIDS (PENTA). Data were collected between November 2013 and March 2014. RESULTS 46units looking after 2465 patients completed the questionnaire. The majority of units (67%) reported that common childhood immunisation were administered by the family doctor or local health services rather than in the HIV specialist centre. Vaccination histories were mostly incomplete and difficult to obtain for 40% of the studied population. Concerns were reported regarding the use of live attenuated vaccines, such as varicella and rotavirus, and these were less frequently recommended (61% and 28% of the units respectively). Monitoring of vaccine responses was employed in a minority of centres (41%). A range of different assays were used resulting in diverse units of measurement and proposed correlates of protection. CONCLUSION Vaccination practices for perinatally HIV-infected children vary a great deal between countries. Efforts should be made to improve communication and documentation of vaccinations in healthcare settings and to harmonise recommendations relating to additional vaccines for HIV infected children and the use of laboratory assays to guide immunisation. This will ultimately improve coverage and vaccine induced immunity in this vulnerable patient group.
Collapse
Affiliation(s)
- Alasdair Bamford
- Department of Paediatric Infectious Diseases, Great Ormond Street Hospital NHS Trust, London, UK
| | - Emma C Manno
- Department of Pediatrics, Unit of Immune and Infectious Diseases, Children's Hospital "Bambino Gesu", Rome, Italy; Department of Systems Medicine, Chair of Pediatric, "University of Rome Tor Vergata", Rome, Italy
| | - Maria Jose Mellado
- Servicio de Pediatría y Enfermedades Infecciosas y Tropicales, Hospital Universitario Infantil La Paz, Madrid, Spain
| | - Vana Spoulou
- Department of Infectious Diseases, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Laura Marques
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Centro Hospitalar do Porto, Porto, Portugal
| | - Henriette J Scherpbier
- Department of Paediatric Haematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Centre, Amsterdam, The Netherlands
| | - Tim Niehues
- Department of Pediatrics, HELIOS Clinic Krefeld, Krefeld, Germany
| | - Agnieszka Oldakowska
- Pediatric Department of Infectious Diseases, Medical University of Warsaw, Warszawa, Poland
| | - Paolo Rossi
- Department of Pediatrics, Unit of Immune and Infectious Diseases, Children's Hospital "Bambino Gesu", Rome, Italy; Department of Systems Medicine, Chair of Pediatric, "University of Rome Tor Vergata", Rome, Italy
| | - Paolo Palma
- Department of Pediatrics, Unit of Immune and Infectious Diseases, Children's Hospital "Bambino Gesu", Rome, Italy; Research Unit in Congenital and Perinatal Infections, Academic Department of Pediatrics, Division of Immune and Infectious Diseases, IRCCS Ospedale Pediatrico Bambino Gesù, Roma, Italy.
| | | |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The induction of a virus-clearing humoral immune response in natural HIV infection is impaired. Insights into early events in HIV infection that affect B-cell responses and antibody development are addressed and related to strategies for the design of an HIV vaccine. RECENT FINDINGS Broadly neutralizing antibody responses do not develop early in HIV-1 infection, and recent reports highlight the role of preexisting suboptimal B-cell populations that can dominate the early antibody response. Furthermore, from the earliest phases of infection, virus replication is a driving force behind alterations in the B cell and T-follicular helper cell (TFH) compartments. Paradoxically, the factors that drive these abnormalities, such as high virus load, duration of infection, and increased viral diversity, are likely necessary for the development of both TFH and broadly neutralizing antibodies. SUMMARY These data provide new insights into prerequisites for an effective HIV vaccine. First, a vaccine should induce specific B-cell lineages so that preexisting cross-reactivity is avoided and, additionally, it must mimic high levels of diverse antigen in the absence of chronic virus replication within immune cells to activate high levels of quality of TFH and stimulate antibody maturation.
Collapse
|
17
|
Placental transfer of anti-group B Streptococcus immunoglobulin G antibody subclasses from HIV-infected and uninfected women to their uninfected infants. AIDS 2016; 30:471-5. [PMID: 26760235 PMCID: PMC4711380 DOI: 10.1097/qad.0000000000000923] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Placental antibody transfer is impaired in the context of HIV infection, which may render HIV-exposed, uninfected infants vulnerable to group B Streptococcus (GBS) disease. The GBS antibody response predominately consists of immunoglobulin G2 (IgG2) antibody. Thus we determined whether concentration and placental transfer of anti-GBS antibody subclasses was altered in HIV-infected compared with HIV-uninfected mothers. DESIGN A retrospective analysis of anti-GBS antibody subclasses in 38 HIV-infected and 33 HIV-uninfected mothers and their uninfected infants. METHODS Sera were analysed using a novel flow cytometric assay that quantified binding of IgG1, IgG2, IgG3 and IgG4 to serotype (ST)Ia, STIII and STV GBS bacteria. RESULTS IgG2 binding to GBS STIa and V was lower in HIV-infected women compared with HIV-uninfected women. Moreover, IgG2 binding to GBS STIa was also lower in HIV-exposed, uninfected infants compared with unexposed infants. However, there were no statistically significant differences in the transplacental transfer ratio of IgG2 for any GBS serotype. The transplacental transfer of total IgG was reduced for GBS STIII and V and IgG1 subclass for STIII; placental transfer of all other subclasses was comparable in HIV-affected and HIV-unaffected pregnancies. CONCLUSION Anti-GBS IgG2 placental transfer is not affected by HIV infection. This is important for functional antibody against the capsular polysaccharide of GBS and provides confidence that maternal GBS vaccination may result in functional activity in HIV-infected and uninfected women.
Collapse
|