1
|
Sharma S, Ghosh R, Marianesan AB, Hussain S, Pandey JD, Kumar M. Nanostructured lipid carriers in Rheumatoid Arthritis: treatment, advancements and applications. Inflammopharmacology 2025; 33:941-958. [PMID: 40025299 DOI: 10.1007/s10787-025-01669-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/21/2025] [Indexed: 03/04/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that affects the joints and causes pain, swelling, and deformity. Current treatments, including nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, and disease-modifying antirheumatic drugs, often have limited efficacy and adverse side effects. Nanostructured lipid carriers (NLCs) are promising drug delivery agents for treating RA. NLCs are comprised of solid and liquid lipids, forming a nanostructured matrix that enhances drug solubility, stability, and controlled release. They offer advantages over traditional carriers such as improved skin penetration, increased bioavailability, and reduced systemic side effects. Topical NLC formulations show improved stability and skin absorption, targeting drugs specifically to the affected joints, thus reducing the required dose and systemic exposure. Studies on NLCs for delivering anti-inflammatory and antirheumatic drugs, such as methotrexate, indomethacin, and curcumin, in RA animal models indicate the potential for improved therapeutic efficacy and safety. NLCs represent a promising approach for targeted RA drug delivery, offering better efficacy, fewer side effects, and higher patient compliance. However, further research is needed to optimize NLC formulations and evaluate their clinical efficacy and safety in RA patients. The development of NLC-based drug delivery systems for RA treatment may lead to more effective and well-tolerated therapies, thereby improving the quality of life of patients with this debilitating disease.
Collapse
Affiliation(s)
- Swarnika Sharma
- Hari College of Pharmacy, Malhipur Road Jandheri, Saharanpur, Uttar Pradesh, India
| | - Rashmi Ghosh
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, Punjab, 142001, India
| | | | - Sumaya Hussain
- College of Pharmacy,, Stephens Group of Institutions, Jammu, 181102, Jammu and Kashmir, India
| | - Jai Deo Pandey
- Rajarshi Rananjay Sinh College of Pharmacy, Maharaja Bhawan Baksh Singh Nagar, Amethi, Uttar Pradesh, 227405, India
| | - Manish Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, Punjab, 142001, India.
| |
Collapse
|
2
|
Ali YB, Hasan NM, El-Maadawy EA, Bassyouni IH, El-Shahat M, Talaat RM. Association between IL-6, miRNA-146a, MALAT1 genetic polymorphisms and risk of rheumatoid arthritis. Per Med 2024; 21:277-294. [PMID: 39263956 DOI: 10.1080/17410541.2024.2393072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/14/2022] [Indexed: 09/13/2024]
Abstract
Aim: This study aimed to investigate the associations between single nucleotide polymorphisms (SNPs) of IL-6 (-174G/C), microRNA146a (rs2910164C/G) and MALAT1 (rs619586A/G) and susceptibility to rheumatoid arthritis (RA) in Egyptians.Methods: SNPs were genotyped in 101 RA patients and 104 controls. Expression levels were evaluated either by Enzyme-linked immunosorbent assay (ELISA) for IL-6 or quantitative real-time PCR (qRT-PCR) for miR-146a and MALAT1.Results: IL-6-174 GC (OR = 3.422) genotype, IL-6-174 C allele (OR = 2.565), miR-146a (rs2910164) CG (OR = 2.190) and MALAT1 (rs619586) AA (OR = 4.125) genotypes and A allele (OR = 6.122) could be considered as risk factors for RA. An increase in the expression of IL-6, miR-146a and MALAT1 was detected in RA patients, which was independent of any SNP.Conclusion: SNPs of IL-6, miR-146a and MALAT1were linked to RA predisposition in Egyptians.
Collapse
Affiliation(s)
- Yasser Bm Ali
- Molecular Biology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), University of Sadat City, 32958, Egypt
| | - Noura Ma Hasan
- Molecular Biology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), University of Sadat City, 32958, Egypt
| | - Eman A El-Maadawy
- Molecular Biology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), University of Sadat City, 32958, Egypt
| | - Iman H Bassyouni
- Rheumatology & Rehabilitation Department, Faculty of Medicine, Cairo University, Cairo, 32958, Egypt
| | - Mohamed El-Shahat
- Molecular Biology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), University of Sadat City, 32958, Egypt
| | - Roba M Talaat
- Molecular Biology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), University of Sadat City, 32958, Egypt
| |
Collapse
|
3
|
Benahmed D, Abbadi M, Zaoui D, Hamoudi HA, Boukouaci W, Bouguerra-Aouichat S, Salah SS. Tumor necrosis factor alpha induced protein 3, interleukin 10, tumor necrosis factor alpha, and interleukin 17 F genes polymorphisms in Algerian patients with rheumatoid arthritis. Mol Biol Rep 2024; 51:545. [PMID: 38642181 DOI: 10.1007/s11033-024-09525-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/20/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a systemic autoimmune disease with chronic inflammation. Its pathogenesis involves immunological, genetic, and environmental factors. We investigate the association between Tumor Necrosis Factor α Protein 3 (TNFAIP3), Interleukin 10 (IL10), Tumor Necrosis Factor α (TNF α), and Interleukin 17 F (IL17F) polymorphisms with susceptibility to RA. METHODS AND RESULTS 191 patients with RA diagnosed according to the American College of Rheumatology (ACR)/ European League Against Rheumatism (EULAR) classification and 190 healthy subjects were recruited. Rheumatoid factor (RF), anti-citrullinated peptide antibodies (ACPA), and C-reactive protein (CRP) were measured. Genotyping of the polymorphisms was performed by real-time PCR. Analysis of the allelic frequencies of TNFAIP3 showed a positive association OR (95% CI) = 1.46 (1.01-2.09); p = 0.04, but failed to meet the criteria of significance after Bonferroni Correction. The genotypic and allelic distribution of the IL10, IL17F, and TNFα showed no significant difference when comparing the RA group with controls. Furthermore, the genotype codominant model shows a moderate positive association in the presence of ACPA (OR (95% CI) = 2.82 (1.22-6.24); p = 0.01. None of the polymorphisms studied was associated with RF and CRP production. CONCLUSION Our results show that there is a tendency for the AG genotype of IL10-1082 to be associated with the production of ACPA in patients with RA. None of the variants studied were associated with RA susceptibility in Algerians.
Collapse
Affiliation(s)
- D Benahmed
- Team Cellular and Molecular Physiopathology, Laboratory of Biology and physiology of organisms, Faculty of Biological Sciences, Houari Boumediene, USTHB, Algiers, Algeria.
- Immunology Department, Mustapha Bacha Teaching Hospital, Algiers, Algeria.
- Department of Natural and Life Sciences, University of Algiers, Benyoucef Benkhedda, 2 Rue Didouche Mourad, Algeria.
- , Street Mohamed Belouizded n° 2. May 1 square, Algiers, Algeria.
| | - M Abbadi
- Immunology Department, Mustapha Bacha Teaching Hospital, Algiers, Algeria
- Faculty of Pharmacy, Algiers 1 University, Algiers, Algeria
| | - D Zaoui
- Immunology Department, Mustapha Bacha Teaching Hospital, Algiers, Algeria
| | - H Ait Hamoudi
- Immunology Department, Mustapha Bacha Teaching Hospital, Algiers, Algeria
- Faculty of Medicine, Algiers 1 University, Algiers, Algeria
| | - W Boukouaci
- Immunology Department, Mustapha Bacha Teaching Hospital, Algiers, Algeria
| | - S Bouguerra-Aouichat
- Team Cellular and Molecular Physiopathology, Laboratory of Biology and physiology of organisms, Faculty of Biological Sciences, Houari Boumediene, USTHB, Algiers, Algeria
| | - S S Salah
- Immunology Department, Mustapha Bacha Teaching Hospital, Algiers, Algeria
- Faculty of Pharmacy, Algiers 1 University, Algiers, Algeria
| |
Collapse
|
4
|
Bravo-Villagra KM, Muñoz-Valle JF, Baños-Hernández CJ, Cerpa-Cruz S, Navarro-Zarza JE, Parra-Rojas I, Aguilar-Velázquez JA, García-Arellano S, López-Quintero A. STAT4 Gene Variant rs7574865 Is Associated with Rheumatoid Arthritis Activity and Anti-CCP Levels in the Western but Not in the Southern Population of Mexico. Genes (Basel) 2024; 15:241. [PMID: 38397230 PMCID: PMC10887563 DOI: 10.3390/genes15020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Rheumatoid Arthritis (RA) is a multifactorial autoimmune disease. Currently, several genes play an important role in the development of the disease. The objective was to evaluate the association of the STAT4 rs7574865 and rs897200 gene variants with RA susceptibility, DAS28, RF, and anti-CCP in Western and Southern Mexico populations. Genotyping was performed on 476 samples (cases = 240; controls = 236) using the Taqman® system and qPCR probes. Disease activity was assessed using DAS28 and HAQ DI. CRP, ESR, RF, and anti-CCP were determined for clinical assessment. Our study showed there is a statistically significant association with susceptibility to RA for the rs7574865 variant in the Western population for the GT and TT genotypes. The same genotypes also showed a moderate-to-high activity according to DAS28 and positive anti-CCP compared to the control group. This association was not found in the Southern population. This work confirms the association of the rs7574865 variant with RA, as well as a moderate-to-high activity and positive anti-CCP in the Western population but not in the Southern population. No association of the rs897200 variant was found in any of the studied populations.
Collapse
Affiliation(s)
- Karla Mayela Bravo-Villagra
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico;
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico;
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico; (J.F.M.-V.); (C.J.B.-H.); (S.G.-A.)
| | - Christian Johana Baños-Hernández
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico; (J.F.M.-V.); (C.J.B.-H.); (S.G.-A.)
| | - Sergio Cerpa-Cruz
- Antiguo Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Guadalajara 44200, Mexico;
| | | | - Isela Parra-Rojas
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de Bravo 39086, Mexico;
| | - José Alonso Aguilar-Velázquez
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico;
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico; (J.F.M.-V.); (C.J.B.-H.); (S.G.-A.)
| | - Samuel García-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico; (J.F.M.-V.); (C.J.B.-H.); (S.G.-A.)
| | - Andres López-Quintero
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico;
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico;
| |
Collapse
|
5
|
Moghimi N, Afkhamzadeh A, Rahmani K, Shakiba N. Association of Interleukin-10 Genotypes and Anticyclic Citrullinated Peptide Antibodies with Rheumatoid Arthritis. Med J Islam Repub Iran 2022; 36:95. [PMID: 36408339 PMCID: PMC9586713 DOI: 10.47176/mjiri.36.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 06/16/2023] Open
Abstract
Background: According to recent evidence, there is an association between some genetic factors and rheumatoid arthritis (RA). The aim of this study was to determine whether genetic variations in the interleukin 10 (IL10) and anti-cyclic citrullinated peptide (Anti-CCP) antibody loci were linked to RA. Methods: In this hospital-based case-control study with 224 cases and 194 healthy individuals, we investigated the association of IL-10 genotypes and anti-CCP antibodies with RA. Independent sample t, chi-square, and Fisher exact tests were used to assess the association between study variables. Results: Frequency of IL-10 -1082 A/G genotype in RA patients is significantly higher than the control group (odds ratio [OR], 1.67 [95% CI, 1.11-2.51]) (p=0.009), while the frequency of IL-10-1082 A/A and G/G polymorphisms in RA patients was lower than controls and this finding for G/G polymorphism was statistically significant (p=0.01). No significant difference was observed between the 2 studied groups regarding IL-10-592 C/C, C/A, and A/A polymorphisms (p>0.05). The chance of RA occurrence among persons with positive anti-CCP was significantly (63.3 times [22.7-176.5]) higher than individuals with negative anti-CCP (p<0.001). Conclusion: According to our data, the chance of anti-CCP positivity in persons who have IL-10 genotype 1082 A/G is higher. Further studies are recommended to determine the relationship between IL-10 genotype 1082 G/A and RA. If such a relationship is proven, this finding as a diagnostic clue can help rheumatologists in the early detection of RA.
Collapse
Affiliation(s)
- Nasrin Moghimi
- Rheumatology Department, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Abdorrahim Afkhamzadeh
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Khaled Rahmani
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nasrollah Shakiba
- Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
6
|
De Benedittis G, Latini A, Conigliaro P, Triggianese P, Bergamini A, Novelli L, Ciccacci C, Chimenti MS, Borgiani P. A multilocus genetic study evidences the association of autoimmune-related genes with Psoriatic Arthritis in Italian patients. Immunobiology 2022; 227:152232. [DOI: 10.1016/j.imbio.2022.152232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/28/2022] [Accepted: 05/21/2022] [Indexed: 01/04/2023]
|
7
|
Issilbayeva A, Ainabekova B, Zhetkenev S, Meiramova A, Akhmetova Z, Karina K, Kozhakhmetov S, Nurgaziyev M, Chulenbayeva L, Poddighe D, Kunz J, Kushugulova A. Association Study of Anticitrullinated Peptide Antibody Status with Clinical Manifestations and SNPs in Patients Affected with Rheumatoid Arthritis: A Pilot Study. DISEASE MARKERS 2022; 2022:2744762. [PMID: 35601739 PMCID: PMC9118096 DOI: 10.1155/2022/2744762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is an autoimmune disease of unknown etiology that leads to disability due to articular and extra-articular damage. RA prevalence is variable. The disease is most common among females with a 3 : 1 ratio. The interaction of environmental and host factors contributes to RA development. Currently, the genome-wide association studies (GWAS) give the opportunity to uncover the RA genetic background. Anticitrullinated peptide antibody (ACPA) is a highly specific RA antibody, associated with poor prognosis and severe course of RA, and regulated by numerous genes. Our study is aimed at investigating whether there are any clinical and genetic aspects correlate with ACPA presence in Kazakhstani patients with RA. Indeed, the available studies on this subject are focused on Caucasian and East Asian populations (mainly Japanese and Chinese), and there are scarce data from Central Asia. METHODS Our study included 70 RA patients. Patients' blood samples were collected and genotyped for 14 SNPs by real-time polymerase chain reaction (RT-PCR). General examination, anamnestic, and clinical and laboratory data collection were carried out. Statistical analysis was performed using R statistics. Results and Conclusion. Our study revealed a significant association of ACPA positivity with Fc receptor-like 3 (FCRL3) and ACPA negativity with signal transducer and activator of transcription 4 (STAT4) genes, but not with T cell activation Rho GTPase activating protein (TAGAP). In addition, ACPA positivity was associated with radiographic progression, rheumatoid factor (RF), erythrocyte sedimentation rate (ESR), age of RA onset, the patient global assessment, body mass index (BMI), and Gamma globulin. CONCLUSION Remained 11 earlier identified significantly associated in Caucasian and Asian population SNPs were not replicated in our cohort. Further studies on larger cohorts are needed to confirm our findings with higher confidence levels and stronger statistical power.
Collapse
Affiliation(s)
- Argul Issilbayeva
- Laboratory of Human Microbiome and Longevity, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
- NJSC Medical University Astana, Department of Internal Medicine with the Course of Gastroenterology, Endocrinology and Pulmonology, Nur-Sultan, Kazakhstan
| | - Bayan Ainabekova
- NJSC Medical University Astana, Department of Internal Medicine with the Course of Gastroenterology, Endocrinology and Pulmonology, Nur-Sultan, Kazakhstan
| | - Sanzhar Zhetkenev
- Laboratory of Human Microbiome and Longevity, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Assel Meiramova
- Laboratory of Human Microbiome and Longevity, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
- NJSC Medical University Astana, Department of Internal Medicine with the Course of Gastroenterology, Endocrinology and Pulmonology, Nur-Sultan, Kazakhstan
| | - Zhanar Akhmetova
- Laboratory of Human Microbiome and Longevity, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
- NJSC Medical University Astana, Department of Internal Medicine with the Course of Gastroenterology, Endocrinology and Pulmonology, Nur-Sultan, Kazakhstan
| | - Karlygash Karina
- NJSC Medical University Astana, Department of Internal Medicine with the Course of Gastroenterology, Endocrinology and Pulmonology, Nur-Sultan, Kazakhstan
| | - Samat Kozhakhmetov
- Laboratory of Human Microbiome and Longevity, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Madiyar Nurgaziyev
- Laboratory of Human Microbiome and Longevity, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Laura Chulenbayeva
- Laboratory of Human Microbiome and Longevity, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Dimitri Poddighe
- Department of Medicine, Nazarbayev University School of Medicine (NUSOM), Nur-Sultan, Kazakhstan
- Department of Pediatrics, National Research Center for Mother and Child Health, University Medical Center, Nur-Sultan, Kazakhstan
| | - Jeannette Kunz
- Department of Medicine, Nazarbayev University School of Medicine (NUSOM), Nur-Sultan, Kazakhstan
| | - Almagul Kushugulova
- Laboratory of Human Microbiome and Longevity, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
8
|
VDR Polymorphisms in Autoimmune Connective Tissue Diseases: Focus on Italian Population. J Immunol Res 2022; 2021:5812136. [PMID: 34977255 PMCID: PMC8718283 DOI: 10.1155/2021/5812136] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/24/2022] Open
Abstract
Vitamin D is an important hormone involved in various physiologic processes, and its activity is linked to binding with vitamin D receptor (VDR). Genetic polymorphisms in the VDR gene could modulate the expression or function of the receptor and, consequently, alter the effects of vitamin D. Variants in VDR gene have been associated with susceptibility to many illnesses sensitive to vitamin D administration and to autoimmune disorders, but no data are available regarding autoimmune connective tissue diseases in Italian population. We analyzed three VDR polymorphisms in 695 Italian patients with autoimmune connective tissue diseases (308 with systemic lupus erythematosus (SLE), 195 with primary Sjogren's syndrome (pSS), and 192 with rheumatoid arthritis (RA)) and in 246 healthy controls with the aim to evaluate a possible association of VDR SNPs with susceptibility to these diseases in the Italian population. Genotyping of rs2228570, rs7975232, and rs731236 in VDR gene was performed by an allelic discrimination assay. A case/control association study and a genotype/phenotype correlation analysis have been performed. We observed a higher risk to develop SLE for rs2228570 TT genotype (P = 0.029, OR = 1.79). No association was observed between susceptibility to pSS or RA and this SNP, although this variant is significantly less present in RA patients producing autoantibodies. For rs7975232 SNP, we observed a significant association of the variant homozygous genotype with SLE (P = 0.009, OR = 1.82), pSS (P = 0.046, OR = 1.66), and RA (P = 0.028, OR = 1.75) susceptibility. Moreover, we reported associations of this genotype with clinical phenotypes of SLE and pSS. Lastly, the GG genotype of rs731236 was associated with a lower RA susceptibility (P = 0.045, OR = 0.55). Our results show that the explored VDR polymorphisms are significantly associated with autoimmune connective tissue disorders and support the hypothesis that the genetic variability of VDR gene may be involved in susceptibility to these diseases in Italian population.
Collapse
|
9
|
Cai Y, Xu K, Aihaiti Y, Li Z, Yuan Q, Xu J, Zheng H, Yang M, Wang B, Yang Y, Yang Y, Xu P. Derlin-1, as a Potential Early Predictive Biomarker for Nonresponse to Infliximab Treatment in Rheumatoid Arthritis, Is Related to Autophagy. Front Immunol 2022; 12:795912. [PMID: 35046954 PMCID: PMC8762214 DOI: 10.3389/fimmu.2021.795912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The goal of this study was to identify potential predictive biomarkers for the therapeutic effect of infliximab (IFX) in Rheumatoid arthritis (RA) and explore the potential molecular mechanism of nonresponse to IFX treatment to achieve individualized treatment of RA. METHODS Differential gene expression between IFX responders and nonresponders in the GSE58795 and GSE78068 datasets was identified. Coexpression analysis was used to identify the modules associated with nonresponse to IFX therapy for RA, and enrichment analysis was conducted on module genes. Least absolute shrink and selection operator (LASSO) regression was used to develop a gene signature for predicting the therapeutic effect of IFX in RA, and the area under the receiver operating characteristic curve (AUC) was used to evaluate the predictive value of the signature. Correlation analysis and single-sample gene set enrichment analysis (ssGSEA) were used to explore the potential role of the hub genes. Experimental validation was conducted in synovial tissue and RA fibroblast-like synoviocytes (RA-FLSs). RESULTS A total of 46 common genes were obtained among the two datasets. The yellow-green module was identified as the key module associated with nonresponse to IFX therapy for RA. We identified a 25-gene signature in GSE78068, and the AUC for the signature was 0.831 in the internal validation set and 0.924 in the GSE58795 dataset(external validation set). Derlin-1 (DERL1) was identified as the hub gene and demonstrated to be involved in the immune response and autophagy regulation. DERL1 expression was increased in RA synovial tissue compared with OA synovial tissue, and DERL1-siRNA partially inhibited autophagosome formation in RA-FLSs. CONCLUSION The 25-gene signature may have potential predictive value for the therapeutic effect of IFX in RA at the beginning of IFX treatment, and autophagy may be involved in nonresponse to IFX treatment. In particular, DERL1 may be associated with the regulation of autophagy.
Collapse
Affiliation(s)
- Yongsong Cai
- Department of Joint Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Ke Xu
- Department of Joint Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yirixiati Aihaiti
- Department of Joint Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Zhijin Li
- Department of Neurosurgery, First Affiliated Hospital of the University of Science and Technology of China, Hefei, China
| | - Qiling Yuan
- Department of Joint Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jing Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Haishi Zheng
- Department of Orthopaedics of the First Affiliated Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Mingyi Yang
- Department of Joint Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Bo Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yanni Yang
- Department of Clinical Medicine of Traditional Chinese and Western Medicine, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Yin Yang
- Department of Orthopaedics, Xi’an Central Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Peng Xu
- Department of Joint Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| |
Collapse
|
10
|
Abdelaziz MM, Gamal RM, Khalifa F, Mosad E, Sadek R, Abd El Razik DI, Kamal D. MicroRNA146a gene polymorphism in patients with rheumatoid arthritis and the relevant value with disease activity and extra-articular manifestations. THE EGYPTIAN RHEUMATOLOGIST 2022; 44:97-101. [DOI: 10.1016/j.ejr.2021.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
11
|
Meta-Analysis of miRNA Variants Associated with Susceptibility to Autoimmune Disease. DISEASE MARKERS 2021; 2021:9978460. [PMID: 34659590 PMCID: PMC8519726 DOI: 10.1155/2021/9978460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
Purpose Various studies have shown an association between miRNA polymorphisms and susceptibility to autoimmune disease (AD); however, the results are inconclusive. To evaluate whether miRNA polymorphisms account for a significant risk of AD, a total of 87 articles, including 39431 patients and 56708 controls, were identified to estimate their association with 12 AD subtypes. Methods Several electronic databases were searched to analyze population-based studies on the relationship between miRNA variants and AD risk. Fixed effects or random effect models were used in the meta-analysis for the risk assessment. Results In our meta-analysis, miR-146a rs2910164/rs57095329 conferred a marginally elevated risk for AD (allele model, OR = 1.08, 95% CI: 1.01-1.15, P = 0.019; allele model, OR = 1.09, 95 CI: 1.05-1.15, P < 0.001, respectively). Furthermore, miR-196a2 rs11614913 was also associated with AD risk (allele model, OR = 0.92, 95% CI: 0.88-0.97, P = 0.001) as well as miR-499 rs3746444 (allele model, OR = 1.16, 95% CI: 1.03-1.29, P = 0.011). In addition, associations were observed between miR-149 rs2292832/miR-27a rs895819 and AD susceptibility in the overall population (allele model, OR = 1.15, 95% CI: 1.06-1.24, P < 0.001; allele model, OR = 1.11, 95% CI:1.01-1.22, P = 0.043, respectively). Conclusions Evidence from our systematic review suggests that miR-146a, miR-196a2, miR-499, miR-149, and miR-27a polymorphisms are associated with susceptibility to AD.
Collapse
|
12
|
Carvalho AL, Hedrich CM. The Molecular Pathophysiology of Psoriatic Arthritis-The Complex Interplay Between Genetic Predisposition, Epigenetics Factors, and the Microbiome. Front Mol Biosci 2021; 8:662047. [PMID: 33869291 PMCID: PMC8047476 DOI: 10.3389/fmolb.2021.662047] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a symmetric autoimmune/inflammatory disease that primarily affects the skin. In a significant proportion of cases, it is accompanied by arthritis that can affect any joint, the spine, and/or include enthesitis. Psoriasis and psoriatic arthritis are multifactor disorders characterized by aberrant immune responses in genetically susceptible individuals in the presence of additional (environmental) factors, including changes in microbiota and/or epigenetic marks. Epigenetic changes can be heritable or acquired (e.g., through changes in diet/microbiota or as a response to therapeutics) and, together with genetic factors, contribute to disease expression. In psoriasis, epigenetic alterations are mainly related to cell proliferation, cytokine signaling and microbial tolerance. Understanding the complex interplay between heritable and acquired pathomechanistic factors contributing to the development and maintenance of psoriasis is crucial for the identification and validation of diagnostic and predictive biomarkers, and the introduction of individualized effective and tolerable new treatments. This review summarizes the current understanding of immune activation, genetic, and environmental factors that contribute to the pathogenesis of psoriatic arthritis. Particular focus is on the interactions between these factors to propose a multifactorial disease model.
Collapse
Affiliation(s)
- Ana L Carvalho
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Christian M Hedrich
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.,Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, United Kingdom
| |
Collapse
|
13
|
Tsujimoto S, Ozaki Y, Ito T, Nomura S. Usefulness of Cytokine Gene Polymorphisms for the Therapeutic Choice in Japanese Patients with Rheumatoid Arthritis. Int J Gen Med 2021; 14:131-139. [PMID: 33469350 PMCID: PMC7813643 DOI: 10.2147/ijgm.s287505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is characterized by systemic synovitis with bone erosion and joint cartilage degradation. Although the analysis of polymorphisms in cytokine-encoding genes is important or understanding the pathophysiology of RA and selecting appropriate treatment for it, few studies have examined such single-nucleotide polymorphisms (SNPs) specifically in Japanese patients. This study was established to investigate the associations between polymorphisms in cytokine-encoding genes, autoantibodies and therapeutic responses in Japanese RA patients. Methods The subjects in this study consisted of 100 RA patients and 50 healthy controls. We extracted data on sex, age, disease duration, rheumatoid factor (RF), anti-cyclic citrullinated peptide (anti-CCP) antibody, and therapeutic responses, including to methotrexate (MTX) and biological disease-modifying antirheumatic drugs (DMARDs). Genomic DNA was isolated from peripheral blood, which was genotyped for IL-10, TNF-α, TGF-β1, and IFN-γ polymorphisms. Results Regarding IL-10 (−592 C/A and −819 C/T), significant decreases in the frequencies of the IL-10 (−592) CC genotype and (−819) CC genotype were found in RA patients compared with the levels in controls. For IFN-γ (+874 T/A), a significant decrease in the frequency of the TT genotype was found in RA patients compared with that in controls. Regarding TGF-β1 (+869 T/C), patients with positivity for anti-CCP antibody had a significantly lower frequency of the CC genotype than those with negativity for it. Furthermore, the IL-10 (−592) CC genotype and (−819) CC genotype might be related to the biological DMARD-response. Conclusion Our results suggest that the analysis of polymorphisms in cytokine-encoding genes may be useful when selecting treatment for Japanese RA patients.
Collapse
Affiliation(s)
- Saki Tsujimoto
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Osaka, Japan
| | - Yoshio Ozaki
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Osaka, Japan
| | - Tomoki Ito
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Osaka, Japan
| | - Shosaku Nomura
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
14
|
Castro-Sanchez P, Teagle AR, Prade S, Zamoyska R. Modulation of TCR Signaling by Tyrosine Phosphatases: From Autoimmunity to Immunotherapy. Front Cell Dev Biol 2020; 8:608747. [PMID: 33425916 PMCID: PMC7793860 DOI: 10.3389/fcell.2020.608747] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Early TCR signaling is dependent on rapid phosphorylation and dephosphorylation of multiple signaling and adaptor proteins, leading to T cell activation. This process is tightly regulated by an intricate web of interactions between kinases and phosphatases. A number of tyrosine phosphatases have been shown to modulate T cell responses and thus alter T cell fate by negatively regulating early TCR signaling. Mutations in some of these enzymes are associated with enhanced predisposition to autoimmunity in humans, and mouse models deficient in orthologous genes often show T cell hyper-activation. Therefore, phosphatases are emerging as potential targets in situations where it is desirable to enhance T cell responses, such as immune responses to tumors. In this review, we summarize the current knowledge about tyrosine phosphatases that regulate early TCR signaling and discuss their involvement in autoimmunity and their potential as targets for tumor immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Rose Zamoyska
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
15
|
Yang MJ, Hou YL, Yang XL, Wang CX, Zhi LX, You CG. Development and application of a PCR-HRM molecular diagnostic method of SNPs linked with TNF inhibitor efficacy. ACTA ACUST UNITED AC 2020; 6:277-286. [PMID: 30511928 DOI: 10.1515/dx-2018-0062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/03/2018] [Indexed: 01/21/2023]
Abstract
Background Clinical evidence indicates that genetic variations may interfere with the mechanism of drug action. Recently, it has been reported that the single nucleotide polymorphisms (SNPs) of STAT4, PTPN2, PSORS1C1 and TRAF3IP2RA genes are associated with the clinical efficacy of tumor necrosis factor (TNF) inhibitors in the treatment of rheumatoid arthritis (RA) patients. Therefore, the detection of the SNPs linked with TNF inhibitor efficacy may provide an important basis for the treatment of RA. This study intended to establish molecular diagnostic methods for genotyping the linked SNPs based on high resolution melting (HRM) curve analysis. Methods The polymerase chain reaction-HRM (PCR-HRM) curve analysis detecting systems were established by designing the primers of the four SNPs, rs7574865G>T, rs7234029A>G, rs2233945C>A and rs33980500C>T, and the performance and clinical applicability of which were evaluated by using the Sanger sequencing method and genotyping test for 208 clinical samples. Results The self-developed molecular diagnostic methods of PCR-HRM were confirmed to be able to correctly genotype the four SNPs, the sensitivity and specificity of which were 100% in this study. The repeatability and reproducibility tests showed that there is little variable in intra-assay and inter-assay (the coefficient of variation ranged from 0.01% to 0.07%). The slight changes of DNA template and primer concentrations, PCR cycle number and reaction system volume had no significant effect on the genotyping performance of the method. The PCR-HRM assays were also applied to other PCR thermocyclers with HRM function and use different saturation fluorescent dyes. Conclusions The PCR-HRM genotyping method established in this study can be applied to the routine molecular diagnosis of rs7574865, rs7234029, rs2233945 and rs33980500.
Collapse
Affiliation(s)
- Mei-Juan Yang
- Department of Clinical Laboratory, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China
| | - Yan-Long Hou
- Department of Clinical Laboratory, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China
| | - Xiao-Lan Yang
- Department of Clinical Laboratory, The First People's Hospital of Baiyin, Baiyin, P.R. China
| | - Chun-Xia Wang
- Department of Clinical Laboratory, The First People's Hospital of Lanzhou City, Lanzhou, P.R. China
| | - Li-Xia Zhi
- Department of Clinical Laboratory, The Second People's Hospital of Lanzhou City, Lanzhou, P.R. China
| | - Chong-Ge You
- Department of Clinical Laboratory, Lanzhou University Second Hospital, Lanzhou, No. 82 Cuiyingmen Road, Lanzhou, Gansu, 730000, P.R. China, Phone: +86-0931-8943093
| |
Collapse
|
16
|
Zhang L, Wu H, Zhao M, Lu Q. Identifying the differentially expressed microRNAs in autoimmunity: A systemic review and meta-analysis. Autoimmunity 2020; 53:122-136. [DOI: 10.1080/08916934.2019.1710135] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lian Zhang
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Central South University, Changsha, China
| | - Haijing Wu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Central South University, Changsha, China
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Central South University, Changsha, China
| | - Qianjin Lu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Central South University, Changsha, China
| |
Collapse
|
17
|
Qiu H, Chen Z, Lv L, Tang W, Hu R. Associations Between microRNA Polymorphisms and Development of Coronary Artery Disease: A Case-Control Study. DNA Cell Biol 2019; 39:25-36. [PMID: 31692368 DOI: 10.1089/dna.2019.4963] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Coronary artery disease (CAD), a common cardiovascular disease, has become a vital cause of mortality worldwide. Genetic microRNA (miR) polymorphisms might contribute to CAD susceptibility. In this study, we selected miR-146a, miR-196a2, and miR-499 single nucleotide polymorphisms and conducted a case-control study. In total, 505 CAD cases and 1109 controls were recruited. We used SNPscan™ genotyping assay to obtain genotyping of miR rs2910164, rs11614913, and rs3746444 variants. We found that miR-196a2 rs11614913 T > C decreased the susceptibility of myocardial infarction (MI) (TC vs. TT: adjusted p = 0.007 and CC/TC vs. TT: adjusted p = 0.012). In female subgroup, our results indicated that miR-196a2 rs11614913 T > C variants might also decrease the susceptibility of CAD (TC vs. TT: adjusted p = 0.017 and TC/CC vs. TT: adjusted p = 0.015). In summary, these results suggest that miR-196a2 rs11614913 T > C locus decreases the susceptibility of CAD in female and MI subgroups. However, further studies are needed to validate the potential associations of miR-196a2 rs11614913 locus with CAD.
Collapse
Affiliation(s)
- Hao Qiu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zheng Chen
- Department of Anesthesiology, Zhenjiang No. 1 People's Hospital, Zhenjiang, China
| | - Lu Lv
- Department of Cardiothoracic Surgery, Zhenjiang No. 1 People's Hospital, Zhenjiang, China
| | - Weifeng Tang
- Department of Cardiothoracic Surgery, Zhenjiang No. 1 People's Hospital, Zhenjiang, China
| | - Rong Hu
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
18
|
TNFAIP3 Gene Polymorphisms in Three Common Autoimmune Diseases: Systemic Lupus Erythematosus, Rheumatoid Arthritis, and Primary Sjogren Syndrome-Association with Disease Susceptibility and Clinical Phenotypes in Italian Patients. J Immunol Res 2019; 2019:6728694. [PMID: 31534975 PMCID: PMC6732636 DOI: 10.1155/2019/6728694] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
Autoimmune diseases (AIDs) are complex diseases characterized by persistent or recurrent inflammation, alteration of immune response, and production of specific autoantibodies. It is known that different AIDs share several susceptibility genetic loci. Tumor necrosis factor alpha inducible protein 3 (TNFAIP3) encodes the ubiquitin-modifying enzyme A20, which downregulates inflammation by restricting NF-κB, a transcription factor that regulates expression of various proinflammatory genes. Variants in TNFAIP3 gene have been described as associated with susceptibility to several AIDs. Here, we analyzed two TNFAIP3 polymorphisms in Italian patients with systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and primary Sjogren's syndrome (pSS), to verify if the genetic variability of TNFAIP3 gene is involved in genetic predisposition to AIDs also in the Italian population. We recruited 313 SLE patients, 256 RA patients, 195 pSS patients, and 236 healthy controls. Genotyping of rs2230926 and rs6920220 in TNFAIP3 gene was performed by an allelic discrimination assay. We carried out a case/control association study and a genotype/phenotype correlation analysis. A higher risk to develop SLE was observed for rs2230926 (P = 0.02, OR = 1.92). No association was observed between this SNP and the susceptibility to pSS or RA. However, the rs2230926 variant allele seems to confer a higher risk to develop lymphoma in pSS patients, while in RA patients, the presence of RF resulted significantly associated with the variant allele. Regarding the rs6920220 SNP, we observed a significant association of the variant allele with SLE (P = 0.03, OR = 1.53), pSS (P = 0.016, OR = 1.69), and RA (P = 0.0001, OR = 2.35) susceptibility. Furthermore, SLE patients carrying the variant allele showed a higher risk to develop pericarditis, pleurisy, and kidney complications. Our results support the importance of the TNFAIP3 gene variant role in the development of different autoimmune diseases in the Italian population and furtherly confirm a sharing of genetic predisposing factors among these three pathologies.
Collapse
|
19
|
Association of microRNAs genes polymorphisms with arthritis: a systematic review and meta-analysis. Biosci Rep 2019; 39:BSR20190298. [PMID: 31235484 PMCID: PMC6639462 DOI: 10.1042/bsr20190298] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/16/2019] [Accepted: 06/12/2019] [Indexed: 02/05/2023] Open
Abstract
Objective: To investigate whether microRNAs genes’ polymorphisms are associated with arthritis. Methods: The PubMed, Cochrane Library et al. were systematically searched to identify case–control studies, systematic reviews and meta-analyses. A meta-analysis was performed to calculate odds ratios (ORs), and confidence intervals (CIs) at 95% using fixed-effect model or random-effects model. Results: Twenty-two case–control studies involving 10489 participants fulfilled the inclusion criteria. MiR-146a rs2910164 (G/C) was not significantly associated with the risk of rheumatoid arthritis (RA) in any model. Significant associations were found between miR-146a rs2910164 (G/C) and the risk of psoriatic arthritis (PsA) in the heterozygous model and the dominant model. The heterozygous model showed a significant association between the miR-146a rs2910164 (G/C) polymorphism and ankylosing spondylitis (AS). And there was no significant association of miR-146a rs2910164 (G/C) with risk of juvenile rheumatoid arthritis (JRA) at any model. Additionally, there was a significant association of miR-499 rs3746444 (T/C) with risk of RA at two genetic models, and with a moderate heterogeneity. When subgroup analysis by ethnicity, significant associations were almost found between miR-499 rs3746444 (T/C) and the risk of RA in any model in Caucasian populations, and there is no heterogeneity. Conclusions: The association of miR-146a rs2910164 (G/C) with RA was not found. And there was a significant association between miR-146a rs2910164(G/C) and PsA or AS. MiR-499 rs3746444 (T/C) was associated with RA in Caucasian populations. These findings did not support the genetic association between miR-146a rs2910164 (G/C) and JRA susceptibility, as well as the association of miR-196a-2 rs11614913 (C/T), miR-146a rs2431697, miR-146a rs57095329, miR-149 rs22928323 with arthritis.
Collapse
|
20
|
Association of rs2910164 Polymorphism in miRNA-146 and rs3746444 Polymorphism in miRNA-499 with Inflammatory Arthritis: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7305750. [PMID: 31223622 PMCID: PMC6541972 DOI: 10.1155/2019/7305750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/23/2019] [Indexed: 12/19/2022]
Abstract
Objectives The purpose of this study was to explore the association of miRNA-146 and miRNA-499 polymorphisms with inflammatory arthritis. Methods A systematic search of studies on the association of miRNA-146 and miRNA-499 polymorphisms with inflammatory arthritis susceptibility was conducted in PubMed, Web of science, Elsevier ScienceDirect, and Cochrane Library. Eventually, 18 published studies were included. The strength of association between miRNA-146/499 polymorphisms and inflammatory arthritis susceptibility was assessed by odds ratios (ORs) with its 95% confidence intervals (CIs). Results A total of 18 case-control studies, consisting of 3385 inflammatory arthritis patients and 4584 controls, were included in the meta-analysis. This meta-analysis showed significant association between miRNA-499 rs3746444 polymorphism and inflammatory arthritis susceptibility in overall population (C vs T, OR: 1.422, 95% CI= 1.159-1.745, P=0.001). Similar results were found in subgroup analysis by region. But we did not find association between miRNA-146 rs2910164 polymorphism and inflammatory arthritis susceptibility in overall population (C vs T, OR: 1.061, 95% CI= 0.933-1.207, P=0.365). Conclusions The present study indicates that miRNA-499 rs3746444 polymorphism is associated with inflammatory arthritis susceptibility. However, there is lack of association between miRNA-146 rs2910164 polymorphism and inflammatory arthritis susceptibility. But, we also find miRNA-146 rs2910164 and miRNA-499 rs3746444 polymorphism are associated with inflammatory arthritis in Middle East. Therefore, more large-scale studies are warranted to replicate our findings.
Collapse
|
21
|
Challenges in the treatment of Rheumatoid Arthritis. Autoimmun Rev 2019; 18:706-713. [PMID: 31059844 DOI: 10.1016/j.autrev.2019.05.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/10/2019] [Indexed: 12/16/2022]
Abstract
Rheumatoid Arthritis (RA) is a chronic inflammatory disease characterized by a heterogeneous clinical response to the different treatments. Some patients are difficult to treat and do not reach the treatment targets as clinical remission or low disease activity. Known negative prognostic factors, such as the presence of auto-antiantibodies and joint erosion, the presence of a genetic profile, comorbidities and extra-articular manifestations, pregnancy or a pregnancy wish may concur to the treatment failure. In this review we aimed at identify difficult to treat RA patients and define the optimal therapeutic and environmental targets. Genetic markers of severity such as HLA-DRB1, TRAF1, PSORS1C1 and microRNA 146a are differently associated with joint damage; other gene polymorphisms seem to be associated with response to biologic disease modifying anti-rheumatic drugs (bDMARDs). The presence of comorbidities and/or extra-articular manifestations may influence the therapeutic choice; overweight and obese patients are less responsive to TNF inhibitors. In this context the patient profiling can improve the clinical outcome. Targeting different pathways, molecules, and cells involved in the pathogenesis of RA may in part justify the lack response of some patients. An overview of the future therapeutic targets, including bDMARDs (inhibitors of IL-6, GM-CSF, matrix metalloproteinases, chemokines) and targeted synthetic DMARDs (filgotinib, ABT-494, pefacitinib, decernotinib), and environmental targets is addressed. Environmental factors, such as diet and cigarette smoke, may influence susceptibility to autoimmune diseases and interfere with inflammatory pathways. Mediterranean diet, low salt intake, cocoa, curcumin, and physical activity seem to show beneficial effects, however studies of dose finding, safety and efficacy in RA need to be performed.
Collapse
|
22
|
Nakatochi M, Kanai M, Nakayama A, Hishida A, Kawamura Y, Ichihara S, Akiyama M, Ikezaki H, Furusyo N, Shimizu S, Yamamoto K, Hirata M, Okada R, Kawai S, Kawaguchi M, Nishida Y, Shimanoe C, Ibusuki R, Takezaki T, Nakajima M, Takao M, Ozaki E, Matsui D, Nishiyama T, Suzuki S, Takashima N, Kita Y, Endoh K, Kuriki K, Uemura H, Arisawa K, Oze I, Matsuo K, Nakamura Y, Mikami H, Tamura T, Nakashima H, Nakamura T, Kato N, Matsuda K, Murakami Y, Matsubara T, Naito M, Kubo M, Kamatani Y, Shinomiya N, Yokota M, Wakai K, Okada Y, Matsuo H. Genome-wide meta-analysis identifies multiple novel loci associated with serum uric acid levels in Japanese individuals. Commun Biol 2019; 2:115. [PMID: 30993211 PMCID: PMC6453927 DOI: 10.1038/s42003-019-0339-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/22/2019] [Indexed: 01/05/2023] Open
Abstract
Gout is a common arthritis caused by elevated serum uric acid (SUA) levels. Here we investigated loci influencing SUA in a genome-wide meta-analysis with 121,745 Japanese subjects. We identified 8948 variants at 36 genomic loci (P<5 × 10-8) including eight novel loci. Of these, missense variants of SESN2 and PNPLA3 were predicted to be damaging to the function of these proteins; another five loci-TMEM18, TM4SF4, MXD3-LMAN2, PSORS1C1-PSORS1C2, and HNF4A-are related to cell metabolism, proliferation, or oxidative stress; and the remaining locus, LINC01578, is unknown. We also identified 132 correlated genes whose expression levels are associated with SUA-increasing alleles. These genes are enriched for the UniProt transport term, suggesting the importance of transport-related genes in SUA regulation. Furthermore, trans-ethnic meta-analysis across our own meta-analysis and the Global Urate Genetics Consortium has revealed 15 more novel loci associated with SUA. Our findings provide insight into the pathogenesis, treatment, and prevention of hyperuricemia/gout.
Collapse
Affiliation(s)
- Masahiro Nakatochi
- Data Science Division, Data Coordinating Center, Department of Advanced Medicine, Nagoya University Hospital, Nagoya, 466-8560 Japan
| | - Masahiro Kanai
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871 Japan
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115 USA
| | - Akiyoshi Nakayama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, 359-8513 Japan
- Medical Squadron, Air Base Group, Western Aircraft Control and Warning Wing, Japan Air Self-Defense Force, Kasuga, 816-0804 Japan
| | - Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Yusuke Kawamura
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, 359-8513 Japan
- Department of General Medicine, National Defense Medical College, Tokorozawa, 359-8513 Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, 329-0498 Japan
| | - Masato Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| | - Hiroaki Ikezaki
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, 812-8582 Japan
| | - Norihiro Furusyo
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, 812-8582 Japan
| | - Seiko Shimizu
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, 359-8513 Japan
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, 830-0011 Japan
| | - Makoto Hirata
- Laboratory of Genome Technology, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Rieko Okada
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Sayo Kawai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Makoto Kawaguchi
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, 359-8513 Japan
- Department of Urology, National Defense Medical College, Tokorozawa, 359-8513 Japan
| | - Yuichiro Nishida
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, 849-8501 Japan
| | - Chisato Shimanoe
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, 849-8501 Japan
| | - Rie Ibusuki
- International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544 Japan
| | - Toshiro Takezaki
- International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544 Japan
| | - Mayuko Nakajima
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, 359-8513 Japan
| | - Mikiya Takao
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, 359-8513 Japan
- Department of Surgery, National Defense Medical College, Tokorozawa, 359-8513 Japan
| | - Etsuko Ozaki
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, 602-8566 Japan
| | - Daisuke Matsui
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, 602-8566 Japan
| | - Takeshi Nishiyama
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8602 Japan
| | - Sadao Suzuki
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8602 Japan
| | - Naoyuki Takashima
- Department of Health Science, Shiga University of Medical Science, Otsu, 520-2192 Japan
| | - Yoshikuni Kita
- Department of Nursing, Tsuruga City College of Nursing, Fukui, 914-8501 Japan
| | - Kaori Endoh
- Laboratory of Public Health, Division of Nutritional Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526 Japan
| | - Kiyonori Kuriki
- Laboratory of Public Health, Division of Nutritional Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526 Japan
| | - Hirokazu Uemura
- Department of Preventive Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503 Japan
| | - Kokichi Arisawa
- Department of Preventive Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503 Japan
| | - Isao Oze
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, 464-8681 Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, 464-8681 Japan
- Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Yohko Nakamura
- Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba, 260-8717 Japan
| | - Haruo Mikami
- Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba, 260-8717 Japan
| | - Takashi Tamura
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Hiroshi Nakashima
- Department of Preventive Medicine and Public Health, National Defense Medical College, Tokorozawa, 359-8513 Japan
| | - Takahiro Nakamura
- Laboratory for Mathematics, National Defense Medical College, Tokorozawa, 359-8513 Japan
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655 Japan
| | - Koichi Matsuda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Tatsuaki Matsubara
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, 464-8651 Japan
| | - Mariko Naito
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
- Department of Oral Epidemiology, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, 734-8553 Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8507 Japan
| | - Nariyoshi Shinomiya
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, 359-8513 Japan
| | - Mitsuhiro Yokota
- Department of Genome Science, School of Dentistry, Aichi Gakuin University, Nagoya, 464-8651 Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Yukinori Okada
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871 Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, 565-0871 Japan
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, 359-8513 Japan
| |
Collapse
|
23
|
Bianco B, Fernandes RFM, Trevisan CM, Christofolini DM, Sanz-Lomana CM, de Bernabe JV, Barbosa CP. Influence of STAT4 gene polymorphisms in the pathogenesis of endometriosis. Ann Hum Genet 2019; 83:249-255. [PMID: 30887509 DOI: 10.1111/ahg.12309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 12/03/2018] [Accepted: 03/04/2019] [Indexed: 12/12/2022]
Abstract
The STAT4 gene is vital to signaling pathways in the immune response. Immunological alterations are involved in the pathogenesis of endometriosis, and STAT4 polymorphisms may be linked to disease development. This study's aim is to evaluate the possible association between four STAT4 polymorphisms (rs7601754/G > A, rs11889341/C > T, rs7574865/T > G, and rs7582694/C > G) and the pathogenesis of endometriosis in Brazilian women. This case-control study's sample comprised 238 women with endometriosis and 201 healthy, fertile women without endometriosis (which was surgically confirmed). Genotyping was performed using the TaqMan system with a real-time polymerase chain reaction; the genotype, allele, and haplotype frequencies were then compared between groups. A single-polymorphism analysis revealed that the TT genotype of the rs7574865/T > G polymorphism was significantly more frequent in women with minimal or mild endometriosis than in the controls (10% vs. 5%, p = 0.047). The CGAC, GTAT, and GTAC haplotypes were significantly more frequent in the women with endometriosis-related infertility (5.8%, 4.1%, and 2.9%, respectively) than in the controls (2.4%, 1.1%, and 0.8%, respectively; p = 0.020, p = 0.011, and p = 0.032, respectively), but the GGGC and CTAT haplotypes were significantly more prevalent in the control group (34.7% and 13.9%, respectively) than among the infertile group (26.2% and 9.1%, respectively). In addition, the CGAC haplotype was more frequently found in those with minimal or mild endometriosis (6.8%) than in the controls (2.4%, p = 0.009), and the GTAT haplotype was more commonly found in those with moderate or severe disease (3.6%) than in the controls (1.1%, p = 0.028). These findings suggest that STAT4 polymorphisms can influence the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Bianca Bianco
- Human Reproduction and Genetics Center, Faculdade de Medicina ABC, Av. Lauro Gomes, 2000, Santo Andre/São Paulo, Brazil
| | - Ramon Felix Martins Fernandes
- Human Reproduction and Genetics Center, Faculdade de Medicina ABC, Av. Lauro Gomes, 2000, Santo Andre/São Paulo, Brazil
| | - Camila Martins Trevisan
- Human Reproduction and Genetics Center, Faculdade de Medicina ABC, Av. Lauro Gomes, 2000, Santo Andre/São Paulo, Brazil
| | - Denise M Christofolini
- Human Reproduction and Genetics Center, Faculdade de Medicina ABC, Av. Lauro Gomes, 2000, Santo Andre/São Paulo, Brazil
| | - Carlos Millán Sanz-Lomana
- Servicio de Obstetricia y Ginecología del Hospital Universitario Montepríncipe, Universidad CEU San Pablo, Calle Julián Romea, 18, Madrid, Spain
| | - Javier Valero de Bernabe
- Servicio de Obstetricia y Ginecología del Hospital Universitario Montepríncipe, Universidad CEU San Pablo, Calle Julián Romea, 18, Madrid, Spain
| | - Caio P Barbosa
- Human Reproduction and Genetics Center, Faculdade de Medicina ABC, Av. Lauro Gomes, 2000, Santo Andre/São Paulo, Brazil
| |
Collapse
|
24
|
Yao Y, Liu N, Zhou Z, Shi L. Influence of ERAP1 and ERAP2 gene polymorphisms on disease susceptibility in different populations. Hum Immunol 2019; 80:325-334. [PMID: 30797823 DOI: 10.1016/j.humimm.2019.02.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 02/07/2023]
Abstract
The endoplasmic reticulum aminopeptidases (ERAPs), ERAP1 and ERAP2, makes a role in shaping the HLA class I peptidome by trimming peptides to the optimal size in MHC-class I-mediated antigen presentation and educating the immune system to differentiate between self-derived and foreign antigens. Association studies have shown that genetic variations in ERAP1 and ERAP2 genes increase susceptibility to autoimmune diseases, infectious diseases, and cancers. Both ERAP1 and ERAP2 genes exhibit diverse polymorphisms in different populations, which may influence their susceptibly to the aforementioned diseases. In this article, we review the distribution of ERAP1 and ERAP2 gene polymorphisms in various populations; discuss the risk or protective influence of these gene polymorphisms in autoimmune diseases, infectious diseases, and cancers; and highlight how ERAP genetic variations can influence disease associations.
Collapse
Affiliation(s)
- Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming 650118, China
| | - Nannan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Ziyun Zhou
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming 650118, China.
| |
Collapse
|
25
|
Chen CP, Lin SP, Chern SR, Wu PS, Chen SW, Lai ST, Chuang TY, Chen WL, Wang W. A 13-year-old girl with 18p deletion syndrome presenting Turner syndrome-like clinical features of short stature, short webbed neck, low posterior hair line, puffy eyelids and increased carrying angle of the elbows. Taiwan J Obstet Gynecol 2018; 57:583-587. [PMID: 30122583 DOI: 10.1016/j.tjog.2018.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2018] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE We report a 13-year-old girl with 18p deletion syndrome presenting Turner syndrome-like clinical features. CASE REPORT A 13-year-old girl was referred for genetic counseling of Turner syndrome-like clinical features of short stature, short webbed neck, low posterior hair line, puffy eyelids and increased carrying angle of the elbows. The girl also had mild intellectual disability, psychomotor developmental delay, speech disorder, high-arched palate, hypertelorism and mid-face hypoplasia. Cytogenetic analysis of the girl revealed a karyotype of 46,XX,del(18) (p11.2). The parental karyotypes were normal. Array comparative genomic hybridization analysis on the DNA extracted from the peripheral blood revealed a 13.93-Mb deletion of 18p11.32-p11.21 or arr 18p11.32p11.21 (148,993-14,081,858) × 1.0 [GRCh37 (hg19)] encompassing 52 Online Mendelian Inheritance in Man (OMIM) genes including USP14, TYMS, SMCHD1, TGIF1, LAMA1, TWSG1, GNAL and PTPN2. Polymorphic DNA marker analysis revealed a maternal origin of the deletion. CONCLUSION Females with Turner syndrome-like clinical features in association with intellectual disability, facial dysmorphism and psychomotor developmental delay should be suspected of having chromosome deletion syndromes.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Shuan-Pei Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; Department of Early Childhood Care, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Schu-Rern Chern
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | | | - Shin-Wen Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shih-Ting Lai
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Tzu-Yun Chuang
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wen-Lin Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wayseen Wang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Bioengineering, Tatung University, Taipei, Taiwan
| |
Collapse
|
26
|
Liu Q, Yang J, He H, Yu Y, Lyu J. Associations between interleukin-10 polymorphisms and susceptibility to rheumatoid arthritis: a meta-analysis and meta-regression. Clin Rheumatol 2018; 37:3229-3237. [PMID: 30328021 DOI: 10.1007/s10067-018-4329-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 09/21/2018] [Accepted: 10/08/2018] [Indexed: 11/26/2022]
Abstract
This study aimed to explore whether interleukin-10 polymorphisms are associated with susceptibility to rheumatoid arthritis (RA). Studies that have analyzed the associations of the interleukin-10-1082G>A, -592C>A, and -819C>T polymorphisms with RA were searched for in PubMed and EMBASE. Sensitivity and cumulative analyses were conducted to measure the robustness of our findings. Egger's linear regression and Begg's funnel plots were performed to analyze publication bias. The source of heterogeneity was analyzed by subgroup analysis and meta-regression. This meta-analysis involved 2661 RA patients and 3249 controls in 16 studies. There were significant associations with RA in the AG vs AA model (OR = 0.79, 95% CI = 0.67-0.93, P < 0.01) and the AG + GG vs AA model (OR = 0.80, 95% CI = 0.69-0.93, P < 0.01) for the interleukin-10-1082G>A polymorphism, in the TC vs TT model (OR = 0.61, 95% CI = 0.44-0.84, P < 0.01) and the CC vs TT model (OR = 0.64, 95% CI = 0.46-0.89, P < 0.01) for the interleukin-10-819C>T polymorphism, and in the AC vs AA model (OR = 0.73, 95% CI = 0.56-0.96, P = 0.03) and the AC + CC vs AA model (OR = 0.68, 95% CI = 0.47-0.98, P = 0.04) for the interleukin-10-592C>A polymorphism. Meta-regression revealed that the genotyping method was a major cause of heterogeneity in the AC vs AA model and the AC + CC vs AA model for the interleukin-10-592C>A polymorphism. This meta-analysis showed the interleukin-10-1082G>A, -592C>A, and -819C>T polymorphisms are correlated with the susceptibility to RA. Meta-regression indicated that the genotyping method is a major driver of heterogeneity in the relationship between the interleukin-10-592C>A polymorphism and RA.
Collapse
Affiliation(s)
- Qingqing Liu
- Clinical Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Jin Yang
- Clinical Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Hairong He
- Clinical Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yong Yu
- Department of Hepatobiliary and Thoracic Surgery, Shaanxi Armed Police Corps Hospital, Xi'an, Shaanxi, China
| | - Jun Lyu
- Clinical Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
| |
Collapse
|
27
|
Zhou M, Jiang B, Xiong M, Zhu X. An Updated Meta-Analysis of the Associations Between MicroRNA Polymorphisms and Susceptibility to Rheumatoid Arthritis. Front Physiol 2018; 9:1604. [PMID: 30498453 PMCID: PMC6249421 DOI: 10.3389/fphys.2018.01604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/25/2018] [Indexed: 01/03/2023] Open
Abstract
Aims: Rheumatoid arthritis (RA) is characterized by cartilage and bone damage leading to disability. Here, the association between microRNA (miRNA) polymorphisms and susceptibility to RA was evaluated by performing an updated meta-analysis and systematic review. Main methods: An electronic search of databases including PubMed and Embase was performed from inception to December 8, 2017 to retrieve studies investigating the association between miRNA polymorphisms and RA risk. Two reviewers independently screened literature according to the inclusion and exclusion criteria and extracted data. The meta-analysis was conducted using Stata 14.0 software. Key findings: Thirteen case-control studies with 2660 cases and 4098 controls were screened out after a systematic search. One study from the miR-146a rs2910164 G > C polymorphism group and two from the miR-499 rs3746444 T > C polymorphism group were excluded because of deviations from Hardy-Weinberg equilibrium. Pooled analysis demonstrated that miR-146a rs2910164 G > C polymorphism was not significantly associated with susceptibility to RA. However, a significant association was observed between miR-499 rs3746444 T > C polymorphism and RA risk (C vs. T: OR = 1.22, 95% CI = 1.05–1.42, P = 0.008; TC vs. TT: OR = 1.26, 95% CI = 1.05–1.50, P = 0.011; TC/CC vs. TT: OR = 1.26, 95% CI = 1.07–1.5, P = 0.007). Subgroup analysis based on ethnicity showed no significant association between miR-499 T > C polymorphism and susceptibility to RA in the Asian population (P > 0.05). However, in Caucasian population, the C allele in the miR-499 T > C polymorphism was a contributor to RA susceptibility in some genetic models (C vs. T: OR = 1.64, 95% CI = 1.28–2.11, P < 0.001; TC vs. TT: OR = 1.95, 95% CI = 1.40–2.71, P < 0.001; TC/CC vs. TT: OR = 1.96, 95% CI = 1.43–2.69, P < 0.001). Significance: The miR-146a rs2910164 G > C polymorphism was not associated with susceptibility to RA. In the Caucasian population, the C allele in the miR-499 T > C polymorphism contributed to RA susceptibility.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Jiang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mao Xiong
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Zhu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
28
|
Nature versus nurture in the spectrum of rheumatic diseases: Classification of spondyloarthritis as autoimmune or autoinflammatory. Autoimmun Rev 2018; 17:935-941. [PMID: 30005857 DOI: 10.1016/j.autrev.2018.04.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 02/08/2023]
Abstract
Spondyloarthritides (SpA) include inflammatory joint diseases with various clinical phenotypes that may also include the axial skeleton and/or entheses. SpA include psoriatic arthritis, reactive arthritis, enteropathic arthritis and ankylosing spondylitis; the latter is frequently associated with extra-articular manifestations, such as uveitis, psoriasis, and inflammatory bowel disease. SpA are associated with the HLA-B27 allele and recognize T cells as key pathogenetic players. In contrast to other rheumatic diseases, SpA affect women and men equally and are not associated with detectable serum autoantibodies. In addition, but opposite to rheumatoid arthritis, SpA are responsive to treatment regimens including IL-23 or IL-17-targeting biologics, yet are virtually unresponsive to steroid treatment. Based on these differences with prototypical autoimmune diseases, such as rheumatoid arthritis or connective tissue diseases, SpA may be better classified among autoinflammatory diseases, with a predominant innate immunity involvement. This would rank SpA closer to gouty arthritis and periodic fevers in the spectrum of rheumatic diseases, as opposed to autoimmune-predominant diseases. We herein provide available literature on risk factors associated with SpA in support of this hypothesis with a specific focus on genetic and environmental factors.
Collapse
|
29
|
Chen Y, Tang W, Liu C, Lin J, Wang Y, Zhang S, Chen G, Zheng X. miRNA-146a rs2910164 C>G polymorphism increased the risk of esophagogastric junction adenocarcinoma: a case-control study involving 2,740 participants. Cancer Manag Res 2018; 10:1657-1664. [PMID: 29983589 PMCID: PMC6025765 DOI: 10.2147/cmar.s165921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose The miRNA-146a rs2910164 C>G polymorphism may contribute to the development of cancer. However, the association between this polymorphism and the risk of esophagogastric junction adenocarcinoma (EGJA) remains unclear. In the present study, we carried out a case–control study to explore the potential relationship between miRNA-146a rs2910164 C>G polymorphism and EGJA risk. Patients and methods In total, 1,063 EGJA patients and 1,677 cancer-free controls were enrolled. The SNPscan™ genotyping assay, a patented technology, was used to test the genotyping of miRNA-146a rs2910164 C>G polymorphism. Results We found that miRNA-146a rs2910164 C>G polymorphism was associated with a risk of developing EGJA (additive model: adjusted odds ratio (OR), 1.27; 95% CI, 1.07–1.51; P=0.006; homozygote model: adjusted OR, 1.31; 95% CI, 1.03–1.65; P=0.027 and dominant model: adjusted OR, 1.36; 95% CI, 1.15–1.60; P<0.001). After adjustment for the Bonferroni correction, these associations were also found in additive and dominant genetic models. In the subgroup analyses, after adjustment by sex, age, alcohol consumption, and smoking status, results of multiple logistic regression analysis indicated that miRNA-146a rs2910164 C>G polymorphism increased the risk of EGJA in males, females, <64 years old, ≥64 years old, never smoking, and never drinking subgroups. Conclusion The current study highlights that the miRNA-146a rs2910164 C>G polymorphism increased the risk of EGJA in eastern Chinese Han population.
Collapse
Affiliation(s)
- Yu Chen
- Department of Medical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian Province, China.,Cancer Bio-Immunotherapy Center, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian Province, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China,
| | - Weifeng Tang
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Chao Liu
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Jing Lin
- Department of Medical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian Province, China.,Cancer Bio-Immunotherapy Center, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian Province, China
| | - Yafeng Wang
- Department of Cardiology, The People's Hospital of Xishuangbanna Dai Autonomous Prefecture, Jinghong, Yunnan Province, China
| | - Sheng Zhang
- Department of General Surgery, Changzhou No. 3 People's Hospital, Changzhou, Jiangsu Province, China
| | - Gang Chen
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China, .,Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian Province, China,
| | - Xiongwei Zheng
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China, .,Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian Province, China,
| |
Collapse
|
30
|
Alemán-Ávila I, Jiménez-Morales M, Beltrán-Ramírez O, Barbosa-Cobos RE, Jiménez-Morales S, Sánchez-Muñoz F, Valencia-Pacheco G, Amezcua-Guerra LM, Juárez-Vicuña Y, Razo-Blanco Hernández DM, Aguilera-Cartas MC, López-Villanueva RF, Peralta-Zaragoza O, Tovilla-Zárate C, Ramírez-Bello J. Functional polymorphisms in pre-miR146a and pre-miR499 are associated with systemic lupus erythematosus but not with rheumatoid arthritis or Graves' disease in Mexican patients. Oncotarget 2017; 8:91876-91886. [PMID: 29190882 PMCID: PMC5696148 DOI: 10.18632/oncotarget.19621] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/30/2017] [Indexed: 02/07/2023] Open
Abstract
Recently, different microRNA (miRNA) gene polymorphisms have been evaluated in patients with rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and Graves’ disease (GD). In the present study, we examined three single-nucleotide polymorphisms (SNPs) located in the pre-miR-146a (rs2910164G/C), pre-miR-196a-2 (rs11614913C/T), and pre-miR-499 (rs3746444A/G) genes. Our study population included 900 Mexican patients with RA, SLE, or GD, as well as 486 healthy control individuals with no family history of inflammatory or autoimmune diseases. Genotyping was performed using TaqMan probes and a 5′ exonuclease assay. None of the investigated SNPs were associated with RA or GD susceptibility under any genetic model (co-dominant, recessive, or dominant). Genotype and allele frequencies of the miR-196a-2 rs11614913C/T polymorphism were similar between SLE cases and controls. In contrast, the miR-146a rs2910164G/C and miR-499 rs3746444A/G polymorphisms were associated with SLE susceptibility. These SNPs were not associated with lupus nephritis (LN). Our results suggest that polymorphisms in miR-146a, miR-196a-2, and miR-499 are not associated with RA or GD susceptibility. This is the first report documenting that the miR-146a rs2910164G/C and miR-499 rs3746444 polymorphisms are associated with SLE susceptibility but not with LN.
Collapse
Affiliation(s)
- Isidro Alemán-Ávila
- Endocrine and Metabolic Disease Unit Research, Hospital Juarez of Mexico, Mexico City, Mexico.,Superior School of Medicine Postgraduate Program, National Polytechnic Institute, Mexico City, Mexico
| | - Mayra Jiménez-Morales
- Endocrine and Metabolic Disease Unit Research, Hospital Juarez of Mexico, Mexico City, Mexico
| | - Olga Beltrán-Ramírez
- Endocrine and Metabolic Disease Unit Research, Hospital Juarez of Mexico, Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | | - Oscar Peralta-Zaragoza
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Cuernavaca, México
| | - Carlos Tovilla-Zárate
- Multidisciplinary Academic Division of Comalcalco, Juarez Autonomous University of Tabasco, Comalcalco, Mexico
| | - Julian Ramírez-Bello
- Endocrine and Metabolic Disease Unit Research, Hospital Juarez of Mexico, Mexico City, Mexico
| |
Collapse
|
31
|
Tsou PS, Sawalha AH. Unfolding the pathogenesis of scleroderma through genomics and epigenomics. J Autoimmun 2017; 83:73-94. [PMID: 28526340 DOI: 10.1016/j.jaut.2017.05.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 05/09/2017] [Indexed: 12/12/2022]
Abstract
With unknown etiology, scleroderma (SSc) is a multifaceted disease characterized by immune activation, vascular complications, and excessive fibrosis in internal organs. Genetic studies, including candidate gene association studies, genome-wide association studies, and whole-exome sequencing have supported the notion that while genetic susceptibility to SSc appears to be modest, SSc patients are genetically predisposed to this disease. The strongest genetic association for SSc lies within the MHC region, with loci in HLA-DRB1, HLA-DQB1, HLA-DPB1, and HLA-DOA1 being the most replicated. The non-HLA genes associated with SSc are involved in various functions, with the most robust associations including genes for B and T cell activation and innate immunity. Other pathways include genes involved in extracellular matrix deposition, cytokines, and autophagy. Among these genes, IRF5, STAT4, and CD247 were replicated most frequently while SNPs rs35677470 in DNASE1L3, rs5029939 in TNFAIP3, and rs7574685 in STAT4 have the strongest associations with SSc. In addition to genetic predisposition, it became clear that environmental factors and epigenetic influences also contribute to the development of SSc. Epigenetics, which refers to studies that focus on heritable phenotypes resulting from changes in chromatin structure without affecting the DNA sequence, is one of the most rapidly expanding fields in biomedical research. Indeed extensive epigenetic changes have been described in SSc. Alteration in enzymes and mediators involved in DNA methylation and histone modification, as well as dysregulated non-coding RNA levels all contribute to fibrosis, immune dysregulation, and impaired angiogenesis in this disease. Genes that are affected by epigenetic dysregulation include ones involved in autoimmunity, T cell function and regulation, TGFβ pathway, Wnt pathway, extracellular matrix, and transcription factors governing fibrosis and angiogenesis. In this review, we provide a comprehensive overview of the current findings of SSc genetic susceptibility, followed by an extensive description and a systematic review of epigenetic research that has been carried out to date in SSc. We also summarize the therapeutic potential of drugs that affect epigenetic mechanisms, and outline the future prospective of genomics and epigenomics research in SSc.
Collapse
Affiliation(s)
- Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Amr H Sawalha
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
32
|
Conigliaro P, Ciccacci C, Politi C, Triggianese P, Rufini S, Kroegler B, Perricone C, Latini A, Novelli G, Borgiani P, Perricone R. Polymorphisms in STAT4, PTPN2, PSORS1C1 and TRAF3IP2 Genes Are Associated with the Response to TNF Inhibitors in Patients with Rheumatoid Arthritis. PLoS One 2017; 12:e0169956. [PMID: 28107378 PMCID: PMC5249113 DOI: 10.1371/journal.pone.0169956] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/27/2016] [Indexed: 11/29/2022] Open
Abstract
Objective Rheumatoid Arthritis (RA) is a progressive autoimmune disease characterized by chronic joint inflammation and structural damage. Remission or at least low disease activity (LDA) represent potentially desirable goals of RA treatment. Single nucleotide polymorphisms (SNPs) in several genes might be useful for prediction of response to therapy. We aimed at exploring 4 SNPs in candidate genes (STAT4, PTPN2, PSORS1C1 and TRAF3IP2) in order to investigate their potential role in the response to therapy with tumor necrosis factor inhibitors (TNF-i) in RA patients. Methods In 171 RA patients we investigated the following SNPs: rs7574865 (STAT4), rs2233945 (PSORS1C1), rs7234029 (PTPN2) and rs33980500 (TRAF3IP2). Remission, LDA, and EULAR response were registered at 6 months and 2 years after initiation of first line TNF-i [Adalimumab (ADA) and Etanercept (ETN)]. Results STAT4 variant allele was associated with the absence of a good/moderate EULAR response at 2 years of treatment in the whole RA group and in ETN treated patients. The PTPN2 SNP was associated with no good/moderate EULAR response at 6 months in ADA treated patients. Patients carrying PSORS1C1 variant allele did not reach LDA at 6 months in both the whole RA group and ETN treated patients. TRAF3IP2 variant allele was associated with the lack of LDA and remission achievement at 6 months in all RA cohort while an association with no EULAR response at 2 years of treatment occurred only in ETN treated patients. Conclusions For the first time, we reported that SNPs in STAT4, PTPN2, PSORS1C1, and TRAF3IP2 are associated with response to TNF-i treatment in RA patients; however, these findings should be validated in a larger population.
Collapse
Affiliation(s)
- Paola Conigliaro
- Clinic of Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome Tor Vergata, Rome, Italy
| | - Cinzia Ciccacci
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, Rome, Italy
| | - Cristina Politi
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, Rome, Italy
| | - Paola Triggianese
- Clinic of Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome Tor Vergata, Rome, Italy
- * E-mail:
| | - Sara Rufini
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, Rome, Italy
| | - Barbara Kroegler
- Clinic of Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Perricone
- Reumatologia, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Andrea Latini
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, Rome, Italy
| | - Paola Borgiani
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, Rome, Italy
| | - Roberto Perricone
- Clinic of Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
33
|
Ciccacci C, Perricone C, Politi C, Rufini S, Ceccarelli F, Cipriano E, Alessandri C, Latini A, Valesini G, Novelli G, Conti F, Borgiani P. A polymorphism upstream MIR1279 gene is associated with pericarditis development in Systemic Lupus Erythematosus and contributes to definition of a genetic risk profile for this complication. Lupus 2016; 26:841-848. [DOI: 10.1177/0961203316679528] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recently, a study has shown that a polymorphism in the region of MIR1279 modulates the expression of the TRAF3IP2 gene. Since polymorphisms in the TRAF3IP2 gene have been described in association with systemic lupus erithematosus (SLE) susceptibility and with the development of pericarditis, our aim is to verify if the MIR1279 gene variability could also be involved. The rs1463335 SNP, located upstream MIR1279 gene, was analyzed by allelic discrimination assay in 315 Italian SLE patients and 201 healthy controls. Moreover, the MIR1279 gene was full sequenced in 50 patients. A case/control association study and a genotype/phenotype correlation analysis were performed. We also constructed a pericarditis genetic risk profile for patients with SLE. The full sequencing of the MIR1279 gene in patients with SLE did not reveal any novel or known variation. The variant allele of the rs1463335 SNP was significantly associated with susceptibility to pericarditis ( P = 0.017 and OR = 1.67). A risk profile model for pericarditis considering the risk alleles of MIR1279 and three other genes (STAT4, PTPN2 and TRAF3IP2) showed that patients with 4 or 5 risk alleles have a higher risk of developing pericarditis ( OR = 4.09 with P = 0.001 and OR = 6.04 with P = 0.04 respectively). In conclusion, we describe for the first time the contribution of a MIR1279 SNP in pericarditis development in patients with SLE and a genetic risk profile model that could be useful to identify patients more susceptible to developing pericarditis in SLE. This approach could help to improve the prediction and the management of this complication.
Collapse
Affiliation(s)
- C Ciccacci
- Department of Biomedicine and Prevention, Genetics Section, School of Medicine, University of Rome Tor Vergata, Italy
| | - C Perricone
- Lupus Clinic, Reumatologia, Dipartimento di Clinica e Terapia Medica, Sapienza Università di Roma, Italy
| | - C Politi
- Department of Biomedicine and Prevention, Genetics Section, School of Medicine, University of Rome Tor Vergata, Italy
| | - S Rufini
- Department of Biomedicine and Prevention, Genetics Section, School of Medicine, University of Rome Tor Vergata, Italy
| | - F Ceccarelli
- Lupus Clinic, Reumatologia, Dipartimento di Clinica e Terapia Medica, Sapienza Università di Roma, Italy
| | - E Cipriano
- Lupus Clinic, Reumatologia, Dipartimento di Clinica e Terapia Medica, Sapienza Università di Roma, Italy
| | - C Alessandri
- Lupus Clinic, Reumatologia, Dipartimento di Clinica e Terapia Medica, Sapienza Università di Roma, Italy
| | - A Latini
- Department of Biomedicine and Prevention, Genetics Section, School of Medicine, University of Rome Tor Vergata, Italy
| | - G Valesini
- Lupus Clinic, Reumatologia, Dipartimento di Clinica e Terapia Medica, Sapienza Università di Roma, Italy
| | - G Novelli
- Department of Biomedicine and Prevention, Genetics Section, School of Medicine, University of Rome Tor Vergata, Italy
| | - F Conti
- Lupus Clinic, Reumatologia, Dipartimento di Clinica e Terapia Medica, Sapienza Università di Roma, Italy
| | - P Borgiani
- Department of Biomedicine and Prevention, Genetics Section, School of Medicine, University of Rome Tor Vergata, Italy
| |
Collapse
|