1
|
von Hofsten S, Fenton KA, Pedersen HL. Human and Murine Toll-like Receptor-Driven Disease in Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:5351. [PMID: 38791389 PMCID: PMC11120885 DOI: 10.3390/ijms25105351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) is linked to the differential roles of toll-like receptors (TLRs), particularly TLR7, TLR8, and TLR9. TLR7 overexpression or gene duplication, as seen with the Y-linked autoimmune accelerator (Yaa) locus or TLR7 agonist imiquimod, correlates with increased SLE severity, and specific TLR7 polymorphisms and gain-of-function variants are associated with enhanced SLE susceptibility and severity. In addition, the X-chromosome location of TLR7 and its escape from X-chromosome inactivation provide a genetic basis for female predominance in SLE. The absence of TLR8 and TLR9 have been shown to exacerbate the detrimental effects of TLR7, leading to upregulated TLR7 activity and increased disease severity in mouse models of SLE. The regulatory functions of TLR8 and TLR9 have been proposed to involve competition for the endosomal trafficking chaperone UNC93B1. However, recent evidence implies more direct, regulatory functions of TLR9 on TLR7 activity. The association between age-associated B cells (ABCs) and autoantibody production positions these cells as potential targets for treatment in SLE, but the lack of specific markers necessitates further research for precise therapeutic intervention. Therapeutically, targeting TLRs is a promising strategy for SLE treatment, with drugs like hydroxychloroquine already in clinical use.
Collapse
Affiliation(s)
- Susannah von Hofsten
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway;
| | - Kristin Andreassen Fenton
- Centre of Clinical Research and Education, University Hospital of North Norway, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway;
| | - Hege Lynum Pedersen
- Centre of Clinical Research and Education, University Hospital of North Norway, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway;
| |
Collapse
|
2
|
Yildirim D, Baykul M, Edek YC, Gulengul M, Alp GT, Eroglu FS, Adisen E, Kucuk H, Erden A, Goker B, Nas K, Ozturk MA. Could serum HMGB1 levels be a predictor associated with psoriatic arthritis? Biomark Med 2023; 17:871-880. [PMID: 38117143 DOI: 10.2217/bmm-2023-0490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Background/aim: Psoriasis is a chronic autoimmune disease that predominantly affects the skin and musculoskeletal system. We hypothesized that HMGB1, an inflammatory nuclear protein, may play a role in the musculoskeletal involvement of psoriasis. Methods: Forty patients with psoriasis and 45 with psoriatic arthritis were involved in the study; the results were compared with 22 healthy controls. Serum HMGB1 levels were evaluated from peripheral blood samples. Results: Serum HMGB1 levels were found to be significantly higher in patients with psoriasis regardless of joint involvement (p < 0.001). Also, HMGB1 levels were correlated with the extent of psoriasis. Conclusion: Serum HMGB1 levels may contribute to the progression of psoriasis to psoriatic arthritis and correlate with the severity of skin involvement.
Collapse
Affiliation(s)
- Derya Yildirim
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Gazi University, 06460, Ankara, Turkey
| | - Merve Baykul
- Division of Rheumatology, Department of Physical Medicine & Rehabilitation, Faculty of Medicine, Sakarya University, 54100, Sakarya, Turkey
| | - Yusuf C Edek
- Department of Dermatology, Faculty of Medicine, Gazi University, 06460, Ankara, Turkey
| | - Mehmet Gulengul
- Department of Dermatology, Faculty of Medicine, Gazi University, 06460, Ankara, Turkey
| | - Gizem T Alp
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Gazi University, 06460, Ankara, Turkey
| | - Fatma S Eroglu
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Gazi University, 06460, Ankara, Turkey
| | - Esra Adisen
- Department of Dermatology, Faculty of Medicine, Gazi University, 06460, Ankara, Turkey
| | - Hamit Kucuk
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Gazi University, 06460, Ankara, Turkey
| | - Abdulsamet Erden
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Gazi University, 06460, Ankara, Turkey
| | - Berna Goker
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Gazi University, 06460, Ankara, Turkey
| | - Kemal Nas
- Division of Rheumatology, Department of Physical Medicine & Rehabilitation, Faculty of Medicine, Sakarya University, 54100, Sakarya, Turkey
| | - Mehmet A Ozturk
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Gazi University, 06460, Ankara, Turkey
| |
Collapse
|
3
|
Hisham FA, Tharwat S, Samra NE, Mostafa N, Nassar MK, El-Desoky MM. High mobility group box protein 1 (HMGB1) serum and urinary levels and gene polymorphism in Egyptian patients with systemic lupus erythematosus: A possible relation to lupus nephritis. Lupus 2022; 31:1777-1785. [DOI: 10.1177/09612033221132484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective The aim of this study was to evaluate the effects of the high mobility group box protein 1 (HMGB1) serum and urinary levels and gene polymorphisms on systemic lupus erythematosus (SLE) development and investigate their link to lupus nephritis (LN). Methods We enrolled 120 Egyptian SLE patients and 120 healthy controls. Thorough medical and clinical evaluation were carried out, and SLE disease activity index (SLEDAI) was assessed. Lupus patients were divided into two groups according to the presence of LN. Measurement of HMGB1 serum and urinary levels was done using ELISA and genotyping for HMGB1 ( rs1045411) was performed. Results There were statistically significantly higher HMGB1 serum and urinary levels in SLE patients ( p < 0.001). There was a marginally significant association between lupus and alleles ( p = 0.059, φ = −0.086). ‘C’ allele was marginally significant risk allele for SLE. After classifying SLE patients based on the presence or absence of LN, there was no significant difference as regard sex ( p = 0.387), age ( p = 0.208) and disease duration ( p = 0.094).However, there was a significant difference between the 2 groups in regard to the frequency of musculoskeletal manifestations ( p = 0.035), SLEDAI score ( p < 0.001), both serum ( p < 0.001) and urinary HMGB1 levels ( p < 0.001) in addition to the frequency of HMGB1 genotypes ( p = 0.003). Lupus patients with C/T-T/T HMGB1 genotypes had 3.5-times higher odds to exhibit LN. Conclusions Serum and urine HMGB1 measurements are helpful in the diagnosis of SLE and the prediction of LN. There is a link between HMGB1 gene variations and the risk of SLE, with evidence that the C/T-T/T HMGB1 genotype is linked to a significantly greater risk of LN in the Egyptian population.
Collapse
Affiliation(s)
- Fatma A Hisham
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Samar Tharwat
- Rheumatology and Immunology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Egypt
| | - Nouran E Samra
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Nora Mostafa
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Mohammed K Nassar
- Mansoura Nephrology and Dialysis Unit (MNDU), Internal Medicine Department, Faculty of Medicine, Mansoura University, Egypt
| | - Manal M. El-Desoky
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Egypt
| |
Collapse
|
4
|
Dong Y, Ming B, Dong L. The Role of HMGB1 in Rheumatic Diseases. Front Immunol 2022; 13:815257. [PMID: 35250993 PMCID: PMC8892237 DOI: 10.3389/fimmu.2022.815257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/31/2022] [Indexed: 12/19/2022] Open
Abstract
HMGB1, a highly conserved non-histone nuclear protein, is widely expressed in mammalian cells. HMGB1 in the nucleus binds to the deoxyribonucleic acid (DNA) to regulate the structure of chromosomes and maintain the transcription, replication, DNA repair, and nucleosome assembly. HMGB1 is actively or passively released into the extracellular region during cells activation or necrosis. Extracellular HMGB1 as an alarmin can initiate immune response alone or combined with other substances such as nucleic acid to participate in multiple biological processes. It has been reported that HMGB1 is involved in various inflammatory responses and autoimmunity. This review article summarizes the physiological function of HMGB1, the post-translational modification of HMGB1, its interaction with different receptors, and its recent advances in rheumatic diseases and strategies for targeted therapy.
Collapse
Affiliation(s)
- Yuanji Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingxia Ming
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Hong J, Zhang M, He Y, Jin Y, He Q, Zhang Y, Shi X, Tian W, Wen C, Chen J. Qinghao-Biejia Herb Pair Alleviates Pristane-Induced Lupus-Like Disease and Associated Renal and Aortic Lesions in ApoE−/− Mice. Front Pharmacol 2022; 13:897669. [PMID: 35571092 PMCID: PMC9100684 DOI: 10.3389/fphar.2022.897669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Backgroud: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease involving multiple systems with a high prevalence of nephritis and atherosclerosis. Jieduquyuziyin prescription is a famous prescription with immune modulating and inflammation controlling effects, which is efficacious in the treatment of SLE. The most critical herbs in this prescription are Qinghao and Biejia. The aim of this study was to evaluate the therapeutic effect of Qinghao-Biejia herb hair (QB) on mice with SLE combined with atherosclerosis.Materials and Methods: The effect of QB (identification using UPLC-TOF-MS) was assessed in female ApoE−/− mice intraperitoneally injected with 0.5 ml of pristane. Serum autoantibodies and lipid metabolic parameters were tested every 4 weeks, and spleen index, serum inflammatory biomarkers, renal injury, and aortic injury were observed after 16 weeks. The expression of signaling pathway in kidney tissues was observed by RT-qPCR and Western blot.Results: The mice of QB-treated group exhibited a significant reduced serum autoantibodies level, urine protein, and renal immune complex deposition. QB treatment reduced the levels of inflammatory cytokines and improved the renal pathological changes. In addition, there was a reduction in aortic atheromatous plaque and some improvement in dyslipidemia. Moreover, QB suppressed the expression of HMGB1, TLR4, and MyD88 to some extent.Conclusion: The present study implied that QB has clear efficacy for the treatment of SLE combined with atherosclerosis, and that inhibition of the HMGB1/TLR4 signaling pathway may be one of the therapeutic targets of QB for SLE combined with atherosclerosis.
Collapse
Affiliation(s)
- Jiaze Hong
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Miao Zhang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuanfang He
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Jin
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiaoqi He
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaowei Shi
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weiyu Tian
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengping Wen
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Juan Chen, ; Chengping Wen,
| | - Juan Chen
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Juan Chen, ; Chengping Wen,
| |
Collapse
|
6
|
Gaboriaud C, Lorvellec M, Rossi V, Dumestre-Pérard C, Thielens NM. Complement System and Alarmin HMGB1 Crosstalk: For Better or Worse. Front Immunol 2022; 13:869720. [PMID: 35572583 PMCID: PMC9095977 DOI: 10.3389/fimmu.2022.869720] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/04/2022] [Indexed: 12/21/2022] Open
Abstract
Our immune system responds to infectious (PAMPs) and tissue damage (DAMPs) signals. The complement system and alarmin High-Mobility Group Box 1 (HMGB1) are two powerful soluble actors of human host defense and immune surveillance. These systems involve molecular cascades and amplification loops for their signaling or activation. Initially activated as alarm raising systems, their function can be finally switched towards inflammation resolution, where they sustain immune maturation and orchestrate repair mechanisms, opening the way back to homeostasis. However, when getting out of control, these defense systems can become deleterious and trigger serious cellular and tissue damage. Therefore, they can be considered as double-edged swords. The close interaction between the complement and HMGB1 pathways is described here, as well as their traditional and non-canonical roles, their functioning at different locations and their independent and collective impact in different systems both in health and disease. Starting from these systems and interplay at the molecular level (when elucidated), we then provide disease examples to better illustrate the signs and consequences of their roles and interaction, highlighting their importance and possible vicious circles in alarm raising and inflammation, both individually or in combination. Although this integrated view may open new therapeutic strategies, future challenges have to be faced because of the remaining unknowns regarding the molecular mechanisms underlying the fragile molecular balance which can drift towards disease or return to homeostasis, as briefly discussed at the end.
Collapse
Affiliation(s)
| | | | | | - Chantal Dumestre-Pérard
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
- Laboratoire d’Immunologie, Pôle de Biologie, CHU Grenoble Alpes, Grenoble, France
| | | |
Collapse
|
7
|
Kroemer G, Galassi C, Zitvogel L, Galluzzi L. Immunogenic cell stress and death. Nat Immunol 2022; 23:487-500. [PMID: 35145297 DOI: 10.1038/s41590-022-01132-2] [Citation(s) in RCA: 637] [Impact Index Per Article: 212.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/07/2022] [Indexed: 12/20/2022]
Abstract
Dying mammalian cells emit numerous signals that interact with the host to dictate the immunological correlates of cellular stress and death. In the absence of reactive antigenic determinants (which is generally the case for healthy cells), such signals may drive inflammation but cannot engage adaptive immunity. Conversely, when cells exhibit sufficient antigenicity, as in the case of infected or malignant cells, their death can culminate with adaptive immune responses that are executed by cytotoxic T lymphocytes and elicit immunological memory. Suggesting a key role for immunogenic cell death (ICD) in immunosurveillance, both pathogens and cancer cells evolved strategies to prevent the recognition of cell death as immunogenic. Intriguingly, normal cells succumbing to conditions that promote the formation of post-translational neoantigens (for example, oxidative stress) can also drive at least some degree of antigen-specific immunity, pointing to a novel implication of ICD in the etiology of non-infectious, non-malignant disorders linked to autoreactivity.
Collapse
Affiliation(s)
- Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université de Paris, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Université Paris Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France.,INSERM U1015, Villejuif, France.,Equipe labellisée par la Ligue contre le cancer, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) BIOTHERIS, Villejuif, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA. .,Sandra and Edward Meyer Cancer Center, New York, NY, USA. .,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Auler N, Tonner H, Pfeiffer N, Grus FH. Antibody and Protein Profiles in Glaucoma: Screening of Biomarkers and Identification of Signaling Pathways. BIOLOGY 2021; 10:biology10121296. [PMID: 34943212 PMCID: PMC8698915 DOI: 10.3390/biology10121296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary Glaucoma is a chronic eye disease that is one of the leading causes of blindness worldwide. Currently, the only therapeutic option is to lower intraocular pressure. The onset of the disease is often delayed because patients do not notice visual impairment until very late, which is why glaucoma is also known as “the silent thief of sight”. Therefore, early detection and definition of specific markers, the so-called biomarkers, are immensely important. For the methodical implementation, high-throughput methods and omic-based methods came more and more into focus. Thus, interesting targets for possible biomarkers were already suggested by clinical research and basic research, respectively. This review article aims to join the findings of the two disciplines by collecting overlaps as well as differences in various clinical studies and to shed light on promising candidates concerning findings from basic research, facilitating conclusions on possible therapy options. Abstract Glaucoma represents a group of chronic neurodegenerative diseases, constituting the second leading cause of blindness worldwide. To date, chronically elevated intraocular pressure has been identified as the main risk factor and the only treatable symptom. However, there is increasing evidence in the recent literature that IOP-independent molecular mechanisms also play an important role in the progression of the disease. In recent years, it has become increasingly clear that glaucoma has an autoimmune component. The main focus nowadays is elucidating glaucoma pathogenesis, finding early diagnostic options and new therapeutic approaches. This review article summarizes the impact of different antibodies and proteins associated with glaucoma that can be detected for example by microarray and mass spectrometric analyzes, which (i) provide information about expression profiles and associated molecular signaling pathways, (ii) can possibly be used as a diagnostic tool in future and, (iii) can identify possible targets for therapeutic approaches.
Collapse
|
9
|
Chen M, Zhu L, Xue M, Zhu R, Jing L, Wang H, Qin Y. HMGB1, anti-HMGB1 antibodies, and ratio of HMGB1/anti-HMGB1 antibodies as diagnosis indicator in fever of unknown origin. Sci Rep 2021; 11:5059. [PMID: 33658546 PMCID: PMC7930274 DOI: 10.1038/s41598-021-84477-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/16/2021] [Indexed: 11/29/2022] Open
Abstract
To evaluate the feasibility of serum HMGB1, anti-HMGB1 antibodies, and HMGB1/anti-HMGB1 ratio as a diagnosis indicator of initial clinical classification in patients with fever of unknown origin (FUO). Ninety-four patients with classical FUO and ninety healthy controls were enrolled in this study. The subjects’ clinical data and serum were collected. The serum concentration of HMGB1 was detected by a commercial HMGB1 ELISA kit, while the serum concentration of anti-HMGB1 antibodies were detected by an in-house built anti-HMGB1 antibodies ELISA kit and further confirmed by immunoblotting. According to the hospital diagnosis on discharge, ninety-four FUO patients were divided into four groups, Infectious disease subgroup, autoimmune disease subgroup, malignant tumor subgroup, and undetermined subgroup. The concentrations of HMGB1 in the infectious disease subgroup and autoimmune disease subgroup were higher than those in the malignant tumor subgroup, undetermined subgroup, and healthy control group. The concentration of anti-HMGB1 antibodies in autoimmune disease subtype group was higher than those in other subgroups as well as healthy control group. According to the distribution of HMGB1 and anti-HMGB1 in scatter plots of the patients with FUO, we found that the ratio of serum HMGB1/anti-HMGB1 is an ideal clinical indicator for differential diagnosis of different subtypes of FUO. The best cut-off was 0.75, and the sensitivity, specificity, and AUC were 66.67%, 87.32%, and 0.8, respectively. Correlation analysis showed that serum concentration of HMGB1 was moderately correlated with CRP in infectious diseases subgroup, and the serum concentration of anti-HMGB1 antibodies was strongly correlated with erythrocyte sedimentation rate in autoimmune disease subgroup. Our study had showed that serum HMGB1/anti-HMGB1 antibodies ratio can help clinicians identify FUO subtypes, thereby avoiding many unnecessary examinations and tests, and improving the effectiveness of clinical diagnosis and treatment of FUO.
Collapse
Affiliation(s)
- Mingkun Chen
- Department of Laboratory Medicine, Changhai Hospital, SMMU, Shanghai, China
| | - Li Zhu
- Department of Laboratory Medicine, Wuxi People's Hospital, Wuxi, China
| | - Miao Xue
- Department of Laboratory Medicine, Changhai Hospital, SMMU, Shanghai, China
| | - Rongrong Zhu
- Department of Laboratory Medicine, Changhai Hospital, SMMU, Shanghai, China
| | - Liling Jing
- Department of Laboratory Medicine, Changhai Hospital, SMMU, Shanghai, China
| | - Huaizhou Wang
- Department of Laboratory Medicine, Changhai Hospital, SMMU, Shanghai, China.
| | - Yanghua Qin
- Department of Laboratory Medicine, Changhai Hospital, SMMU, Shanghai, China.
| |
Collapse
|
10
|
Wang D, Zhou M, Wang Y, Sun S. Suppression of high-mobility group box 1 ameliorates xerostomia in a Sjögren syndrome-triggered mouse model. Can J Physiol Pharmacol 2020; 98:351-356. [PMID: 31935120 DOI: 10.1139/cjpp-2019-0337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Xerostomia is a self-conscious symptom. High-mobility group box 1 (HMGB1) promotes pro-inflammatory effects in many diseases. This study aimed to clarify the role of HMGB1 in Sjögren syndrome (SS)-triggered xerostomia. Nonobese diabetic (NOD)/Ltj mice were used to establish an SS-triggered xerostomia model. The results showed that saliva production was decreased and anti-Sjögren syndrome B (anti-SSB) level was increased in SS. PCR, Western blot, and immunohistochemistry experiments indicated that the HMGB1 and aquaporin 5 (AQP5) levels were enhanced and diminished in SS compared with those in the control, respectively. While the mice were treated with anti-HMGB1, xerostomia was reversed due to the elevated saliva production and reduced anti-SSB level. In addition, it was found that the inhibition of HMGB1 restrained the toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) axis activation. The TLR4 and p-IκB levels were alleviated, while the IκBα and NF-κB p65 levels were augmented. The NF-κB p65 binding activity was attenuated via the electrophoretic mobility shift assay (EMSA) after anti-HMGB1 treatment. Moreover, the repression of HMGB1 facilitated the expression of AQP5. These findings demonstrate that suppression of HMGB1 ameliorates SS-triggered xerostomia via suppressing the HMGB1/TLR4/NF-κB signaling pathway and upregulating AQP5 expression.
Collapse
Affiliation(s)
- Di Wang
- Department of Nephrology, Xijing Hospital, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, Shaanxi 710032, People’s Republic of China
- Department of Nephrology, Xijing Hospital, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, Shaanxi 710032, People’s Republic of China
| | - Meilan Zhou
- Department of Nephrology, Xijing Hospital, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, Shaanxi 710032, People’s Republic of China
- Department of Nephrology, Xijing Hospital, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, Shaanxi 710032, People’s Republic of China
| | - Yan Wang
- Department of Nephrology, Xijing Hospital, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, Shaanxi 710032, People’s Republic of China
- Department of Nephrology, Xijing Hospital, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, Shaanxi 710032, People’s Republic of China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, Shaanxi 710032, People’s Republic of China
- Department of Nephrology, Xijing Hospital, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, Shaanxi 710032, People’s Republic of China
| |
Collapse
|
11
|
Abstract
The high-mobility group box 1 (HMGB1) has been shown to exert proinflammatory effects on many cells of the innate immune system. Originally identified as a nuclear protein, HMGB1 has been found to play an important role in mediating inflammation when released from apoptotic or necrotic cells as a damage-associated molecular pattern (DAMP). Systemic lupus erythematosus (SLE) is a disease of non-resolving inflammation, characterized by the presence of autoantibodies and systemic inflammation involving multiple organ systems. SLE patients have impaired clearance of apoptotic debris, which releases HMGB1 and other DAMPs extracellularly. HMGB1 activity is implicated in multiple disease phenotypes in SLE, including lupus nephritis and neuropsychiatric lupus. Elucidating the various properties of HMGB1 in SLE provides a better understanding of the disease and opens up new opportunities for designing potential therapeutics.
Collapse
Affiliation(s)
- Tianye Liu
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Myoungsun Son
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Betty Diamond
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
12
|
Wang K, Wei H, Zhan J, Liang X, Zhang C, Liu Y, Xu G. GSPE alleviates renal fibrosis by inhibiting the activation of C3/ HMGB1/ TGF-β1 pathway. Chem Biol Interact 2019; 316:108926. [PMID: 31874164 DOI: 10.1016/j.cbi.2019.108926] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/29/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
Abstract
Grape seed proanthocyanidin extract (GSPE) has been reported to exhibit a variety of protective effects, such as antioxidant, anti-atherosclerosis and other pharmacological effects. As a member of the complement system, complement component 3 (C3) deposition in the glomerulus is recognized as an important causative mediator of various kidney diseases. In this study, we aimed to identify the effect of GSPE on C3 in the chronic kidney fibrosis and evaluate the possible mechanism. We observed that administration of GSPE relieves inflammation and chronic renal fibrosis in mouse models of UUO. GSPE inhibited C3 secreted by macrophages to relieve renal interstitial inflammation. In vitro, we found that C3 stimulated HMGB1 translocation form nucleus to cytoplasm and promote the expression of pro-inflammatory cytokines including TGF-β1 in primary renal tubular epithelial cells (PTEC), which could be inhibited by GSPE. Meanwhile, GSPE could also decreased HMGB1-induced EMT of PTEC through suppresses the HMGB1/TLR4/p65/TGF-β1 pathway. In addition, the myofibroblast activation was inhibited by GSPE via TGF-β1/Smad2/3 signaling pathways in normal rat kidney fibroblast (NRK-49F) cells. Overall, these observations provide that GSPE alleviates renal fibrosis by inhibiting the C3/HMGB1/TGF-β1 pathway and could thus lead to find the potential therapy for the suppression of renal fibrosis.
Collapse
Affiliation(s)
- Kun Wang
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haotian Wei
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juan Zhan
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinjun Liang
- Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunxiu Zhang
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanyan Liu
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Gang Xu
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
13
|
Whittall-García LP, Torres-Ruiz J, Zentella-Dehesa A, Tapia-Rodríguez M, Alcocer-Varela J, Mendez-Huerta N, Gómez-Martín D. Neutrophil extracellular traps are a source of extracellular HMGB1 in lupus nephritis: associations with clinical and histopathological features. Lupus 2019; 28:1549-1557. [PMID: 31619143 DOI: 10.1177/0961203319883936] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE This study aimed to analyze the expression of the high mobility group box-1 (HMGB1) protein in neutrophil extracellular traps (NETs) of patients with lupus nephritis (LN) and its association with clinical and histopathological features of the disease. METHODS Twenty-three patients with biopsy-confirmed LN and 14 systemic lupus erythematosus (SLE) patients with active disease (SLE Disease Activity Index (SLEDAI) score ≥ 6) and no evidence of LN were included. Clinical and laboratory features were recorded. NETs and the expression of HMGB1 were assessed by confocal microscopy, and serum HMGB1 levels were measured by ELISA. RESULTS In comparison to patients without kidney disease, patients with LN had a higher expression of HMGB1 in spontaneous (57 vs. 30.4; p = 0.027) and lipopolysaccharide (LPS)-induced (55.8 vs. 24.9; p = 0.005) NETs. We found a positive correlation between serum HMGB1 and the expression of HMGB1 in LPS-induced NETs (r = 0.447, p = 0.017). The expression of HMGB1 in spontaneous NETs correlated with SLEDAI score (r = 0.514, p = 0.001), anti-dsDNA antibodies (r = 0.467, p = 0.004), the rate of glomerular filtration descent (r = 0.543, p = 0.001), and diverse histopathological components of active nephritis in the kidney biopsy, such as the activity index (r = 0.581, p = 0.004), fibrinoid necrosis (r = 0.603, p = 0.002), and cellular crescents (r = 0.486, p = 0.019). CONCLUSIONS In patients with SLE, NETs are a source of extracellular HMGB1. The expression of HMGB1 in NETs is higher among patients with LN, which correlates with clinical and histopathological features of active nephritis and suggest a possible role of this alarmin in the pathophysiology of kidney damage in SLE.
Collapse
Affiliation(s)
- L P Whittall-García
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - J Torres-Ruiz
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Emergency Medicine Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - A Zentella-Dehesa
- Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - M Tapia-Rodríguez
- Microscopy Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - J Alcocer-Varela
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - N Mendez-Huerta
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - D Gómez-Martín
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico.,Flow Cytometry Unit, Red de Apoyo a la Investigación. Coordinación de Investigación Científica, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
14
|
Challenges and Advances in SLE Autoantibody Detection and Interpretation. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2019. [DOI: 10.1007/s40674-019-00122-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Abstract
Systemic lupus erythematosus (SLE) is a complex and highly heterogeneous disease. By now, no novel drug has been approved by the US FDA in the past 50 years, except Belimumab, a monoclonal antibody to inhibit B-cell activating factor. The stagnating drug development of lupus may be due to our limited understanding of disease etiopathogenesis and the extreme heterogeneity of patient population. Thus, the individualized treatment for SLE becomes necessary. Recently, biomarkers have shown potential in individualized treatment. This review comprehensively summarizes novel potential biomarkers, discusses their current status in preclinical studies and clinical use, sensitivity to treatments and correlation with the disease activity, and provides an insight into the possibility of biomarkers in the utilization of individualized treatment for SLE.
Collapse
Affiliation(s)
- Jinrong Zeng
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|