1
|
Zhang YC, Zhang YT, Wang Y, Zhao Y, He LJ. What role does PDL1 play in EMT changes in tumors and fibrosis? Front Immunol 2023; 14:1226038. [PMID: 37649487 PMCID: PMC10463740 DOI: 10.3389/fimmu.2023.1226038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
Epithelial-mesenchymal transformation (EMT) plays a pivotal role in embryonic development, tissue fibrosis, repair, and tumor invasiveness. Emerging studies have highlighted the close association between EMT and immune checkpoint molecules, particularly programmed cell death ligand 1 (PDL1). PDL1 exerts its influence on EMT through bidirectional regulation. EMT-associated factors, such as YB1, enhance PDL1 expression by directly binding to its promoter. Conversely, PDL1 signaling triggers downstream pathways like PI3K/AKT and MAPK, promoting EMT and facilitating cancer cell migration and invasion. Targeting PDL1 holds promise as a therapeutic strategy for EMT-related diseases, including cancer and fibrosis. Indeed, PDL1 inhibitors, such as pembrolizumab and nivolumab, have shown promising results in clinical trials for various cancers. Recent research has also indicated their potential benefit in fibrosis treatment in reducing fibroblast activation and extracellular matrix deposition, thereby addressing fibrosis. In this review, we examine the multifaceted role of PDL1 in immunomodulation, growth, and fibrosis promotion. We discuss the challenges, mechanisms, and clinical observations related to PDL1, including the limitations of the PD1/PDL1 axis in treatment and PD1-independent intrinsic PDL1 signaling. Our study highlights the dynamic changes in PDL1 expression during the EMT process across various tumor types. Through interplay between PDL1 and EMT, we uncover co-directional alterations, regulatory pathways, and diverse changes resulting from PDL1 intervention in oncology. Additionally, our findings emphasize the dual role of PDL1 in promoting fibrosis and modulating immune responses across multiple diseases, with potential implications for therapeutic approaches. We particularly investigate the therapeutic potential of targeting PDL1 in type II EMT fibrosis: strike balance between fibrosis modulation and immune response regulation. This analysis provides valuable insights into the multifaceted functions of PDL1 and contributes to our understanding of its complex mechanisms and therapeutic implications.
Collapse
Affiliation(s)
- Yun-Chao Zhang
- Department of Nephrology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yu-Ting Zhang
- Department of Nephrology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yi Wang
- Department of Nephrology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ya Zhao
- Department of Medical Microbiology and Parasitology, Fourth Military Medical University, Xi'an, China
| | - Li-Jie He
- Department of Nephrology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
2
|
Chen R, Zhou L. PD-1 signaling pathway in sepsis: Does it have a future? Clin Immunol 2021; 229:108742. [PMID: 33905818 DOI: 10.1016/j.clim.2021.108742] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/07/2021] [Accepted: 04/22/2021] [Indexed: 01/17/2023]
Abstract
Sepsis is characterized by high mortality and poor prognosis and is one of the leading causes of death among patients in the intensive care unit (ICU). In the past, drugs that block early inflammatory responses have done little to reverse the progression of sepsis. Programmed cell death receptor 1 (PD-1) and its two ligands, programmed cell death receptor ligand 1(PD-L1) and programmed cell death receptor ligand 2 (PD-L2), are negative regulatory factors of the immune response of the body. Recently, the role of the PD-1 signaling pathway in sepsis has been widely studied. Studies showed that the PD-1 signaling pathways are closely related to the mortality and prognosis of sepsis patients. In the immunotherapy of sepsis, whether in animal experiments or clinical trials, anti-PD-1/PD-L1 antibodies have shown good promise. In this review, firstly, we focus on the immunosuppressive mechanism of sepsis and the structure and function of the PD-1 signaling pathway. The variety of the PD-1 signaling pathways in sepsis is introduced. Then, the relationship between the PD-1 signaling pathway and immune cells and organ dysfunction and the regulatory factors of the PD-1 signaling pathway in sepsis is discussed. Finally, the application of the PD-1 signaling pathway in sepsis is specifically emphasized.
Collapse
Affiliation(s)
- Rongping Chen
- Department of Intensive care unit, The First People's Hospital of Foshan, Foshan 528000, Guangdong Province, China; Sun Yet-sen University, Guangzhou 510000, Guangdong Province, China
| | - Lixin Zhou
- Department of Intensive care unit, The First People's Hospital of Foshan, Foshan 528000, Guangdong Province, China.
| |
Collapse
|
3
|
Galbraith NJ, Walker SP, Gardner SA, Bishop C, Galandiuk S, Polk HC. Interferon-gamma increases monocyte PD-L1 but does not diminish T-cell activation. Cell Immunol 2020; 357:104197. [PMID: 32891037 DOI: 10.1016/j.cellimm.2020.104197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/06/2020] [Accepted: 08/12/2020] [Indexed: 01/16/2023]
Abstract
Immune dysfunction can occur during sepsis or following major trauma. Decreased monocyte HLA-DR expression and cytokine responses are associated with mortality. Recent studies have shown that adaptive immune system defects can also occur in such patients, characterised by increased PD-L1 expression and associated T-cell anergy. The aim of this study was to determine the effects of an immune adjuvant, interferon-gamma, on monocyte PD-L1 expression and T-cell activation in an ex-vivo human whole blood model of infection. We found that with interferon-gamma treatment, monocytes had increased HLA-DR expression and augmented TNF-α production in response to LPS stimulation, with a decrease in IL-10 levels. Both LPS and interferon-gamma increased the level of monocyte PD-L1 expression, and that a combination of both agents synergistically stimulated a further increase in PD-L1 levels as measured by flow cytometry. However, despite elevated PD-L1 expression, both CD4 and CD8 T-cell activation was not diminished by the addition of interferon-gamma treatment. These findings suggest that PD-L1 may not be a reliable marker for T-cell anergy, and that interferon-gamma remains an adjuvant of interest that can improve the monocyte inflammatory response while preserving T-cell activation.
Collapse
Affiliation(s)
- Norman J Galbraith
- Department of General Surgery, Royal Alexandra Hospital, Paisley, Glasgow, Scotland, UK.
| | - Samuel P Walker
- University of Kentucky School of Medicine, University of Kentucky, Lexington, KY, USA
| | - Sarah A Gardner
- Price Institute of Surgical Research, Hiram C. Polk, Jr. M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Campbell Bishop
- Price Institute of Surgical Research, Hiram C. Polk, Jr. M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Susan Galandiuk
- Price Institute of Surgical Research, Hiram C. Polk, Jr. M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Hiram C Polk
- Price Institute of Surgical Research, Hiram C. Polk, Jr. M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
4
|
Lucescu L, Ghinet A, Shova S, Magnez R, Thuru X, Farce A, Rigo B, Belei D, Dubois J, Bîcu E. Exploring isoxazoles and pyrrolidinones decorated with the 4,6-dimethoxy-1,3,5-triazine unit as human farnesyltransferase inhibitors. Arch Pharm (Weinheim) 2019; 352:e1800227. [PMID: 30947375 DOI: 10.1002/ardp.201800227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 11/12/2022]
Abstract
Unprecedented triazinyl-isoxazoles were afforded via an effective cycloaddition reaction between nitrile oxides and the scarcely described 2-ethynyl-4,6-dimethoxy-1,3,5-triazine as dipolarophile. The biological evaluation of the newly synthesized compounds showed that the inhibition of human farnesyltransferase by zinc complexation could be improved with triazine-isoxazole moieties. The replacement of the isoxazole unit by a pyrrolidin-2-one was detrimental to the inhibitory activity while the pyrrolidin-2-thione derivatives conserved the biological potential. The potential of selected compounds to disrupt protein farnesylation in Chinese hamster ovary (CHO) cells transfected with pEGFP-CAAX was also evaluated.
Collapse
Affiliation(s)
- Liliana Lucescu
- Faculty of Chemistry, Al. I. Cuza' University of Iasi, Iasi, Romania
| | - Alina Ghinet
- Faculty of Chemistry, Al. I. Cuza' University of Iasi, Iasi, Romania.,Inserm U995, LIRIC, Faculté de médecine-Pôle recherche, Université de Lille, CHRU de Lille, Lille, France.,Laboratoire de Chimie Durable et Santé, Hautes Etudes d'Ingénieur (HEI), Yncréa Hauts-de-France, UC Lille, Lille, France
| | - Sergiu Shova
- Petru Poni' Institute of Macromolecular Chemistry, Iasi, Romania
| | - Romain Magnez
- Univ. Lille, UMR-S 1172 - JPARC - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France
| | - Xavier Thuru
- Univ. Lille, UMR-S 1172 - JPARC - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France
| | - Amaury Farce
- Inserm U995, LIRIC, Faculté de médecine-Pôle recherche, Université de Lille, CHRU de Lille, Lille, France.,Faculté des Sciences Pharmaceutiques et Biologiques de Lille, Lille, France
| | - Benoît Rigo
- Inserm U995, LIRIC, Faculté de médecine-Pôle recherche, Université de Lille, CHRU de Lille, Lille, France.,Laboratoire de Chimie Durable et Santé, Hautes Etudes d'Ingénieur (HEI), Yncréa Hauts-de-France, UC Lille, Lille, France
| | - Dalila Belei
- Faculty of Chemistry, Al. I. Cuza' University of Iasi, Iasi, Romania
| | - Joëlle Dubois
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, UPR2301 CNRS, Gif-sur-Yvette, France
| | - Elena Bîcu
- Faculty of Chemistry, Al. I. Cuza' University of Iasi, Iasi, Romania
| |
Collapse
|
5
|
Homerin G, Lipka E, Rigo B, Farce A, Dubois J, Ghinet A. On the discovery of new potent human farnesyltransferase inhibitors: emerging pyroglutamic derivatives. Org Biomol Chem 2017; 15:8110-8118. [DOI: 10.1039/c7ob01489a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In the current context of lack of emergence of innovative human farnesyltransferase inhibitors, and given all new therapeutic perspectives that open up for such molecules, we have just discovered a new series of powerful inhibitors with IC50values in the nanomolar range.
Collapse
Affiliation(s)
- Germain Homerin
- Inserm U995
- LIRIC
- Université de Lille
- CHRU de Lille
- Faculté de médecine – Pôle recherche
| | - Emmanuelle Lipka
- Inserm U995
- LIRIC
- Université de Lille
- CHRU de Lille
- Faculté de médecine – Pôle recherche
| | - Benoît Rigo
- Inserm U995
- LIRIC
- Université de Lille
- CHRU de Lille
- Faculté de médecine – Pôle recherche
| | - Amaury Farce
- Inserm U995
- LIRIC
- Université de Lille
- CHRU de Lille
- Faculté de médecine – Pôle recherche
| | - Joëlle Dubois
- Institut de Chimie des Substances Naturelles
- UPR2301 CNRS
- Centre de Recherche de Gif
- F-91198 Gif-sur-Yvette Cedex
- France
| | - Alina Ghinet
- Inserm U995
- LIRIC
- Université de Lille
- CHRU de Lille
- Faculté de médecine – Pôle recherche
| |
Collapse
|