1
|
Langenmayer MC, Luelf-Averhoff AT, Marr L, Jany S, Freudenstein A, Adam-Neumair S, Tscherne A, Fux R, Rojas JJ, Blutke A, Sutter G, Volz A. Newly Designed Poxviral Promoters to Improve Immunogenicity and Efficacy of MVA-NP Candidate Vaccines against Lethal Influenza Virus Infection in Mice. Pathogens 2023; 12:867. [PMID: 37513714 PMCID: PMC10383309 DOI: 10.3390/pathogens12070867] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Influenza, a respiratory disease mainly caused by influenza A and B, viruses of the Orthomyxoviridae, is still a burden on our society's health and economic system. Influenza A viruses (IAV) circulate in mammalian and avian populations, causing seasonal outbreaks with high numbers of cases. Due to the high variability in seasonal IAV triggered by antigenic drift, annual vaccination is necessary, highlighting the need for a more broadly protective vaccine against IAV. The safety tested Modified Vaccinia virus Ankara (MVA) is licensed as a third-generation vaccine against smallpox and serves as a potent vector system for the development of new candidate vaccines against different pathogens. Here, we generated and characterized recombinant MVA candidate vaccines that deliver the highly conserved internal nucleoprotein (NP) of IAV under the transcriptional control of five newly designed chimeric poxviral promoters to further increase the immunogenic properties of the recombinant viruses (MVA-NP). Infections of avian cell cultures with the recombinant MVA-NPs demonstrated efficient synthesis of the IAV-NP which was expressed under the control of the five new promoters. Prime-boost or single shot immunizations in C57BL/6 mice readily induced circulating serum antibodies' binding to recombinant IAV-NP and the robust activation of IAV-NP-specific CD8+ T cell responses. Moreover, the MVA-NP candidate vaccines protected C57BL/6 mice against lethal respiratory infection with mouse-adapted IAV (A/Puerto Rico/8/1934/H1N1). Thus, further studies are warranted to evaluate the immunogenicity and efficacy of these recombinant MVA-NP vaccines in other IAV challenge models in more detail.
Collapse
Affiliation(s)
- Martin C Langenmayer
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 80539 Munich, Germany
| | | | - Lisa Marr
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Paracelsus Medical University, Klinikum Nürnberg, 90419 Nuremberg, Germany
| | - Sylvia Jany
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany
| | - Astrid Freudenstein
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany
| | - Silvia Adam-Neumair
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany
| | - Alina Tscherne
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 80539 Munich, Germany
| | - Robert Fux
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany
| | - Juan J Rojas
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany
- Immunology Unit, Department of Pathology and Experimental Therapies, Faculty of Medicine and Health Sciences, University of Barcelona-Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
| | - Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Zentrum Munich, 85764 Neuherberg, Germany
- Institute for Veterinary Pathology, LMU Munich, 80539 Munich, Germany
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 80539 Munich, Germany
| | - Asisa Volz
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- German Center of Infection Research (DZIF), Partner Site Hannover-Braunschweig, 30559 Hannover, Germany
| |
Collapse
|
2
|
Hu TY, Lian YB, Qian JH, Yang YL, Ata EB, Zhang RR, Shi CW, Yang GL, Huang HB, Jiang YL, Wang JZ, Cao X, NanWang, Zeng Y, Yang WT, Wang CF. Immunogenicity of engineered probiotics expressing conserved antigens of influenza virus and FLIC flagellin against H9N2 AIVinfection in mice. Res Vet Sci 2022; 153:115-126. [PMID: 36351352 DOI: 10.1016/j.rvsc.2022.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Avian influenza virus (AIV)is easy to cause diseases in birds and humans.It causes great economic losses to the poultry farms and leads to public health problems. Using vaccines is the main approach to control the prevalence of AIV. In our previously published article, a recombinant Lactobacillus plantarum (L. plantarum) expressing the NP-M2 peptide ofH9N2 AIV was generated, and its protective effect was evaluated in a chicken model. In this study, the protective effect was estimated in mice model. Humoral and cellular immune response parameters were measured using flow cytometry adding to body weight loss, survival rate, virus load, and histopathological changes in the lung. The obtained results elucidated that, the recombinant L. plantarum can promote the activation of dendritic cells (DC), proliferation of T and B cells adding to eliciting protective secretory IgA (sIgA) and humeral IgG level in mice model. Accordingly, it could be used as a patent vaccine to control the AIV infection.
Collapse
Affiliation(s)
- Tian-Yang Hu
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yi-Bing Lian
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jia-Hao Qian
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yong-Lei Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Emad Beshir Ata
- Parasitology and Animal Diseases Dep., Vet. Res. Institute, National Research Centre, 12622, Dokki, Cairo, Egypt
| | - Rong-Rong Zhang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jian-Zhong Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - NanWang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wen-Tao Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Chun-Feng Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
3
|
Furtado GE, Letieri RV, Caldo-Silva A, Sardão VA, Teixeira AM, de Barros MP, Vieira RP, Bachi ALL. Sustaining efficient immune functions with regular physical exercise in the COVID-19 era and beyond. Eur J Clin Invest 2021; 51:e13485. [PMID: 33393082 PMCID: PMC7883243 DOI: 10.1111/eci.13485] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
The new coronavirus (SARS-CoV-2) appearance in Wuhan, China, did rise the new virus disease (COVID-19), which spread globally in a short time, leading the World Health Organization to declare a new global pandemic. To contain and mitigate the spread of SARS-CoV-2, specific public health procedures were implemented in virtually all countries, with a significant impact on society, making it difficult to keep the regular practice of physical activity. It is widely accepted that an active lifestyle contributes to the improvement of general health and preservation of cardiovascular, respiratory, osteo-muscular and immune system capacities. The positive effects of regular physical activity on the immune system have emerged as a pivotal trigger of general health, underlying the beneficial effects of physical activity on multiple physiological systems. Accordingly, recent studies have already pointed out the negative impact of physical inactivity caused by the social isolation imposed by the public sanitary authorities due to COVID-19. Nevertheless, there are still no current narrative reviews evaluating the real impact of COVID-19 on active lifestyle or even discussing the possible beneficial effects of exercise-promoted immune upgrade against the severity or progression of COVID-19. Based on the consensus in the scientific literature, in this review, we discuss how an exercise adherence could adequately improve immune responses in times of the 'COVID-19 Era and beyond'.
Collapse
Affiliation(s)
- Guilherme Eustáquio Furtado
- Health Sciences Research Unit, Nursing (UICISA:E), Nursing School of Coimbra (ESEnfC), Coimbra, Portugal.,N2i - Polytechnic Institute of Maia, Maia, Portugal.,University of Coimbra-Research Unit for Sport and Physical Activity (CIDAF, UID/PTD/04213/2019) at Faculty of Sport Science and Physical Education, (FCDEF-UC), Portugal
| | - Rubens Vinícius Letieri
- Post-doctoral Researcher, Rehabilitation Sciences Program, Rua Gabriel Monteiro da Silva, Federal University of Alfenas (UNIFAL), Alfenas, Brazil.,Multidisciplinary Research Nucleus in Physical Education (NIMEF), Physical Education Department, Federal University of Tocantins (UFT), Tocantinópolis, Brazil
| | - Adriana Caldo-Silva
- University of Coimbra-Research Unit for Sport and Physical Activity (CIDAF, UID/PTD/04213/2019) at Faculty of Sport Science and Physical Education, (FCDEF-UC), Portugal
| | - Vilma A Sardão
- Center for Neuroscience and Cell Biology (CNC), UC_Biotech, University of Coimbra, Cantanhede, Portugal
| | - Ana Maria Teixeira
- Multidisciplinary Research Nucleus in Physical Education (NIMEF), Physical Education Department, Federal University of Tocantins (UFT), Tocantinópolis, Brazil
| | - Marcelo Paes de Barros
- Center for Neuroscience and Cell Biology (CNC), UC_Biotech, University of Coimbra, Cantanhede, Portugal
| | - Rodolfo Paula Vieira
- Institute of Physical Activity Sciences and Sports (ICAFE), MSc/PhD Interdisciplinary Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil.,Federal University of Sao Paulo (UNIFESP), Post-graduation Program in Sciences of Human Movement and Rehabilitation, Santos, Brazil.,Post-Graduation Program in Bioengineering and in Biomedical Engineering, University Brazil, São Paulo, Brazil.,School of Medicine, Anhembi Morumbi University, São José dos Campos, Brazil
| | - André Luís Lacerda Bachi
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology, São José dos Campos, Brazil.,Department of Otorhinolaryngology, ENT Lab, Federal University of São Paulo (UNIFESP), São Paulo, Brazil.,Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo, Brazil
| |
Collapse
|
4
|
Modified Vaccinia Virus Ankara Can Induce Optimal CD8 + T Cell Responses to Directly Primed Antigens Depending on Vaccine Design. J Virol 2019; 93:JVI.01154-19. [PMID: 31375596 PMCID: PMC6803277 DOI: 10.1128/jvi.01154-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/29/2019] [Indexed: 01/19/2023] Open
Abstract
A variety of strains of vaccinia virus (VACV) have been used as recombinant vaccine vectors with the aim of inducing robust CD8+ T cell immunity. While much of the pioneering work was done with virulent strains, such as Western Reserve (WR), attenuated strains such as modified vaccinia virus Ankara (MVA) are more realistic vectors for clinical use. To unify this literature, side-by-side comparisons of virus strains are required. Here, we compare the form of antigen that supports optimal CD8+ T cell responses for VACV strains WR and MVA using equivalent constructs. We found that for multiple antigens, minimal antigenic constructs (epitope minigenes) that prime CD8+ T cells via the direct presentation pathway elicited optimal responses from both vectors, which was surprising because this finding contradicts the prevailing view in the literature for MVA. We then went on to explore the discrepancy between current and published data for MVA, finding evidence that the expression locus and in some cases the presence of the viral thymidine kinase may influence the ability of this strain to prime optimal responses from antigens that require direct presentation. This extends our knowledge of the design parameters for VACV vectored vaccines, especially those based on MVA.IMPORTANCE Recombinant vaccines based on vaccinia virus and particularly attenuated strains such as MVA are in human clinical trials, but due to the complexity of these large vectors much remains to be understood about the design parameters that alter their immunogenicity. Previous work had found that MVA vectors should be designed to express stable protein in order to induce robust immunity by CD8+ (cytotoxic) T cells. Here, we found that the primacy of stable antigen is not generalizable to all designs of MVA and may depend where a foreign antigen is inserted into the MVA genome. This unexpected finding suggests that there is an interaction between genome location and the best form of antigen for optimal T cell priming in MVA and thus possibly other vaccine vectors. It also highlights that our understanding of antigen presentation by even the best studied of vaccine vectors remains incomplete.
Collapse
|
5
|
Wang W, Huang B, Wang X, Tan W, Ruan L. Improving Cross-Protection against Influenza Virus Using Recombinant Vaccinia Vaccine Expressing NP and M2 Ectodomain Tandem Repeats. Virol Sin 2019; 34:583-591. [PMID: 31240620 PMCID: PMC6814692 DOI: 10.1007/s12250-019-00138-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/29/2019] [Indexed: 12/31/2022] Open
Abstract
Conventional influenza vaccines need to be designed and manufactured yearly. However, they occasionally provide poor protection owing to antigenic mismatch. Hence, there is an urgent need to develop universal vaccines against influenza virus. Using nucleoprotein (NP) and extracellular domain of matrix protein 2 (M2e) genes from the influenza A virus A/Beijing/30/95 (H3N2), we constructed four recombinant vaccinia virus-based influenza vaccines carrying NP fused with one or four copies of M2e genes in different orders. The recombinant vaccinia viruses were used to immunize BALB/C mice. Humoral and cellular responses were measured, and then the immunized mice were challenged with the influenza A virus A/Puerto Rico/8/34 (PR8). NP-specific humoral response was elicited in mice immunized with recombinant vaccinia viruses carrying full-length NP, while robust M2e-specific humoral response was elicited only in the mice immunized with recombinant vaccinia viruses carrying multiple copies of M2e. All recombinant viruses elicited NP- and M2e-specific cellular immune responses in mice. Only immunization with RVJ-4M2eNP induced remarkably higher levels of IL-2 and IL-10 cytokines specific to M2e. Furthermore, RVJ-4M2eNP immunization provided the highest cross-protection in mice challenged with 20 MLD50 of PR8. Therefore, the cross-protection potentially correlates with both NP and M2e-specific humoral and cellular immune responses induced by RVJ-4M2eNP, which expresses a fusion antigen of full-length NP preceded by four M2e repeats. These results suggest that the rational fusion of NP and multiple M2e antigens is critical toward inducing protective immune responses, and the 4M2eNP fusion antigen may be employed to develop a universal influenza vaccine.
Collapse
Affiliation(s)
- Wenling Wang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Baoying Huang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xiuping Wang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Li Ruan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
6
|
The quest for a nanoparticle-based vaccine inducing broad protection to influenza viruses. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2563-2574. [DOI: 10.1016/j.nano.2018.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/06/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
|
7
|
Altenburg AF, van Trierum SE, de Bruin E, de Meulder D, van de Sandt CE, van der Klis FRM, Fouchier RAM, Koopmans MPG, Rimmelzwaan GF, de Vries RD. Effects of pre-existing orthopoxvirus-specific immunity on the performance of Modified Vaccinia virus Ankara-based influenza vaccines. Sci Rep 2018; 8:6474. [PMID: 29692427 PMCID: PMC5915537 DOI: 10.1038/s41598-018-24820-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/10/2018] [Indexed: 11/26/2022] Open
Abstract
The replication-deficient orthopoxvirus modified vaccinia virus Ankara (MVA) is a promising vaccine vector against various pathogens and has an excellent safety record. However, pre-existing vector-specific immunity is frequently suggested to be a drawback of MVA-based vaccines. To address this issue, mice were vaccinated with MVA-based influenza vaccines in the presence or absence of orthopoxvirus-specific immunity. Importantly, protective efficacy of an MVA-based influenza vaccine against a homologous challenge was not impaired in the presence of orthopoxvirus-specific pre-existing immunity. Nonetheless, orthopoxvirus-specific pre-existing immunity reduced the induction of antigen-specific antibodies under specific conditions and completely prevented induction of antigen-specific T cell responses by rMVA-based vaccination. Notably, antibodies induced by vaccinia virus vaccination, both in mice and humans, were not capable of neutralizing MVA. Thus, when using rMVA-based vaccines it is important to consider the main correlate of protection induced by the vaccine, the vaccine dose and the orthopoxvirus immune status of vaccine recipients.
Collapse
Affiliation(s)
- Arwen F Altenburg
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Stella E van Trierum
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Erwin de Bruin
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Dennis de Meulder
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Carolien E van de Sandt
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Fiona R M van der Klis
- Centre for Infectious Disease Control (Cib), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Guus F Rimmelzwaan
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine, Hannover, Germany
| | - Rory D de Vries
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|