1
|
Wędrychowicz A, Tomasik P, Kowalska-Duplaga K, Pieczarkowski S, Fyderek K. Plasma elafin, cathelicidin, and α-defensins are increased in paediatric inflammatory Crohn's disease and reflect disease location. Arch Med Sci 2021; 17:1114-1117. [PMID: 34336040 PMCID: PMC8314421 DOI: 10.5114/aoms/138349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The aim of our study was to assess antimicrobial peptides in children with Crohn's disease (CD). METHODS Plasma elafin, cathelicidin, and α- and β-defensins were assessed in 35 children with CD using immunoassays. Phenotype and location of CD were assessed based on the results of endoscopic and radiological studies. RESULTS We found increased elafin, cathelicidin, and α-defensins in children with inflammatory phenotype as compared to stricturing and penetrating phenotypes of CD. Additionally, we found increased elafin and cathelicidin in colonic location and α-defensins in ileal CD locations. CONCLUSIONS Assessing antimicrobial peptides may be helpful in estimating of phenotype and location of CD lesions.
Collapse
Affiliation(s)
- Andrzej Wędrychowicz
- Department of Paediatrics, Gastroenterology, and Nutrition, Jagiellonian University Medical College, Krakow, Poland
| | - Przemysław Tomasik
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - Kinga Kowalska-Duplaga
- Department of Paediatrics, Gastroenterology, and Nutrition, Jagiellonian University Medical College, Krakow, Poland
| | - Stanisław Pieczarkowski
- Department of Paediatrics, Gastroenterology, and Nutrition, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Fyderek
- Department of Paediatrics, Gastroenterology, and Nutrition, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
2
|
Klerk DH, Plösch T, Verkaik-Schakel RN, Hulscher JBF, Kooi EMW, Bos AF. DNA Methylation of TLR4, VEGFA, and DEFA5 Is Associated With Necrotizing Enterocolitis in Preterm Infants. Front Pediatr 2021; 9:630817. [PMID: 33748044 PMCID: PMC7969816 DOI: 10.3389/fped.2021.630817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/11/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Epigenetic changes, such as DNA methylation, may contribute to an increased susceptibility for developing necrotizing enterocolitis (NEC) in preterm infants. We assessed DNA methylation in five NEC-associated genes, selected from literature: EPO, VEGFA, ENOS, DEFA5, and TLR4 in infants with NEC and controls. Methods: Observational cohort study including 24 preterm infants who developed NEC (≥Bell Stage IIA) and 45 matched controls. DNA was isolated from stool samples and methylation measured using pyrosequencing. We investigated differences in methylation prior to NEC compared with controls. Next, in NEC infants, we investigated methylation patterns long before, a short time before NEC onset, and after NEC. Results: Prior to NEC, only TLR4 CpG 2 methylation was increased in NEC infants (median = 75.4%, IQR = 71.3-83.8%) versus controls (median = 69.0%, IQR = 64.5-77.4%, p = 0.025). In NEC infants, VEGFA CpG 3 methylation was 0.8% long before NEC, increasing to 1.8% a short time before NEC and 2.0% after NEC (p = 0.011; p = 0.021, respectively). A similar pattern was found in DEFA5 CpG 1, which increased from 75.4 to 81.4% and remained 85.3% (p = 0.027; p = 0.019, respectively). These changes were not present for EPO, ENOS, and TLR4. Conclusion: Epigenetic changes of TLR4, VEGFA, and DEFA5 are present in NEC infants and can differ in relation to the time of NEC onset. Differences in DNA methylation of TLR4, VEGFA, and DEFA5 may influence gene expression and increase the risk for developing NEC. This study also demonstrates the use of human DNA extraction from stool samples as a novel non-invasive method for exploring the bowel of preterm infants and which can also be used for necrotizing enterocolitis patients.
Collapse
Affiliation(s)
- Daphne H Klerk
- Division of Neonatology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Torsten Plösch
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Rikst Nynke Verkaik-Schakel
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jan B F Hulscher
- Division of Pediatric Surgery, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Elisabeth M W Kooi
- Division of Neonatology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Arend F Bos
- Division of Neonatology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
3
|
Alkaissi LY, Winberg ME, Heil SDS, Haapaniemi S, Myrelid P, Stange EF, Söderholm JD, Keita ÅV. Antagonism of Adherent Invasive E. coli LF82 With Human α-defensin 5 in the Follicle-associated Epithelium of Patients With Ileal Crohn's Disease. Inflamm Bowel Dis 2020; 27:1116-1127. [PMID: 33336693 PMCID: PMC8205628 DOI: 10.1093/ibd/izaa315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The first visible signs of Crohn's disease (CD) are microscopic erosions over the follicle-associated epithelium (FAE). The aim of the study was to investigate the effects of human α-defensin 5 (HD5) on adherent-invasive Escherichia coli LF82 translocation and HD5 secretion after LF82 exposure in an in vitro model of human FAE and in human FAE ex vivo. METHODS An in vitro FAE-model was set up by the coculture of Raji B cells and Caco-2-cl1 cells. Ileal FAE from patients with CD and controls were mounted in Ussing chambers. The effect of HD5 on LF82 translocation was studied by LF82 exposure to the cells or tissues with or without incubation with HD5. The HD5 secretion was measured in human FAE exposed to LF82 or Salmonella typhimurium. The HD5 levels were evaluated by immunofluorescence, immunoblotting, and ELISA. RESULTS There was an increased LF82 translocation across the FAE-model compared with Caco-2-cl1 (P < 0.05). Incubation of cell/tissues with HD5 before LF82 exposure reduced bacterial passage in both models. Human FAE showed increased LF82 translocation in CD compared with controls and attenuated passage after incubation with sublethal HD5 in both CD and controls (P < 0.05). LF82 exposure resulted in a lower HD5 secretion in CD FAE compared with controls (P < 0.05), whereas Salmonella exposure caused equal secretion on CD and controls. There were significantly lower HD5 levels in CD tissues compared with controls. CONCLUSIONS Sublethal HD5 reduces the ability of LF82 to translocate through FAE. The HD5 is secreted less in CD in response to LF82, despite a normal response to Salmonella. This further implicates the integrated role of antimicrobial factors and barrier function in CD pathogenesis.
Collapse
Affiliation(s)
- Lina Y Alkaissi
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Martin E Winberg
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Stéphanie D S Heil
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Staffan Haapaniemi
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden,Department of Surgery, Vrinnevi Hospital, Norrköping, Sweden
| | - Pär Myrelid
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden,Department of Surgery, Linköping University, Linköping, Sweden
| | - Eduard F Stange
- Department of Gastroenterology, Dept. Internal Medicine I, University of Tübingen, 72076 Tübingen, Germany
| | - Johan D Söderholm
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden,Department of Surgery, Linköping University, Linköping, Sweden
| | - Åsa V Keita
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden,Address correspondence to: Åsa V. Keita, PhD, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics & Oncology, Medical Faculty, Linköping University, 581 85 Linköping, Sweden. E-mail:
| |
Collapse
|
4
|
Wehkamp J, Stange EF. An Update Review on the Paneth Cell as Key to Ileal Crohn's Disease. Front Immunol 2020; 11:646. [PMID: 32351509 PMCID: PMC7174711 DOI: 10.3389/fimmu.2020.00646] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
The Paneth cells reside in the small intestine at the bottom of the crypts of Lieberkühn, intermingled with stem cells, and provide a niche for their neighbors by secreting growth and Wnt-factors as well as different antimicrobial peptides including defensins, lysozyme and others. The most abundant are the human Paneth cell α-defensin 5 and 6 that keep the crypt sterile and control the local microbiome. In ileal Crohn's disease various mechanisms including established genetic risk factors contribute to defects in the production and ordered secretion of these peptides. In addition, life-style risk factors for Crohn's disease like tobacco smoking also impact on Paneth cell function. Taken together, current evidence suggest that defective Paneth cells may play the key role in initiating inflammation in ileal, and maybe ileocecal, Crohn's disease by allowing bacterial attachment and invasion.
Collapse
Affiliation(s)
- Jan Wehkamp
- University of Tübingen, Medizinische Klinik I, Tübingen, Germany
| | - Eduard F Stange
- University of Tübingen, Medizinische Klinik I, Tübingen, Germany
| |
Collapse
|
5
|
Prasad SV, Fiedoruk K, Daniluk T, Piktel E, Bucki R. Expression and Function of Host Defense Peptides at Inflammation Sites. Int J Mol Sci 2019; 21:ijms21010104. [PMID: 31877866 PMCID: PMC6982121 DOI: 10.3390/ijms21010104] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/09/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023] Open
Abstract
There is a growing interest in the complex role of host defense peptides (HDPs) in the pathophysiology of several immune-mediated inflammatory diseases. The physicochemical properties and selective interaction of HDPs with various receptors define their immunomodulatory effects. However, it is quite challenging to understand their function because some HDPs play opposing pro-inflammatory and anti-inflammatory roles, depending on their expression level within the site of inflammation. While it is known that HDPs maintain constitutive host protection against invading microorganisms, the inducible nature of HDPs in various cells and tissues is an important aspect of the molecular events of inflammation. This review outlines the biological functions and emerging roles of HDPs in different inflammatory conditions. We further discuss the current data on the clinical relevance of impaired HDPs expression in inflammation and selected diseases.
Collapse
|
6
|
Moret-Tatay I, Cerrillo E, Sáez-González E, Hervás D, Iborra M, Sandoval J, Busó E, Tortosa L, Nos P, Beltrán B. Identification of Epigenetic Methylation Signatures With Clinical Value in Crohn's Disease. Clin Transl Gastroenterol 2019; 10:e00083. [PMID: 31663908 PMCID: PMC6919449 DOI: 10.14309/ctg.0000000000000083] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION DNA methylation is an epigenetic mechanism that regulates gene expression and represents an important link between genotype, environment, and disease. It is a reversible and inheritable mechanism that could offer treatment targets. We aimed to assess the methylation changes on specific genes previously associated with Crohn's disease (CD) and to study their possible associations with the pathology. METHODS We included 103 participants and grouped them into 2 cohorts (a first [n = 31] and a second validation [n = 72] cohort), with active CD (aCD) and inactive CD (iCD) and healthy participants (CTR). DNA was obtained from the peripheral blood and analyzed by the Agena platform. The selected genes were catalase (CAT), α-defensin 5 (DEFA5), FasR, FasL, tumor necrosis factor (TNF), TNFRSF1A, TNFRSF1B, PPA2, ABCB1, NOD2, PPARγ, and PKCζ. We used the elastic net algorithm and R software. RESULTS We studied 240 CpGs. Sixteen CpGs showed differential methylation profiles among aCD, iCD, and CTR. We selected for validation those with the greatest differences: DEFA5 CpG_11; CpG_13; CAT CpG_31.32; TNF CpG_4, CpG_12; and ABCB1 CpG_21. Our results validated the genes DEFA5 (methylation gain) and TNF (methylation loss) with P values < 0.001. In both cases, the methylation level was maintained and did not change with CD activity (aCD vs iCD). The subanalysis comparison between aCD and iCD showed significant differential methylation profiles in other CpGs: TNF, FAS, ABCB1, CAT, and TNFRS1BF genes. DISCUSSION The methylation status of DEFA5 and TNF genes provides a signature biomarker that characterizes patients with CD and supports the possible implication of the environment and the immune system in CD pathogenesis.
Collapse
Affiliation(s)
- Inés Moret-Tatay
- Inflammatory Bowel Disease Research Group, Health Research Institute La Fe (IIS La Fe), Valencia, Spain
- Biomedical Research Centre, Hepatic and Digestive Diseases Network (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD]), Madrid, Spain
| | - Elena Cerrillo
- Inflammatory Bowel Disease Research Group, Health Research Institute La Fe (IIS La Fe), Valencia, Spain
- Department of Gastroenterology, Hospital La Fe, Valencia, Spain
| | - Esteban Sáez-González
- Inflammatory Bowel Disease Research Group, Health Research Institute La Fe (IIS La Fe), Valencia, Spain
- Department of Gastroenterology, Hospital La Fe, Valencia, Spain
| | - David Hervás
- Department of Gastroenterology, Hospital La Fe, Valencia, Spain
| | - Marisa Iborra
- Inflammatory Bowel Disease Research Group, Health Research Institute La Fe (IIS La Fe), Valencia, Spain
- Biomedical Research Centre, Hepatic and Digestive Diseases Network (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD]), Madrid, Spain
- Department of Gastroenterology, Hospital La Fe, Valencia, Spain
| | - Juan Sandoval
- Biomarkers and Precision Medicine Unit, Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| | - Enrique Busó
- Central Unit for Research in Medicine (UCIM),University of Valencia, Valencia, Spain
| | - Luis Tortosa
- Inflammatory Bowel Disease Research Group, Health Research Institute La Fe (IIS La Fe), Valencia, Spain
- Biomedical Research Centre, Hepatic and Digestive Diseases Network (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD]), Madrid, Spain
| | - Pilar Nos
- Inflammatory Bowel Disease Research Group, Health Research Institute La Fe (IIS La Fe), Valencia, Spain
- Biomedical Research Centre, Hepatic and Digestive Diseases Network (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD]), Madrid, Spain
- Department of Gastroenterology, Hospital La Fe, Valencia, Spain
| | - Belén Beltrán
- Inflammatory Bowel Disease Research Group, Health Research Institute La Fe (IIS La Fe), Valencia, Spain
- Biomedical Research Centre, Hepatic and Digestive Diseases Network (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD]), Madrid, Spain
- Department of Gastroenterology, Hospital La Fe, Valencia, Spain
| |
Collapse
|
7
|
Contribution of Zinc and Zinc Transporters in the Pathogenesis of Inflammatory Bowel Diseases. J Immunol Res 2019; 2019:8396878. [PMID: 30984791 PMCID: PMC6431494 DOI: 10.1155/2019/8396878] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/29/2019] [Indexed: 02/06/2023] Open
Abstract
Intestinal epithelial cells cover the surface of the intestinal tract. The cells are important for preserving the integrity of the mucosal barriers to protect the host from luminal antigens and pathogens. The mucosal barriers are maintained by the continuous and rapid self-renewal of intestinal epithelial cells. Defects in the self-renewal of these cells are associated with gastrointestinal diseases, including inflammatory bowel diseases and diarrhea. Zinc is an essential trace element for living organisms, and zinc deficiency is closely linked to the impaired mucosal integrity. Recent evidence has shown that zinc transporters contribute to the barrier function of intestinal epithelial cells. In this review, we describe the recent advances in understanding the role of zinc and zinc transporters in the barrier function and homeostasis of intestinal epithelial cells.
Collapse
|