1
|
Costagliola G, Legitimo A, Bertini V, Alberio AMQ, Valetto A, Consolini R. Distinct Immunophenotypic Features in Patients Affected by 22q11.2 Deletion Syndrome with Immune Dysregulation and Infectious Phenotype. J Clin Med 2023; 12:7579. [PMID: 38137647 PMCID: PMC10743584 DOI: 10.3390/jcm12247579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The clinical expression of 22q11.2 deletion syndrome (22q11.2 DS) is extremely variable, as patients can present with recurrent or severe infections, immune dysregulation, atopic diseases, or extra-immunological manifestations. The immunological background underlying the different disease manifestations is not completely elucidated. The aim of this study was to identify the immunophenotypic peculiarities of 22q11.2 DS patients presenting with different disease expressions. This study included 34 patients with 22q11.2 DS, divided into three groups according to the clinical phenotype: isolated extra-immunological manifestations (G1), infectious phenotype with increased/severe infections (G2), and immune dysregulation (G3). The patients underwent extended immunophenotyping of the T and B lymphocytes and analysis of the circulating dendritic cells (DCs). In patients with an infectious phenotype, a significant reduction in CD3+ and CD4+ cells and an expansion of CD8 naïve cells was evidenced. On the other hand, the immunophenotype of the patients with immune dysregulation showed a skewing toward memory T cell populations, and reduced levels of recent thymic emigrants (RTEs), while the highest levels of RTEs were detected in the patients with isolated extra-immunological manifestations. This study integrates the current literature, contributing to elucidating the variability in the immune status of patients with 22q11.2DS with different phenotypic expressions, particularly in those with infectious phenotype and immune dysregulation.
Collapse
Affiliation(s)
- Giorgio Costagliola
- Section of Pediatric Hematology and Oncology, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy;
| | - Annalisa Legitimo
- Section of Clinical and Laboratory Immunology, Pediatric Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Veronica Bertini
- Section of Cytogenetics, Department of Laboratory Medicine, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (V.B.); (A.V.)
| | | | - Angelo Valetto
- Section of Cytogenetics, Department of Laboratory Medicine, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (V.B.); (A.V.)
| | - Rita Consolini
- Section of Clinical and Laboratory Immunology, Pediatric Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| |
Collapse
|
2
|
Gupta S, Agrawal A. Dendritic cells in inborn errors of immunity. Front Immunol 2023; 14:1080129. [PMID: 36756122 PMCID: PMC9899832 DOI: 10.3389/fimmu.2023.1080129] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
Dendritic cells (DCs) are crucial cells for initiating and maintaining immune response. They play critical role in homeostasis, inflammation, and autoimmunity. A number of molecules regulate their functions including synapse formation, migration, immunity, and induction of tolerance. A number of IEI are characterized by mutations in genes encoding several of these molecules resulting in immunodeficiency, inflammation, and autoimmunity in IEI. Currently, there are 465 Inborn errors of immunity (IEI) that have been grouped in 10 different categories. However, comprehensive studies of DCs have been reported in only few IEI. Here we have reviewed biology of DCs in IEI classified according to recently published IUIS classification. We have reviewed DCs in selected IEI in each group category and discussed in depth changes in DCs where significant data are available regarding role of DCs in clinical and immunological manifestations. These include severe immunodeficiency diseases, antibody deficiencies, combined immunodeficiency with associated and syndromic features, especially disorders of synapse formation, and disorders of immune regulation.
Collapse
Affiliation(s)
- Sudhir Gupta
- Division of Basic and Clinical Immunology, University of California, Irvine, CA, United States
| | | |
Collapse
|
3
|
Clinical, Immunological, and Genetic Findings in a Cohort of Patients with the DiGeorge Phenotype without 22q11.2 Deletion. J Clin Med 2022; 11:jcm11072025. [PMID: 35407632 PMCID: PMC8999496 DOI: 10.3390/jcm11072025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/03/2022] Open
Abstract
Chromosome 22q11.2 deletion syndrome (22q11.2DS) is a primary immunodeficiency characterized by a broad and heterogeneous clinical presentation associated with various degrees of T-cell deficiency. We report the clinical, immunologic, and genetic findings of a cohort of eight patients presenting with a clinical phenotype that is highly suggestive of this syndrome but without the 22q11.2 deletion. The cardinal features of 22q11.2DS, such as congenital heart defects, hypoparathyroidism, and facial dysmorphisms, were observed in the majority of the patient cohort. The unusual features are described in detail. The immunologic assessment showed various degrees of immunodeficiency of the T-cell compartment, notably a reduction in the thymic output. Half of the patient cohort exhibited a reduction in total dendritic cells. Array comparative genomic hybridization (CGH) revealed six patients harboring copy number variations (CNVs) never reported in normal subjects. The gene content of these CNVs was carefully analyzed to understand the mechanisms leading to 22q11.2DS phenocopies. According to these results, we suggested that array-CGH should be used as a first-tier tool for patients resembling 22q11.2DS.
Collapse
|
4
|
Janjusevic M, Gagno G, Fluca AL, Padoan L, Beltrami AP, Sinagra G, Moretti R, Aleksova A. The peculiar role of vitamin D in the pathophysiology of cardiovascular and neurodegenerative diseases. Life Sci 2022; 289:120193. [PMID: 34864062 DOI: 10.1016/j.lfs.2021.120193] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023]
Abstract
Vitamin D is a hormone with both genomic and non-genomic actions. It exerts its activity by binding vitamin D receptor (VDR), which belongs to the superfamily of nuclear receptors and ligand-activated transcription factors. Since VDR has been found in various tissues, it has been estimated that it regulates approximately 3% of the human genome. Several recent studies have shown pleiotropic effects of vitamin D in various processes such as cellular proliferation, differentiation, DNA repair and apoptosis and its involvement in different pathophysiological conditions as inflammation, diabetes mellitus, and anemia. It has been suggested that vitamin D could play an important role in neurodegenerative and cardiovascular disorders. Moderate to strong associations between lower serum vitamin D concentrations and stroke and cardiovascular events have been identified in different analytic approaches, even after controlling for traditional demographic and lifestyle covariates. The mechanisms behind the associations between vitamin D and cerebrovascular and cardiologic profiles have been widely examined both in animal and human studies. Optimization of vitamin D levels in human subjects may improve insulin sensitivity and beta-cell function and lower levels of inflammatory markers. Moreover, it has been demonstrated that altered gene expression of VDR and 1,25D3-membrane-associated rapid response steroid-binding (1,25D3-MARRS) receptor influences the role of vitamin D within neurons and allows them to be more prone to degeneration. This review summarizes the current understanding of the molecular mechanisms underlying vitamin D signaling and the consequences of vitamin D deficiency in neurodegenerative and cardiovascular disorders.
Collapse
Affiliation(s)
- Milijana Janjusevic
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy
| | - Giulia Gagno
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy
| | - Alessandra Lucia Fluca
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy
| | - Laura Padoan
- Cardiology and Cardiovascular Physiopathology, Azienda Ospedaliero-Universitaria S. Maria della Misericordia, 06156 Perugia, Italy
| | - Antonio Paolo Beltrami
- Clinical Pathology Department, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC) and Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy
| | - Rita Moretti
- Department of Internal Medicine and Neurology, Neurological Clinic, Complex Case Section, Trieste, Italy
| | - Aneta Aleksova
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy.
| |
Collapse
|
5
|
Costagliola G, Cappelli S, Consolini R. Autoimmunity in Primary Immunodeficiency Disorders: An Updated Review on Pathogenic and Clinical Implications. J Clin Med 2021; 10:jcm10204729. [PMID: 34682853 PMCID: PMC8538991 DOI: 10.3390/jcm10204729] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/18/2022] Open
Abstract
During the last years, studies investigating the intriguing association between immunodeficiency and autoimmunity led to the discovery of new monogenic disorders, the improvement in the knowledge of the pathogenesis of autoimmunity, and the introduction of targeted treatments. Autoimmunity is observed with particular frequency in patients with primary antibody deficiencies, such as common variable immunodeficiency (CVID) and selective IgA deficiency, but combined immunodeficiency disorders (CIDs) and disorders of innate immunity have also been associated with autoimmunity. Among CIDs, the highest incidence of autoimmunity is described in patients with autoimmune polyendocrine syndrome 1, LRBA, and CTLA-4 deficiency, and in patients with STAT-related disorders. The pathogenesis of autoimmunity in patients with immunodeficiency is far to be fully elucidated. However, altered germ center reactions, impaired central and peripheral lymphocyte negative selection, uncontrolled lymphocyte proliferation, ineffective cytoskeletal function, innate immune defects, and defective clearance of the infectious agents play an important role. In this paper, we review the main immunodeficiencies associated with autoimmunity, focusing on the pathogenic mechanisms responsible for autoimmunity in each condition and on the therapeutic strategies. Moreover, we provide a diagnostic algorithm for the diagnosis of PIDs in patients with autoimmunity.
Collapse
|
6
|
Costagliola G, Nuzzi G, Spada E, Comberiati P, Verduci E, Peroni DG. Nutraceuticals in Viral Infections: An Overview of the Immunomodulating Properties. Nutrients 2021; 13:nu13072410. [PMID: 34371920 PMCID: PMC8308811 DOI: 10.3390/nu13072410] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/21/2022] Open
Abstract
Nutraceuticals, including vitamin D, vitamin A, zinc, lactoferrin, polyphenols coenzyme Q, magnesium, and selenium, are implicated in the modulation of the complex molecular pathways involved in the immune response against viral pathogens. A common element of the activity of nutraceuticals is their ability to enhance the innate immune response against pathogens by acting on the major cellular subsets and inducing the release of pro-inflammatory cytokines and antimicrobial peptides. In some cases, this action is accompanied by a direct antimicrobial effect, as evidenced in the specific case of lactoferrin. Furthermore, nutraceuticals act through complex molecular mechanisms to minimize the damage caused by the activation of the immune system against pathogens, reducing the oxidative damage, influencing the antigen presentation, enhancing the differentiation and proliferation of regulatory T cells, driving the differentiation of lymphocyte subsets, and modulating the production of pro-inflammatory cytokines. In this paper, we review the main molecular mechanisms responsible for the immunomodulatory function of nutraceuticals, focusing on the most relevant aspects for the prevention and treatment of viral infections.
Collapse
Affiliation(s)
- Giorgio Costagliola
- Department of Clinical and Experimental Medicine, Division of Pediatrics, University of Pisa, Via Roma 57, 56126 Pisa, Italy; (G.C.); (G.N.); (E.S.); (P.C.)
| | - Giulia Nuzzi
- Department of Clinical and Experimental Medicine, Division of Pediatrics, University of Pisa, Via Roma 57, 56126 Pisa, Italy; (G.C.); (G.N.); (E.S.); (P.C.)
| | - Erika Spada
- Department of Clinical and Experimental Medicine, Division of Pediatrics, University of Pisa, Via Roma 57, 56126 Pisa, Italy; (G.C.); (G.N.); (E.S.); (P.C.)
| | - Pasquale Comberiati
- Department of Clinical and Experimental Medicine, Division of Pediatrics, University of Pisa, Via Roma 57, 56126 Pisa, Italy; (G.C.); (G.N.); (E.S.); (P.C.)
- Department of Clinical Immunology and Allergology, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Elvira Verduci
- Department of Pediatrics, San Paolo Hospital, 20142 Milan, Italy;
- Department of Health Science, University of Milan, 20142 Milan, Italy
| | - Diego G. Peroni
- Department of Clinical and Experimental Medicine, Division of Pediatrics, University of Pisa, Via Roma 57, 56126 Pisa, Italy; (G.C.); (G.N.); (E.S.); (P.C.)
- Correspondence: ; Tel.: +39-50-799-2100
| |
Collapse
|
7
|
Zodanu GKE, Oszlánczi M, Havasi K, Kalapos A, Rácz G, Katona M, Ujfalusi A, Nagy O, Széll M, Nagy D. Systemic Screening for 22q11.2 Copy Number Variations in Hungarian Pediatric and Adult Patients With Congenital Heart Diseases Identified Rare Pathogenic Patterns in the Region. Front Genet 2021; 12:635480. [PMID: 33995479 PMCID: PMC8117090 DOI: 10.3389/fgene.2021.635480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/07/2021] [Indexed: 11/22/2022] Open
Abstract
Congenital heart defects (CHD) are the most common developmental abnormalities, affecting approximately 0.9% of livebirths. Genetic factors, including copy number variations (CNVs), play an important role in their development. The most common CNVs are found on chromosome 22q11.2. The genomic instability of this region, caused by the eight low copy repeats (LCR A-H), may result in several recurrent and/or rare microdeletions and duplications, including the most common, ∼3 Mb large LCR A-D deletion (classical 22q.11.2 deletion syndrome). We aimed to screen 22q11.2 CNVs in a large Hungarian pediatric and adult CHD cohort, regardless of the type of their CHDs. All the enrolled participants were cardiologically diagnosed with non-syndromic CHDs. A combination of multiplex ligation-dependent probe amplification (MLPA), chromosomal microarray analysis and droplet digital PCR methods were used to comprehensively assess the detected 22q11.2 CNVs in 212 CHD-patients. Additionally, capillary sequencing was performed to detect variants in the TBX1 gene, a cardinal gene located in 22q11.2. Pathogenic CNVs were detected in 5.2% (11/212), VUS in 0.9% and benign CNVs in 1.8% of the overall CHD cohort. In patients with tetralogy of Fallot the rate of pathogenic CNVs was 17% (5/30). Fifty-four percent of all CNVs were typical proximal deletions (LCR A-D). However, nested (LCR A-B) and central deletions (LCR C-D), proximal (LCR A-D) and distal duplications (LCR D-E, LCR D-H, LCR E-H, LCR F-H) and rare combinations of deletions and duplications were also identified. Segregation analysis detected familial occurrence in 18% (2/11) of the pathogenic variants. Based on in-depth clinical information, a detailed phenotype–genotype comparison was performed. No pathogenic variant was identified in the TBX1 gene. Our findings confirmed the previously described large phenotypic diversity in the 22q11.2 CNVs. MLPA proved to be a highly efficient genetic screening method for our CHD-cohort. Our results highlight the necessity for large-scale genetic screening of CHD-patients and the importance of early genetic diagnosis in their clinical management.
Collapse
Affiliation(s)
| | - Mónika Oszlánczi
- Second Department of Internal Medicine and Cardiology Centre, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Kálmán Havasi
- Second Department of Internal Medicine and Cardiology Centre, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Anita Kalapos
- Second Department of Internal Medicine and Cardiology Centre, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gergely Rácz
- Second Department of Internal Medicine and Cardiology Centre, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Márta Katona
- Department of Pediatrics, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Anikó Ujfalusi
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Orsolya Nagy
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Márta Széll
- Department of Medical Genetics, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Dóra Nagy
- Department of Medical Genetics, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
8
|
Costagliola G, Spada E, Comberiati P, Peroni DG. Could nutritional supplements act as therapeutic adjuvants in COVID-19? Ital J Pediatr 2021; 47:32. [PMID: 33588905 PMCID: PMC7883952 DOI: 10.1186/s13052-021-00990-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/05/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The role of the immune system and inflammatory response in the pathogenesis of the severe manifestations of coronavirus disease 2019 (COVID-19) is well known. Currently, different therapies active on the immune system are used for the management of COVID-19. The involvement of the immune system also opens the opportunity for the use of nutritional supplements with antimicrobial and immunomodulatory activity. MAIN ASPECTS Nutritional supplements with antimicrobial and immunomodulatory activity are promising therapeutic adjuvants for the treatment of COVID-19, and also for the prevention of viral spreading. In particular, the role of vitamin D, probiotics, lactoferrin, and zinc is of significant clinical interest, although there are only a few data on their use in COVID-19 patients. Their molecular actions, together with the results of studies performed on other respiratory infections, strongly suggest their potential utility in COVID-19. This article discusses the main properties of these nutritional supplements and their potential applicability in the prevention and treatment of COVID-19. CONCLUSION The supplementation with vitamin D, probiotics, lactoferrin and zinc could have a role both in preventing SARS-CoV-2 infection and in mitigating the clinical course in infected patients, contributing in the prevention of immune-mediated organ damage.
Collapse
Affiliation(s)
- Giorgio Costagliola
- Clinical and Experimental Medicine, Division of Pediatrics, University of Pisa, Via Roma 57, 56126 Pisa, PI Italy
| | - Erika Spada
- Clinical and Experimental Medicine, Division of Pediatrics, University of Pisa, Via Roma 57, 56126 Pisa, PI Italy
| | - Pasquale Comberiati
- Clinical and Experimental Medicine, Division of Pediatrics, University of Pisa, Via Roma 57, 56126 Pisa, PI Italy
| | - Diego G. Peroni
- Clinical and Experimental Medicine, Division of Pediatrics, University of Pisa, Via Roma 57, 56126 Pisa, PI Italy
| |
Collapse
|