1
|
Savioli B, Torquato HFV, Paredes-Gamero EJ, Franco AFDV, Gigek CDO, Artigiani Neto R, de Souza AWS. Effector CD4+ T-cell subsets in Takayasu arteritis-differences between the peripheral blood and the aorta. Clin Exp Immunol 2024; 217:183-194. [PMID: 38766690 PMCID: PMC11239560 DOI: 10.1093/cei/uxae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/18/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024] Open
Abstract
Takayasu arteritis (TAK) is a granulomatous vasculitis that affects large arteries. T cells are important in TAK pathophysiology as these cells orchestrate granulomatous infiltration in arteries. This study aims to evaluate effector CD4+ T cells in the peripheral blood and the aortic wall of TAK patients and to analyze associations with disease activity and therapy. We performed a longitudinal study including 30 TAK patients and 30 controls. CD3+ T cells, CD3+CD4- T cells, CD4+ T cells, and Th1, Th2, and Th17 cells were evaluated in peripheral blood by flow cytometry, and the expression of CD4, CD8, Tbet, GATA-3, and RORγT was analyzed in the aorta of six patients by immunohistochemistry. TAK patients presented lower CD3+ T cells and CD4+ T cells (P = 0.031 and P = 0.039, respectively) than controls. Patients with active disease and those in remission had higher proportions of Th17 cells than controls (P = 0.016 and P = 0.004, respectively). Therapy for TAK did not result in significant differences concerning CD4+ effector T-cell subpopulations. Disease duration correlated with the number and percentage of Th2 cells (rho = -0.610 and rho = -0.463, respectively) and with Th17 cells (rho = -0.365 and rho = -0.568). In the aorta, the expression of CD8 was higher than CD4, whereas GATA-3, Tbet, and RORγT were expressed in this order of frequency. In conclusion, TAK patients present an increased Th17 response in the peripheral blood regardless of disease activity, whereas in the aortic tissue CD8 cells and the Th2 response were predominant.
Collapse
Affiliation(s)
- Bruna Savioli
- Rheumatology Division, Escola Paulista de Medicina – Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Heron Fernandes Vieira Torquato
- Department of Biochemistry, Escola Paulista de Medicina – Universidade Federal de São Paulo, SP, Brazil
- Faculdade de Farmácia, Centro Universitário Braz Cubas, Mogi das Cruzes, SP, Brazil
| | - Edgar Julian Paredes-Gamero
- Faculdade de Farmácia, Tecnologia de Alimentos e Nutrição Cidade Universitária, Universidade Federal do Mato Grosso do Sul, Campo Grande, MS, Brazil
| | | | - Carolina de Oliveira Gigek
- Department of Pathology, Escola Paulista de Medicina – Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Ricardo Artigiani Neto
- Department of Pathology, Escola Paulista de Medicina – Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
2
|
La Barbera L, Rizzo C, Camarda F, Miceli G, Tuttolomondo A, Guggino G. The Contribution of Innate Immunity in Large-Vessel Vasculitis: Detangling New Pathomechanisms beyond the Onset of Vascular Inflammation. Cells 2024; 13:271. [PMID: 38334663 PMCID: PMC10854891 DOI: 10.3390/cells13030271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Large-vessel vasculitis (LVV) are autoimmune and autoinflammatory diseases focused on vascular inflammation. The central core of the intricate immunological and molecular network resides in the disruption of the "privileged immune state" of the arterial wall. The outbreak, initially primed by dendritic cells (DC), is then continuously powered in a feed-forward loop by the intimate cooperation between innate and adaptive immunity. If the role of adaptive immunity has been largely elucidated, knowledge of the critical function of innate immunity in LVV is still fragile. A growing body of evidence has strengthened the active role of innate immunity players and their key signaling pathways in orchestrating the complex pathomechanisms underlying LVV. Besides DC, macrophages are crucial culprits in LVV development and participate across all phases of vascular inflammation, culminating in vessel wall remodeling. In recent years, the variety of potential pathogenic actors has expanded to include neutrophils, mast cells, and soluble mediators, including the complement system. Interestingly, new insights have recently linked the inflammasome to vascular inflammation, paving the way for its potential pathogenic role in LVV. Overall, these observations encourage a new conceptual approach that includes a more in-depth study of innate immunity pathways in LVV to guide future targeted therapies.
Collapse
Affiliation(s)
- Lidia La Barbera
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, 90133 Palermo, Italy; (L.L.B.); (C.R.); (F.C.)
| | - Chiara Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, 90133 Palermo, Italy; (L.L.B.); (C.R.); (F.C.)
| | - Federica Camarda
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, 90133 Palermo, Italy; (L.L.B.); (C.R.); (F.C.)
| | - Giuseppe Miceli
- Unit of Internal Medicine and Stroke, Department of Health Promotion, Maternal and Child Care, Internal Medicine and Specialized Medicine, University of Palermo, 90133 Palermo, Italy; (G.M.); (A.T.)
| | - Antonino Tuttolomondo
- Unit of Internal Medicine and Stroke, Department of Health Promotion, Maternal and Child Care, Internal Medicine and Specialized Medicine, University of Palermo, 90133 Palermo, Italy; (G.M.); (A.T.)
| | - Giuliana Guggino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, 90133 Palermo, Italy; (L.L.B.); (C.R.); (F.C.)
| |
Collapse
|
3
|
Scott C, Stander R, Phoya F. Medium-vessel and large-vessel vasculitis in children. Curr Opin Rheumatol 2023:00002281-990000000-00063. [PMID: 37433219 DOI: 10.1097/bor.0000000000000955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
PURPOSE OF REVIEW This article serves as an up-to-date examination of the latest findings in the field of paediatric large-vessel and medium-vessel vasculitis. RECENT FINDINGS Over the last 2 years and in the wake of SARS-CoV2 pandemic, a multitude of studies have increased our insight into these conditions. Although large-vessel and medium-vessel vasculitis are uncommon amongst children, they are a complex and multisystem with a constantly evolving landscape. Increasing numbers of reports from low-income and middle-income countries are shaping our understanding of the epidemiology of vasculitis in children. The influence of infectious disease and the microbiome are of particular interest in unravelling pathogenetic aspects. Improved understanding of the genetics and immunology offer opportunities for better diagnostic options and biomarkers of disease as well as targeted therapies. SUMMARY In this review, we address recent findings in epidemiology, pathophysiology, clinical findings, bio-markers, imaging and treatment that have the potential to offer better management solutions for these uncommon conditions.
Collapse
Affiliation(s)
- Christiaan Scott
- Paediatric Rheumatology and Clinical Research Centre
- Paediatric Rheumatology, University of Cape Town, Cape Town, South Africa
| | - Raphaella Stander
- Paediatric Rheumatology, University of Cape Town, Cape Town, South Africa
| | - Frank Phoya
- Paediatric Rheumatology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
4
|
Monocyte subsets and monocyte-related chemokines in Takayasu arteritis. Sci Rep 2023; 13:2092. [PMID: 36746990 PMCID: PMC9902560 DOI: 10.1038/s41598-023-29369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
The pathogenesis of Takayasu arteritis (TAK) is poorly understood and no previous studies have analyzed monocytes in TAK. This study evaluated monocyte subsets and monocyte-related chemokines in the peripheral blood of TAK patients and healthy controls (HC). Monocyte subsets were identified as classical (CD14+CD16-), intermediate (CD14+CD16dim), and non-classical (CD14dimCD16high) in the peripheral blood. The chemokines CCL (C-C chemokine ligand)2, CCL3, CCL4, CCL5, CCL7, CXCL (C-X-C motif ligand)10, and CX3CL (C-X3-C motif ligand)1 were measured in the sera. Thirty-two TAK patients and 30 HC were evaluated. Intermediate monocytes were higher in TAK than HC [25.0 cells ×106/L (16.7-52.0) vs. 17.2 cells ×106/L (9.2-25.3); p = 0.014]. Active disease was associated with monocytosis (p = 0.004), increased classical (p = 0.003), and intermediate (p < 0.001) subsets than HC. Prednisone reduced the percentage of non-classical monocytes (p = 0.011). TAK patients had lower CCL3 (p = 0.033) and CCL4 (p = 0.023) levels than HC, whereas CCL22 levels were higher in active TAK compared to the remission state (p = 0.008). Glucocorticoids were associated with lower CXCL10 levels (p = 0.012). In TAK, CCL4 correlated with total (Rho = 0.489; p = 0.005), classical and intermediate monocytes (Rho = 0.448; p = 0.010 and Rho = 0.412; p = 0.019). In conclusion, TAK is associated with altered counts of monocyte subsets in the peripheral blood compared to HC and CCL22 is the chemokine with the strongest association with active disease in TAK.
Collapse
|
5
|
Watanabe R, Hashimoto M. Pathogenic role of monocytes/macrophages in large vessel vasculitis. Front Immunol 2022; 13:859502. [PMID: 35967455 PMCID: PMC9372263 DOI: 10.3389/fimmu.2022.859502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Vasculitis is an autoimmune vascular inflammation with an unknown etiology and causes vessel wall destruction. Depending on the size of the blood vessels, it is classified as large, medium, and small vessel vasculitis. A wide variety of immune cells are involved in the pathogenesis of vasculitis. Among these immune cells, monocytes and macrophages are functionally characterized by their capacity for phagocytosis, antigen presentation, and cytokine/chemokine production. After a long debate, recent technological advances have revealed the cellular origin of tissue macrophages in the vessel wall. Tissue macrophages are mainly derived from embryonic progenitor cells under homeostatic conditions, whereas bone marrow-derived circulating monocytes are recruited under inflammatory conditions, and then differentiate into macrophages in the arterial wall. Such macrophages infiltrate into an otherwise immunoprotected vascular site, digest tissue matrix with abundant proteolytic enzymes, and further recruit inflammatory cells through cytokine/chemokine production. In this way, macrophages amplify the inflammatory cascade and eventually cause tissue destruction. Recent studies have also demonstrated that monocytes/macrophages can be divided into several subpopulations based on the cell surface markers and gene expression. In this review, the subpopulations of circulating monocytes and the ontogeny of tissue macrophages in the artery are discussed. We also update the immunopathology of large vessel vasculitis, with a special focus on giant cell arteritis, and outline how monocytes/macrophages participate in the disease process of vascular inflammation. Finally, we discuss limitations of the current research and provide future research perspectives, particularly in humans. Through these processes, we explore the possibility of therapeutic strategies targeting monocytes/macrophages in vasculitis.
Collapse
|
6
|
Kong X, Wu S, Dai X, Yu W, Wang J, Sun Y, Ji Z, Ma L, Dai X, Chen H, Ma L, Jiang L. A comprehensive profile of chemokines in the peripheral blood and vascular tissue of patients with Takayasu arteritis. Arthritis Res Ther 2022; 24:49. [PMID: 35172901 PMCID: PMC8848964 DOI: 10.1186/s13075-022-02740-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/07/2022] [Indexed: 12/21/2022] Open
Abstract
Background Takayasu arteritis (TAK) is a chronic granulomatous large vessel vasculitis with multiple immune cells involved. Chemokines play critical roles in recruitment and activation of immune cells. This study aimed to investigate chemokine profile in the peripheral blood and vascular tissue of patients with TAK. Methods A total of 58 patients with TAK and 53 healthy controls were enrolled. Chemokine array assay was performed in five patients with TAK and three controls. Chemokines with higher levels were preliminarily validated in 20 patients and controls. The validated chemokines were further confirmed in another group of samples with 25 patients and 25 controls. Their expression and distribution were also examined in vascular tissue from 8 patients and 5 controls. Correlations between these chemokines and peripheral immune cells, cytokines, and disease activity parameters were analyzed. Their serum changes were also investigated in these 45 patients after glucocorticoids and immunosuppressive treatment. Results Patients and controls were age and sex-matched. Twelve higher chemokines and 4 lower chemokines were found based on the chemokine array. After validation, increase of 5 chemokines were confirmed in patients with TAK, including CCL22, RANTES, CXCL16, CXCL11, and IL-16. Their expressions were also increased in vascular tissue of patients with TAK. In addition, levels of RANTES and IL-16 were positively correlated with peripheral CD3+CD4+ T cell numbers. Close localization of CCL22, CXCL11, or IL-16 with inflammatory cells was also observed in TAK vascular tissue. No correlations were found between these chemokines and cytokines (IL-6, IL-17, IFN-γ) or inflammatory parameters (ESR, CRP). No differences were observed regarding with these chemokines between active and inactive patients. After treatment, increase of CCL22 and decrease of RANTES and CXCL16 were found, while no changes were showed in levels of CXCL11 and IL-16. Conclusions CCL22, RANTES, CXCL16, CXCL11, and IL-16 were identified as the major chemokines involved in the recruitment of immune cells in the vascular tissue of patients with TAK. Additionally, the persistently high levels of CCL22, CXCL11, and IL-16 observed after treatment indicate their role in vascular chronic inflammation or fibrosis and demonstrate the need for developing more efficacious treatment options. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02740-x.
Collapse
Affiliation(s)
- Xiufang Kong
- Department of Rheumatology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Sifan Wu
- Department of Rheumatology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xiaojuan Dai
- Department of Rheumatology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Wensu Yu
- Department of Rheumatology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jinghua Wang
- Department of Rheumatology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Ying Sun
- Department of Rheumatology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Zongfei Ji
- Department of Rheumatology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Lingying Ma
- Department of Rheumatology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xiaomin Dai
- Department of Rheumatology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Huiyong Chen
- Department of Rheumatology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Lili Ma
- Department of Rheumatology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Lindi Jiang
- Department of Rheumatology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China. .,Center of Clinical Epidemiology and Evidence-based Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the recent advances in Takayasu arteritis (TAK), mainly focusing on pathogenesis, imaging modalities, and management. RECENT FINDINGS Three novel clusters based on angiographic findings were identified in the Indian cohort and replicated in the North American cohorts. Different new imaging modalities have been tried in the assessment of arterial inflammation with promising results. There is more evidence on the long-term use of tocilizumab, but relapses are common. In light of the recent findings on the pathogenesis of TAK, Janus kinase inhibitors seem to be promising. SUMMARY Improvement in imaging modalities and in our understanding of the disease pathogenesis will allow us to better assess the disease activity and identify effective therapeutic agents.
Collapse
Affiliation(s)
| | - Gulen Hatemi
- Department of Medicine, Division of Rheumatology, Department of Internal Medicine, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
8
|
Chen R, Wang J, Dai X, Wu S, Huang Q, Jiang L, Kong X. Augmented PFKFB3-mediated glycolysis by interferon-γ promotes inflammatory M1 polarization through the JAK2/STAT1 pathway in local vascular inflammation in Takayasu arteritis. Arthritis Res Ther 2022; 24:266. [PMID: 36510278 PMCID: PMC9743547 DOI: 10.1186/s13075-022-02960-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Takayasu arteritis (TAK) is characterized by pro-inflammatory M1 macrophage infiltration and increased interferon (IFN)-γ expression in vascular lesions. IFN-γ is a key cytokine involved in M1 polarization. Macrophage polarization is accompanied by metabolic changes. However, the metabolic regulation mechanism of IFN-γ in M1 macrophage polarization in TAK remains unclear. METHODS Immunohistochemistry and immunofluorescence were employed to observe the expression of IFN-γ, PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3, the rate-limiting enzyme in glycolysis), and macrophage surface markers in the vascular tissue. Monocyte-derived macrophages from patients with TAK were cultured to examine the role of PFKFB3 in IFN-γ-induced M1 macrophage polarization. Seahorse analysis was used to detect the alterations in glucose metabolism during this process. Quantitative reverse transcription PCR, flow cytometry, and western blot were used to confirm the phenotypes of macrophages and related signaling pathways. RESULTS In the vascular adventitia of patients with TAK, an increase in PFKFB3 accompanied by IFN-γ expression was observed in M1 macrophages. In vitro, IFN-γ successfully induced macrophage differentiation into the M1 phenotype, which was manifested as an increase in CD80 and HLA-DR markers and the pro-inflammatory cytokines IL-6 and TNF-α. During this process, PFKFB3 expression and glycolysis levels were significantly increased. However, glycolysis and M1 polarization induced by IFN-γ were suppressed by a PFKFB3 inhibitor. In addition, JAK2/STAT1 phosphorylation was also enhanced in macrophages stimulated by IFN-γ. The effects of IFN-γ on macrophages, including the expression of PFKFB3, glycolysis, and M1 polarization, were also inhibited by the JAK inhibitor tofacitinib or STAT1 inhibitor fludarabine. CONCLUSION PFKFB3-mediated glycolysis promotes IFN-γ-induced M1 polarization through the JAK2/STAT1 signaling pathway, indicating that PFKFB3 plays an important role in M1 polarization mediated by IFN-γ; thus, PFKFB3 is a potential intervention target in TAK.
Collapse
Affiliation(s)
- Rongyi Chen
- grid.413087.90000 0004 1755 3939Department of Rheumatology, Zhongshan Hospital Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Center of Evidence-Based Medicine, Fudan University, No.180, Fenglin Road, Xuhui District, Shanghai, 200032 China
| | - Jinghua Wang
- grid.413087.90000 0004 1755 3939Department of Rheumatology, Zhongshan Hospital Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Center of Evidence-Based Medicine, Fudan University, No.180, Fenglin Road, Xuhui District, Shanghai, 200032 China
| | - Xiaojuan Dai
- grid.413087.90000 0004 1755 3939Department of Rheumatology, Zhongshan Hospital Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Center of Evidence-Based Medicine, Fudan University, No.180, Fenglin Road, Xuhui District, Shanghai, 200032 China
| | - Sifan Wu
- grid.413087.90000 0004 1755 3939Department of Rheumatology, Zhongshan Hospital Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Center of Evidence-Based Medicine, Fudan University, No.180, Fenglin Road, Xuhui District, Shanghai, 200032 China
| | - Qingrong Huang
- grid.413087.90000 0004 1755 3939Department of Rheumatology, Zhongshan Hospital Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Center of Evidence-Based Medicine, Fudan University, No.180, Fenglin Road, Xuhui District, Shanghai, 200032 China
| | - Lindi Jiang
- grid.413087.90000 0004 1755 3939Department of Rheumatology, Zhongshan Hospital Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Center of Evidence-Based Medicine, Fudan University, No.180, Fenglin Road, Xuhui District, Shanghai, 200032 China
| | - Xiufang Kong
- grid.413087.90000 0004 1755 3939Department of Rheumatology, Zhongshan Hospital Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Center of Evidence-Based Medicine, Fudan University, No.180, Fenglin Road, Xuhui District, Shanghai, 200032 China
| |
Collapse
|
9
|
The role of CD8 + Granzyme B + T cells in the pathogenesis of Takayasu's arteritis. Clin Rheumatol 2021; 41:167-176. [PMID: 34494213 DOI: 10.1007/s10067-021-05903-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/11/2021] [Accepted: 09/01/2021] [Indexed: 01/26/2023]
Abstract
OBJECTIVE T cell-mediated immune response plays a key role in Takayasu arteritis (TAK). Although previous studies have showed the roles of CD4+T cell and its subsets in TAK, the change of CD8+ T cell subsets remains unclear. This study investigated the role of CD8+ T cell subsets in TAK. METHODS The study consisted of 56 TA patients and 51 healthy controls. The percentages of CD8+T cells, CD8+GranzymeB+ T cells, CD8+Perforin+ T cells, and CD8+IFN-γ+ T cells in blood samples were analyzed by flow cytometry. RESULTS We found that the percentages of CD8+GranzymeB+ T cells (P = 0.030), CD8+Perforin+ T cells (P = 0.000), and CD8+IFN-γ+ T cells (P = 0.002) in CD8+T cells were higher in TAK patients compared to control group. After 6 months of treatment, the proportion of CD8+T cells in lymphocytes were significantly lower in TAK patients than the baseline assessment (P = 0.033). A lower ratio of CD8+GranzymeB+ T cells/CD8+ T cells were showed in TAK patents after treatment compared with TAK patients before treatments (P = 0.011). The change of CD8+GranzymeB+ T cells/CD8+ T cells ratio was positively correlated with the change of ITAS (r = 0.721, P = 0.002) and ITAS-A (r = 0.637, P = 0.008). Finally, the immunofluorescence staining showed the infiltration of CD8+ Granzyme B + cells in the aortic tissue of TAK patients. CONCLUSION Our results disclose that the CD8+ T lymphocytes may play a role in TAK pathogenesis. Targeting CD8+GranzymeB+ T lymphocytes or Granzyme B inhibitors could be a potential therapeutic approach for the treatment of TAK. Key Points • Our study investigated role the of CD8+ T cell subsets in TAK. • We found the percentages of CD8+GranzymeB+ T cells, CD8+Perforin+ T cells, and CD8+IFN-γ+ T cells in CD3+CD8+T cells were higher in TAK patients. • The proportion of CD8+T cells in lymphocytes and the ratio of CD8+GranzymeB+ T cells/CD8+ T cells were significantly lower in TAK patients after treatment.
Collapse
|
10
|
Kong X, Xu M, Cui X, Ma L, Cheng H, Hou J, Sun X, Ma L, Jiang L. Potential Role of Macrophage Phenotypes and CCL2 in the Pathogenesis of Takayasu Arteritis. Front Immunol 2021; 12:646516. [PMID: 34079541 PMCID: PMC8165246 DOI: 10.3389/fimmu.2021.646516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/30/2021] [Indexed: 12/28/2022] Open
Abstract
Objectives To investigate vascular macrophage phenotype as well as vascular and peripheral chemokine (C-C motif) ligand 2 (CCL2) expression during different stages of disease progression in patients with Takayasu Arteritis (TA). Methods In this study, 74 patients with TA and 50 controls were recruited. TA disease activity was evaluated with Kerr scores. Macrophage phenotype and CCL2 expression were examined by immunohistochemistry in vascular specimens from 8 untreated and 7 treated TA patients, along with 4 healthy controls. Serum CCL2 were quantified by enzyme-linked immune-absorbent assay from TA patients at baseline (n=59), at 6-months (n=38), and from 46 healthy volunteers. Vascular macrophage phenotype, vascular CCL2 expression and serum CCL2 levels during different stages, as well as the relationship between serum CCL2 and disease activity or other inflammatory parameters (erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and interleukin 6 (IL-6)) were investigated. Results In untreated patients, vascular M1 macrophages and CCL2 showed increased expression, mainly in the adventitia. In contrast, in treated patients, vascular adventitial M1 and CCL2 expression were decreased, while vascular medial M2 macrophages and CCL2 levels were increased. Distribution of macrophages and CCL2 was consistent within the TA vascular lesions regardless of the disease stage. Furthermore, peripheral CCL2 was elevated in patients with TA (TA: 160.30 ± 120.05 vs. Control: 65.58 ± 54.56 pg/ml, P < 0.001). CCL2 levels were found to correlate with ESR, CRP, and IL-6 (all R values between 0.55 and 0.6, all P < 0.001). Receiver operating curve analysis demonstrated that CCL2 (at the cut-off value of 100.36 pg/ml) was able to predict disease activity (area under the curve = 0.74, P = 0.03). Decrease in CCL2 level was observed in patients with clinical remission (CR), but not in patients without CR, after 6 months of treatment (CR patients: baseline 220.18 ± 222.69 vs. post-treatment 88.71 ± 55.89 pg/ml, P = 0.04; non-CR patients: baseline 142.45 ± 104.76 vs. post-treatment 279.49 ± 229.46 pg/ml, P = 0.02). Conclusions Macrophages contribute to vascular pathological changes in TA by undergoing phenotype transformation. CCL2 is an important factor for recruiting macrophages and a potential biomarker for disease activity.
Collapse
Affiliation(s)
- Xiufang Kong
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaomeng Cui
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingying Ma
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huiyong Cheng
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Hou
- Department of Cardiac Surgery, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoning Sun
- Department of Cardiac Surgery, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lili Ma
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lindi Jiang
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Center of Clinical Epidemiology and Evidence-based Medicine, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Kang K, Sun Y, Li YL, Chang B. Pathogenesis of liver injury in Takayasu arteritis: advanced understanding leads to new horizons. J Int Med Res 2020; 48:300060520972222. [PMID: 33275473 PMCID: PMC7720339 DOI: 10.1177/0300060520972222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Liver injury in Takayasu arteritis (TA) is a rare phenomenon. Most symptoms are nonspecific, and the exact pathogenesis remains to be elucidated. Early diagnosis and new treatment methods are important for an improved prognosis. A summary of the clinical information and mechanistic analyses may contribute to making an early diagnosis and development of new treatment methods. A PubMed search was conducted using the specific key words “Takayasu arteritis” and “liver” or “hepatitis” or “hepatic”. Symptoms and treatment of TA with an accompanying liver injury were reviewed retrospectively. Many factors are presumed to be involved in the mechanism of TA with liver injury, including the immune response, genes, infections, and gut microbiota. There are several lines of evidence indicating that immune dysfunction is the main pathogenic factor that triggers granuloma formation in TA patients. However, the role of genetics and infections has not been fully confirmed. Recently, the gut microbiota has emerged as an essential component in the process. We reviewed in detail the current concepts that support the complex pathogenesis of TA accompanied by liver injury, and we presented recent theories from the literature. Finally, we discussed future research directions of liver injury in TA.
Collapse
Affiliation(s)
- Kai Kang
- Department of Gastroenterology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yue Sun
- Department of Gastroenterology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yi Ling Li
- Department of Gastroenterology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Bing Chang
- Department of Gastroenterology, First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|