1
|
Dirnena-Fusini I, Åm MK, Fougner AL, Carlsen SM, Christiansen SC. Physiological effects of intraperitoneal versus subcutaneous insulin infusion in patients with diabetes mellitus type 1: A systematic review and meta-analysis. PLoS One 2021; 16:e0249611. [PMID: 33848314 PMCID: PMC8043377 DOI: 10.1371/journal.pone.0249611] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/22/2021] [Indexed: 11/18/2022] Open
Abstract
The intraperitoneal route of administration accounts for less than 1% of insulin treatment regimes in patients with diabetes mellitus type 1 (DM1). Despite being used for decades, a systematic review of various physiological effects of this route of insulin administration is lacking. Thus, the aim of this systematic review was to identify the physiological effects of continuous intraperitoneal insulin infusion (CIPII) compared to those of continuous subcutaneous insulin infusion (CSII) in patients with DM1. Four databases (EMBASE, PubMed, Scopus and CENTRAL) were searched beginning from the inception date of each database to 10th of July 2020, using search terms related to intraperitoneal and subcutaneous insulin administration. Only studies comparing CIPII treatment (≥ 1 month) with CSII treatment were included. Primary outcomes were long-term glycaemic control (after ≥ 3 months of CIPII inferred from glycated haemoglobin (HbA1c) levels) and short-term (≥ 1 day for each intervention) measurements of insulin dynamics in the systematic circulation. Secondary outcomes included all reported parameters other than the primary outcomes. The search identified a total of 2242 records; 39 reports from 32 studies met the eligibility criteria. This meta-analysis focused on the most relevant clinical end points; the mean difference (MD) in HbA1c levels during CIPII was significantly lower than during CSII (MD = -6.7 mmol/mol, [95% CI: -10.3 –-3.1]; in percentage: MD = -0.61%, [95% CI: -0.94 –- 0.28], p = 0.0002), whereas fasting blood glucose levels were similar (MD = 0.20 mmol/L, [95% CI: -0.34–0.74], p = 0.47; in mg/dL: MD = 3.6 mg/dL, [95% CI: -6.1–13.3], p = 0.47). The frequencies of severe hypo- and hyper-glycaemia were reduced. The fasting insulin levels were significantly lower during CIPII than during CSII (MD = 16.70 pmol/L, [95% CI: -23.62 –-9.77], p < 0.0001). Compared to CSII treatment, CIPII treatment improved overall glucose control and reduced fasting insulin levels in patients with DM1.
Collapse
Affiliation(s)
- Ilze Dirnena-Fusini
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- * E-mail:
| | - Marte Kierulf Åm
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Endocrinology, St. Olav’s University Hospital, Trondheim, Norway
| | - Anders Lyngvi Fougner
- Department of Engineering Cybernetics, Faculty of Information Technology and Electrical Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sven Magnus Carlsen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Endocrinology, St. Olav’s University Hospital, Trondheim, Norway
| | - Sverre Christian Christiansen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Endocrinology, St. Olav’s University Hospital, Trondheim, Norway
| |
Collapse
|
2
|
Development of a Sensitive Bioassay for the Analysis of IGF-Related Activation of AKT/mTOR Signaling in Biological Matrices. Cells 2021; 10:cells10030482. [PMID: 33668197 PMCID: PMC7995968 DOI: 10.3390/cells10030482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 12/11/2022] Open
Abstract
The bioactivity of the IGF system is not a function of isolated hormone concentrations in a given biological matrix. Instead, the biological activities of IGFs are regulated by IGFBPs, IGFBP proteases, and inhibitors of IGFBP proteases. Therefore, assays based on IGF-related bioactivity may describe functions of the complete IGF system in a given biological matrix. Of particular interest are the IGF system effects on the AKT/mTOR pathway, as a dominant system for controlling growth, metabolism, and aging. In order to improve the sensitivity of IGF-dependent bioactivity, we made use of the known short-term and enhancing effects of IGFBP2 on the intracellular PI3K pathway. As a specific readout of this pathway, and further as a marker of the mTOR pathway, we assessed the phosphorylation of AKT-Ser473. Preincubation using IGFBP2 enhanced IGF1-dependent AKT-Ser473 phosphorylation in our experimental system. The assay's specificity was demonstrated by inhibition of IGF1 receptors outside or inside the cell, using antiserum or small molecule inhibitors, which reduced AKT phosphorylation in response to exogenous IGF1 (p < 0.05). The maximal response of AKT phosphorylation was recorded 15 to 60 min after the addition of IGF1 to cell monolayers (p < 0.001). In our cellular system, insulin induced AKT phosphorylation only at supra-physiological concentrations (µM). Using this novel assay, we identified the differential biological activity of the IGF system in AKT-Ser473 phosphorylation in serum (mouse, naked mole rat, and human), in cerebrospinal fluid (human), and in colostrum or mature milk samples (dairy cow). We have developed a sensitive and robust bioassay to assess the IGF-related activation of the AKT/mTOR pathway. The assay works efficiently and does not require expensive cell culture systems. By using capillary immuno-electrophoresis, the readout of IGF-related bioactivity is substantially accelerated, requiring a minimum of hands-on time. Importantly, the assay system is useful for studying IGF-related activity in the AKT/mTOR pathway in a broad range of biological matrices.
Collapse
|
3
|
Chatterjee S, Bhushan Sharma C, Lavie CJ, Adhikari A, Deedwania P, O'keefe JH. Oral insulin: an update. MINERVA ENDOCRINOL 2020; 45:49-60. [DOI: 10.23736/s0391-1977.19.03055-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
4
|
Bhattacharya S, Kalra S, Dutta D, Khandelwal D, Singla R. The Interplay Between Pituitary Health and Diabetes Mellitus - The Need for 'Hypophyseo-Vigilance'. EUROPEAN ENDOCRINOLOGY 2019; 16:25-31. [PMID: 32595766 DOI: 10.17925/ee.2020.16.1.25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022]
Abstract
The anterior and posterior hypophyseal hormones alter glucose metabolism in health and disease. Secondary diabetes may occur due to hypersecretion of anterior pituitary hormones like adrenocorticotrophic hormone in Cushing's disease and growth hormone in acromegaly. Other hormones like prolactin, gonadotropins, oxytocin and vasopressin, though not overtly associated with causation of diabetes, have important physiological role in maintaining glucose homeostasis. Hypoglycaemia is not an unusual occurrence in hypopituitarism. Many of the medications that are used for treatment of hypophyseal diseases alter glucose metabolism. Agents like pasireotide should be used with caution in the setting of diabetes, whereas pegvisomant should be given preference. Diabetes mellitus itself, on the other hand, can alter the functioning of hypothalamic pituitary axis; this is documented in both type 1 and type 2 diabetes. This review focuses on the clinically relevant interplay of hypophyseal hormones and glucose homeostasis. The authors define 'hypophyseo-vigilance' as an approach which keeps the bidirectional, multifaceted interactions between the pituitary and glucose metabolism in mind while managing diabetes and pituitary disease.
Collapse
Affiliation(s)
| | | | - Deep Dutta
- Cedar Superspeciality Clinics, Dwarka, New Delhi, India
| | | | | |
Collapse
|
5
|
Janssen JAMJL, Varewijck AJ, Brugts MP. The insulin-like growth factor-I receptor stimulating activity (IRSA) in health and disease. Growth Horm IGF Res 2019; 48-49:16-28. [PMID: 31493625 DOI: 10.1016/j.ghir.2019.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/26/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
Abstract
Determination of true IGF-I bioactivity in serum and other biological fluids is still a substantial challenge. The IGF-IR Kinase Receptor Activation assay (IGF-IR KIRA assay) is a novel tool to asses IGF-IR stimulating activity (IRSA) and has opened a new era in studying the IGF system. In this paper we discuss many studies showing that measuring IRSA by the IGF-IR KIRA assay often provides fundamentally different information about the IGF system than the commonly used total IGF-I immunoassays. With the IGF-IR KIRA assay phosphorylation of tyrosine residues of the IGF-IR is used as read out to quantify IRSA in unknown (serum) samples. The IGF-IR KIRA assay gives information about net overall effects of circulating IGF-I, IGF-II, IGFBPs and IGFBP-proteases on IGF-IR activation and seems especially superior to immunoreactive total IGF-I in monitoring therapeutic interventions. Although the IRSA as measured by the IGF-IR KIRA assay probably more closely reflects true bioactive IGF-I than measurements of total IGF-I in serum, the IGF-IR KIRA assay in its current form does not give information about all the post-receptor intracellular events mediated by the IGF-IR. Interestingly, in several conditions in health and disease IRSA measured by the IGF-IR KIRA assay is considerably higher in interstitial fluid and ascites than in serum. This suggests that both the paracrine (local) and endocrine (circulating) IRSA should be measured to get a complete picture about the role of the IGF system in health and disease.
Collapse
Affiliation(s)
- Joseph A M J L Janssen
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, the Netherlands.
| | - Aimee J Varewijck
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, the Netherlands
| | - Michael P Brugts
- Department of Internal Medicine, Ikazia Hospital, Rotterdam, the Netherlands
| |
Collapse
|
6
|
Nambam B, Schatz D. Growth hormone and insulin-like growth factor-I axis in type 1 diabetes. Growth Horm IGF Res 2018; 38:49-52. [PMID: 29249623 DOI: 10.1016/j.ghir.2017.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 10/18/2022]
Abstract
The precise mechanisms relating type 1 diabetes (T1D) and poor glycemic control to the axis of growth hormone (GH), insulin like growth factor- I (IGF-I), and IGF binding protein-3 (IGFBP-3) remain to be definitively determined. GH resistance with low IGF-I as is frequently seen in patients with T1D is often related to portal hypoinsulization, and lack of upregulation of GH receptors. There are conflicting reports of the effect of a dysregulated GH/IGF-I axis on height in children and adolescents with T1D, as well as on chronic complications. This brief review discusses some of the interactions between the GH/IGF-I axis and T1D pathology, and vice-versa.
Collapse
Affiliation(s)
- Bimota Nambam
- Pediatric Endocrinology, Louisiana State University Health, Shreveport, United States
| | - Desmond Schatz
- Pediatric Endocrinology, University of Florida, Gainesville, United States.
| |
Collapse
|
7
|
Dassau E, Renard E, Place J, Farret A, Pelletier MJ, Lee J, Huyett LM, Chakrabarty A, Doyle FJ, Zisser HC. Intraperitoneal insulin delivery provides superior glycaemic regulation to subcutaneous insulin delivery in model predictive control-based fully-automated artificial pancreas in patients with type 1 diabetes: a pilot study. Diabetes Obes Metab 2017; 19:1698-1705. [PMID: 28474383 PMCID: PMC5742859 DOI: 10.1111/dom.12999] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 01/15/2023]
Abstract
AIMS To compare intraperitoneal (IP) to subcutaneous (SC) insulin delivery in an artificial pancreas (AP). RESEARCH DESIGN AND METHODS Ten adults with type 1 diabetes participated in a non-randomized, non-blinded sequential AP study using the same SC glucose sensing and Zone Model Predictive Control (ZMPC) algorithm adjusted for insulin clearance. On first admission, subjects underwent closed-loop control with SC delivery of a fast-acting insulin analogue for 24 hours. Following implantation of a DiaPort IP insulin delivery system, the identical 24-hour trial was performed with IP regular insulin delivery. The clinical protocol included 3 unannounced meals with 70, 40 and 70 g carbohydrate, respectively. Primary endpoint was time spent with blood glucose (BG) in the range of 80 to 140 mg/dL (4.4-7.7 mmol/L). RESULTS Percent of time spent within the 80 to 140 mg/dL range was significantly higher for IP delivery than for SC delivery: 39.8 ± 7.6 vs 25.6 ± 13.1 ( P = .03). Mean BG (mg/dL) and percent of time spent within the broader 70 to 180 mg/dL range were also significantly better for IP insulin: 151.0 ± 11.0 vs 190.0 ± 31.0 ( P = .004) and 65.7 ± 9.2 vs 43.9 ± 14.7 ( P = .001), respectively. Superiority of glucose control with IP insulin came from the reduced time spent in hyperglycaemia (>180 mg/dL: 32.4 ± 8.9 vs 53.5 ± 17.4, P = .014; >250 mg/dL: 5.9 ± 5.6 vs 23.0 ± 11.3, P = .0004). Higher daily doses of insulin (IU) were delivered with the IP route (43.7 ± 0.1 vs 32.3 ± 0.1, P < .001) with no increased percent time spent <70 mg/dL (IP: 2.5 ± 2.9 vs SC: 4.1 ± 5.3, P = .42). CONCLUSIONS Glycaemic regulation with fully-automated AP delivering IP insulin was superior to that with SC insulin delivery. This pilot study provides proof-of-concept for an AP system combining a ZMPC algorithm with IP insulin delivery.
Collapse
MESH Headings
- Adult
- Algorithms
- Blood Glucose/analysis
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/therapy
- Female
- France
- Glycated Hemoglobin/analysis
- Humans
- Hyperglycemia/prevention & control
- Hypoglycemia/chemically induced
- Hypoglycemia/prevention & control
- Hypoglycemic Agents/administration & dosage
- Hypoglycemic Agents/adverse effects
- Hypoglycemic Agents/therapeutic use
- Infusions, Parenteral
- Infusions, Subcutaneous
- Insulin Infusion Systems/adverse effects
- Insulin Lispro/administration & dosage
- Insulin Lispro/adverse effects
- Insulin Lispro/therapeutic use
- Insulin, Regular, Human/administration & dosage
- Insulin, Regular, Human/adverse effects
- Insulin, Regular, Human/therapeutic use
- Male
- Middle Aged
- Pancreas, Artificial/adverse effects
- Pilot Projects
- Proof of Concept Study
Collapse
Affiliation(s)
- Eyal Dassau
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California
| | - Eric Renard
- Department of Endocrinology, Diabetes, Nutrition and INSERM Clinical Investigation Center 1411, University Hospital of Montpellier, Montpellier, France
- Department of Psychology, Institute of Functional Genomics, CNRS UMR5203, INSERM U1191, University of Montpellier, Montpellier, France
| | - Jérôme Place
- Department of Psychology, Institute of Functional Genomics, CNRS UMR5203, INSERM U1191, University of Montpellier, Montpellier, France
| | - Anne Farret
- Department of Endocrinology, Diabetes, Nutrition and INSERM Clinical Investigation Center 1411, University Hospital of Montpellier, Montpellier, France
- Department of Psychology, Institute of Functional Genomics, CNRS UMR5203, INSERM U1191, University of Montpellier, Montpellier, France
| | - Marie-José Pelletier
- Department of Endocrinology, Diabetes, Nutrition and INSERM Clinical Investigation Center 1411, University Hospital of Montpellier, Montpellier, France
| | - Justin Lee
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California
| | - Lauren M. Huyett
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California
| | - Ankush Chakrabarty
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Francis J. Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California
| | - Howard C. Zisser
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California
| |
Collapse
|
8
|
Bally L, Thabit H, Hovorka R. Finding the right route for insulin delivery - an overview of implantable pump therapy. Expert Opin Drug Deliv 2017; 14:1103-1111. [PMID: 27911116 PMCID: PMC5581917 DOI: 10.1080/17425247.2017.1267138] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Implantable pump therapy adopting the intraperitoneal route of insulin delivery has been available for the past three decades. The key rationale for implantable pump therapy is the restoration of the portal-peripheral insulin gradient of the normal physiology. Uptake in clinical practice is limited to specialized centers and selected patient populations. Areas covered: Implantable pump therapy is discussed, including technical aspects, rationale for its use, and glycemic and non-glycemic effects. Target populations, summaries of clinical studies and issues related to implantable pump therapy are highlighted. Limitations of implantable pump therapy and its future outlook in clinical practice are presented. Expert opinion: Although intraperitoneal insulin delivery appears closer to the normal physiology, technical, pharmacological, and costs barriers prevent a wider adoption. Evidence from clinical studies remains scarce and inconclusive. As a consequence, the use of implantable pump therapy will be confined to a small population unless considerable technological progress is made and well-conducted studies can demonstrate glycemic and/or non-glycemic benefits justifying wider application.
Collapse
Affiliation(s)
- Lia Bally
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- Department of Diabetes & Endocrinology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Department of Diabetes, Endocrinology, Clinical Nutrition & Metabolism, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Hood Thabit
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- Department of Diabetes & Endocrinology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Roman Hovorka
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Abstract
Insulin remains indispensable to the treatment of diabetes, but its availability in injectable form only has hampered its timely and broader use. The development of an oral insulin remains an ultimate goal to both enhance ease of use, and to provide therapeutic advantages rooted in its direct delivery to the portal vein and liver. By mimicking the physiological path taken by pancreatic insulin, oral insulin is expected to have a distinct effect on the hepatic aspect of carbohydrate metabolism, hepatic insulin resistance, and, at the same time, avoid hyperinsulinemia and minimize the risk of hypoglycemia. With oral insulin approaching late stages of development, the goal of this review is to examine oral insulin in a physiological context and report on recent progress in its development.
Collapse
Affiliation(s)
- Ehud Arbit
- Oramed Pharmaceuticals, Inc. Jerusalem, Israel
| | | |
Collapse
|
10
|
Abstract
In recent years, continuous intraperitoneal insulin infusion (CIPII) has become a favored treatment alternative for patients with subcutaneous insulin resistance, mainly due to its ability of mimicking physiological conditions of insulin absorption. CIPII has been shown to improve glycemic control as well as to reduce hypoglycemic events and to lead to increased patient satisfaction and quality of life (QoL). Among CIPII delivery systems, Diaport stands out due to its low side effects, its demonstrated clinical efficacy and the potential for integration into closed-loop systems.
Collapse
Affiliation(s)
| | | | - Oliver Schnell
- Sciarc Institute, Baierbrunn, Germany
- Forschergruppe Diabetes e.V., Munich-Neuherberg, Germany
- Oliver Schnell, MD, Forschergruppe Diabetes e.V., Ingolstädter Landstraße 1, 85764 Munich-Neuherberg, Germany.
| |
Collapse
|
11
|
van Dijk PR, Logtenberg SJJ, Chisalita SI, Hedman CA, Groenier KH, Gans ROB, Kleefstra N, Arnqvist HJ, Bilo HJG. After 6years of intraperitoneal insulin administration IGF-I concentrations in T1DM patients are at low-normal level. Growth Horm IGF Res 2015; 25:316-319. [PMID: 26336814 DOI: 10.1016/j.ghir.2015.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/02/2015] [Accepted: 08/24/2015] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Low concentrations of insulin-like growth factor-I (IGFI) have been reported in type 1 diabetes mellitus (T1DM), suggested to be due to low insulin concentrations in the portal vein. The aim was to describe the long-term course of IGFI concentrations among T1DM subjects treated with continuous intraperitoneal (IP) insulin infusion (CIPII). DESIGN Nineteen patients that participated in a randomized cross-over trial comparing CIPII and subcutaneous (SC) insulin therapy in 2006 were followed until 2012. IGF-I measurements were performed at the start of the 2006 study, after the 6 month SC- and CIPII treatment phase in 2006 and during CIPII therapy in 2012. Z-scores were calculated to compare the IGF-I concentrations with age-specific normative range values of a non-DM reference population. RESULTS In 2012, IGF-I Z-scores (-0.7; 95% confidence interval -1.3, -0.2) were significantly higher than at the start of the 2006 study (-2.5; -3.3, -1.8), the end of the SC (-2.0; -2.6, -1.5) and CIPII (-1.6; -2.1, -1.0) treatment phase with a mean difference of: 1.8 (0.9, 2.7), 1.3 (0.5, 2.1) and 0.8 (0.1, 1.6), respectively. CONCLUSION After 6 years of treatment with CIPII, IGF-I concentrations among T1DM patients increased to a level that is higher than during prior SC insulin treatment and is in the lower normal range compared to a non-DM reference population. The results of this study suggest that long-term IP insulin administration influences the IGF system in T1DM.
Collapse
Affiliation(s)
| | - Susan J J Logtenberg
- Isala, Diabetes Centre, Zwolle, The Netherlands; University of Groningen, University Medical Center Groningen, Dept. of Internal Medicine, Groningen, The Netherlands
| | - Simona I Chisalita
- Linköping University, Dept. of Emergency Medicine, Linköping, Sweden; Linköping University, Dept. of Clinical and Experimental Medicine, Linköping, Sweden
| | - Christina A Hedman
- Linköping University, Dept. of Endocrinology, Linköping, Sweden; Linköping University, Dept. of Medical and Health Sciences, Linköping, Sweden
| | - Klaas H Groenier
- Isala, Diabetes Centre, Zwolle, The Netherlands; University of Groningen, University Medical Center Groningen, Dept. of General Practice, Groningen, The Netherlands
| | - Reinold O B Gans
- University of Groningen, University Medical Center Groningen, Dept. of Internal Medicine, Groningen, The Netherlands
| | - Nanne Kleefstra
- Isala, Diabetes Centre, Zwolle, The Netherlands; University of Groningen, University Medical Center Groningen, Dept. of Internal Medicine, Groningen, The Netherlands; Langerhans Medical Research Group, Zwolle, The Netherlands
| | - Hans J Arnqvist
- Linköping University, Dept. of Clinical and Experimental Medicine, Linköping, Sweden; Linköping University, Dept. of Endocrinology, Linköping, Sweden
| | - Henk J G Bilo
- Isala, Diabetes Centre, Zwolle, The Netherlands; University of Groningen, University Medical Center Groningen, Dept. of Internal Medicine, Groningen, The Netherlands; Isala, Dept. of Internal Medicine, Zwolle, The Netherlands
| |
Collapse
|
12
|
Dal S, Jeandidier N, Schaschkow A, Spizzo AH, Seyfritz E, Sookhareea C, Bietiger W, Péronet C, Moreau F, Pinget M, Maillard E, Sigrist S. Portal or subcutaneous insulin infusion: efficacy and impact on liver inflammation. Fundam Clin Pharmacol 2015; 29:488-98. [PMID: 26095147 DOI: 10.1111/fcp.12129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 04/20/2015] [Accepted: 05/18/2015] [Indexed: 01/10/2023]
Abstract
Intraperitoneal insulin allows physiological portal insulin administration and first-pass hepatic insulin extraction, but the impact on liver metabolism and inflammation is unknown. Our objective was to compare the impact, on metabolic control and liver function, of the same dose of insulin administered either intraperitoneally or subcutaneously during continuous infusion in diabetic rats. Wistar rats were randomly divided into 4 groups: control (C), untreated diabetic (streptozotocin, 100 mg/kg) and diabetic rats treated by continual subcutaneous Insuplant® infusion (CSII) and continual intraperitoneal Insuplant(®) infusion (CPII) of 2 UI/200 g/day (via an osmotic mini-pump for 1-4 weeks). Insulin signalling pathways were analysed through hepatic expression of growth hormone receptor and phosphorylated insulin receptor substrate 1. Metabolic control was determined by measurement of body weight, blood glucose and fructosamine. Liver function was assessed by measuring insulin-like growth factor-1 (IGF-1), with global inflammation assessed by levels of alpha-2-macroglobulin (α2M) and lipid peroxidation in plasma. Liver inflammation was evaluated by quantification of hepatic macrophage infiltration and reactive oxygen species production. CPII induced a better improvement in metabolic control and liver function than CSII, producing a significant decrease in blood glucose and fructosamine, coupled with increased IGF-1 and hepatic glycogen storage. Moreover, liver oxidative stress and liver inflammation were reduced. Such observations indicate that the same insulin level in CPII improves glucose control and hepatic glucose metabolism and function, attenuating the hepatic inflammatory response to diabetes. These data demonstrate the importance of focusing on therapeutics to allow first-pass hepatic insulin extraction or prevent diabetic complications.
Collapse
Affiliation(s)
- Stéphanie Dal
- DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, Strasbourg, 67200, France
| | - Nathalie Jeandidier
- Structure d'Endocrinologie, Diabète -Nutrition et Addictologie, Pôle NUDE, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, 67000, France
| | - Anaïs Schaschkow
- DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, Strasbourg, 67200, France
| | - Anne-Hélène Spizzo
- Structure d'Endocrinologie, Diabète -Nutrition et Addictologie, Pôle NUDE, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, 67000, France
| | - Elodie Seyfritz
- DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, Strasbourg, 67200, France
| | - Cynthia Sookhareea
- DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, Strasbourg, 67200, France
| | - William Bietiger
- DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, Strasbourg, 67200, France
| | - Claude Péronet
- DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, Strasbourg, 67200, France
| | - François Moreau
- Structure d'Endocrinologie, Diabète -Nutrition et Addictologie, Pôle NUDE, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, 67000, France
| | - Michel Pinget
- Structure d'Endocrinologie, Diabète -Nutrition et Addictologie, Pôle NUDE, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, 67000, France
| | - Elisa Maillard
- DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, Strasbourg, 67200, France
| | - Séverine Sigrist
- DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, Strasbourg, 67200, France
| |
Collapse
|
13
|
Giustina A, Berardelli R, Gazzaruso C, Mazziotti G. Insulin and GH-IGF-I axis: endocrine pacer or endocrine disruptor? Acta Diabetol 2015; 52:433-43. [PMID: 25118998 DOI: 10.1007/s00592-014-0635-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/23/2014] [Indexed: 12/13/2022]
Abstract
Growth hormone/insulin-like growth factor (IGF) axis may play a role in maintaining glucose homeostasis in synergism with insulin. IGF-1 can directly stimulate glucose transport into the muscle through either IGF-1 or insulin/IGF-1 hybrid receptors. In severely decompensated diabetes including diabetic ketoacidosis, plasma levels of IGF-1 are low and insulin delivery into the portal system is required to normalize IGF-1 synthesis and bioavailability. Normalization of serum IGF-1 correlated with the improvement of glucose homeostasis during insulin therapy providing evidence for the use of IGF-1 as biomarker of metabolic control in diabetes. Taking apart the inherent mitogenic discussion, diabetes treatment using insulins with high affinity for the IGF-1 receptor may act as an endocrine pacer exerting a cardioprotective effect by restoring the right level of IGF-1 in bloodstream and target tissues, whereas insulins with low affinity for the IGF-1 receptor may lack this positive effect. An excessive and indirect stimulation of IGF-1 receptor due to sustained and chronic hyperinsulinemia over the therapeutic level required to overtake acute/chronic insulin resistance may act as endocrine disruptor as it may possibly increase the cardiovascular risk in the short and medium term and mitogenic/proliferative action in the long term. In conclusion, normal IGF-1 may be hypothesized to be a good marker of appropriate insulin treatment of the subject with diabetes and may integrate and make more robust the message coming from HbA1c in terms of prediction of cardiovascular risk.
Collapse
Affiliation(s)
- Andrea Giustina
- Chair of Endocrinology and Metabolism, University of Brescia - A.O. Spedali Civili di Brescia, 25123, Brescia, Italy,
| | | | | | | |
Collapse
|
14
|
van Dijk PR, Logtenberg SJJ, Gans ROB, Bilo HJG, Kleefstra N. Intraperitoneal insulin infusion: treatment option for type 1 diabetes resulting in beneficial endocrine effects beyond glycaemia. Clin Endocrinol (Oxf) 2014; 81:488-97. [PMID: 25041605 DOI: 10.1111/cen.12546] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/11/2014] [Accepted: 07/03/2014] [Indexed: 11/28/2022]
Abstract
Continuous intraperitoneal insulin infusion (CIPII) is a treatment option for patients with type 1 diabetes mellitus who fail to reach adequate glycaemic control despite intensive subcutaneous (SC) insulin therapy. CIPII has clear advantages over SC insulin administration in terms of pharmacokinetic and pharmacodynamic properties and has been shown to improve glycaemic regulation. Due to the delivery of insulin predominantly in the portal vein, as opposed to systemically, CIPII offers a unique research model to investigate the effects of insulin on endocrine and metabolic parameters in vivo. The aim of the present article is to provide an overview of the literature with respect to the effects of CIPII on glucose management, quality of life, complications and costs, with additional focus on metabolic and endocrine aspects. Finally, future use and research objectives are discussed.
Collapse
|