1
|
Soták M, Clark M, Suur BE, Börgeson E. Inflammation and resolution in obesity. Nat Rev Endocrinol 2025; 21:45-61. [PMID: 39448830 DOI: 10.1038/s41574-024-01047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Inflammation is an essential physiological defence mechanism, but prolonged or excessive inflammation can cause disease. Indeed, unresolved systemic and adipose tissue inflammation drives obesity-related cardiovascular disease and type 2 diabetes mellitus. Drugs targeting pro-inflammatory cytokine pathways or inflammasome activation have been approved for clinical use for the past two decades. However, potentially serious adverse effects, such as drug-induced weight gain and increased susceptibility to infections, prevented their wider clinical implementation. Furthermore, these drugs do not modulate the resolution phase of inflammation. This phase is an active process orchestrated by specialized pro-resolving mediators, such as lipoxins, and other endogenous resolution mechanisms. Pro-resolving mediators mitigate inflammation and development of obesity-related disease, for instance, alleviating insulin resistance and atherosclerosis in experimental disease models, so mechanisms to modulate their activity are, therefore, of great therapeutic interest. Here, we review current clinical attempts to either target pro-inflammatory mediators (IL-1β, NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome, tumour necrosis factor (TNF) and IL-6) or utilize endogenous resolution pathways to reduce obesity-related inflammation and improve cardiometabolic outcomes. A remaining challenge in the field is to establish more precise biomarkers that can differentiate between acute and chronic inflammation and to assess the functionality of individual leukocyte populations. Such advancements would improve the monitoring of drug effects and support personalized treatment strategies that battle obesity-related inflammation and cardiometabolic disease.
Collapse
Affiliation(s)
- Matúš Soták
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Madison Clark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bianca E Suur
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Emma Börgeson
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
2
|
Sullivan EL, Molloy KR, Dunn GA, Balanzar AL, Young AS, Loftis JM, Ablow JC, Nigg JT, Gustafsson HC. Adipokines measured during pregnancy and at birth are associated with infant negative affect. Brain Behav Immun 2024; 120:34-43. [PMID: 38772428 PMCID: PMC11401062 DOI: 10.1016/j.bbi.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/18/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Increased adiposity during pregnancy may be related to offspring risk for mental health disorders, although the biological mechanisms are poorly understood. One promising hypothesis is that factors secreted from adipocytes such as leptin and adiponectin may explain this association. The current study examined whether pregnancy or umbilical cord blood concentrations of leptin and/or adiponectin a) predict elevated infant negative affect at 6 months (an early life marker of risk for psychopathology); and b) help explain the association between pregnancy adiposity and increased infant negative affect. METHODS Data came from a prospective cohort (N = 305) of pregnant individuals and their offspring. Second trimester adiposity was assessed using air displacement plethysmography. Concentrations of leptin and adiponectin were measured in second trimester plasma and umbilical cord plasma. Infant negative affect was assessed by standardized observation at 6 months. Second trimester inflammation was assessed using a comprehensive panel of cytokines. RESULTS Lower second trimester adiponectin was associated with elevated infant negative affect, and mediated the effect of pregnancy adiposity on infant negative affect. This association was independent of the effect of second trimester inflammation. Umbilical cord leptin also predicted higher infant negative affect and mediated the association between pregnancy adiposity and infant negative affect. CONCLUSIONS This is the first study to link pregnancy adiponectin or cord blood leptin to infant markers of risk for psychopathology, and the first to demonstrate that these adipokines mediate the association between pregnancy adiposity and offspring behavioral outcomes, suggesting novel markers of risk and potential mechanisms of effect.
Collapse
Affiliation(s)
- Elinor L Sullivan
- Department of Psychiatry, Oregon Health & Science University, United States; Center for Mental Health Innovation, Oregon Health & Science University, United States; Division of Neuroscience, Oregon National Primary Research Center, United States.
| | - Kelly R Molloy
- Department of Psychiatry, Oregon Health & Science University, United States; Center for Mental Health Innovation, Oregon Health & Science University, United States
| | - Geoffrey A Dunn
- Department of Psychiatry, Oregon Health & Science University, United States; Center for Mental Health Innovation, Oregon Health & Science University, United States
| | - Adriana L Balanzar
- Department of Psychiatry, Oregon Health & Science University, United States; Center for Mental Health Innovation, Oregon Health & Science University, United States
| | - Anna S Young
- Department of Psychiatry, Oregon Health & Science University, United States; Center for Mental Health Innovation, Oregon Health & Science University, United States
| | - Jennifer M Loftis
- Department of Psychiatry, Oregon Health & Science University, United States; VA Portland Health Care System, United States
| | | | - Joel T Nigg
- Department of Psychiatry, Oregon Health & Science University, United States; Center for Mental Health Innovation, Oregon Health & Science University, United States
| | - Hanna C Gustafsson
- Department of Psychiatry, Oregon Health & Science University, United States; Center for Mental Health Innovation, Oregon Health & Science University, United States
| |
Collapse
|
3
|
Zhang M, Yang F, Feng Q, Ou Y, Zhang J, Wan H, Cao H, Ning P. Comparison of the efficacy of fish oil and probiotic supplementation on glucose and lipid metabolism in patients with type 2 diabetes: a systematic review and network meta-analysis. Diabetol Metab Syndr 2024; 16:25. [PMID: 38254166 PMCID: PMC10804729 DOI: 10.1186/s13098-024-01266-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Abnormalities in glucose and lipid metabolism contribute to the progression and exacerbation of type 2 diabetes mellitus (T2DM). Fish oil and probiotics are dietary supplements that have the potential to improve glucose and lipid metabolism. However, their efficacy remains unclear in T2DM patients. METHODS PubMed, Embase, and the Cochrane Library were retrieved to collect randomized controlled trials (RCTs) on the efficacy of fish oil or probiotic supplementation in T2DM patients from the database inception to December 13, 2023. Primary outcome indicators encompassed glycated hemoglobin (HbA1c), homeostatic model assessment for insulin resistance (HOMA-IR) and blood lipid profile (triglyceride (TG) and total cholesterol (TC). Secondary outcome indicators included inflammatory markers such as tumor necrosis factor -α (TNF-α) and adipocytokine (including leptin and adiponectin). The R software was used for statistical analysis, and GraphPad Prism was used for figure rendering. RESULTS A total of 60 RCTs involving 3845 T2DM patients were included in the analysis. The results showed that the probiotics (Bifidobacterium, Lactobacillus, Lactococcus, Propionibacterium, etc.) were more effective in reducing HOMA-IR than fish oil (Surca = 0.935). Bifidobacterium demonstrated the highest efficacy in reducing HbA1c levels (Surca = 0.963). Regarding lipid metabolism, fish oil was superior to probiotics in lowering TG and TC levels (Surca values of 0.978 and 0.902, respectively). Furthermore, fish oil outperformed probiotics in reducing TNF-α (Surca = 0.839) and leptin (Surca = 0.712), and increasing adiponectin levels (Surca = 0.742). Node-splitting analysis showed good consistency (P > 0.05 for direct, indirect, and network comparison across various interventions). CONCLUSIONS In T2DM patients, fish oil was more effective than probiotics in regulating lipid metabolism. Probiotics outperformed fish oil in regulating glucose metabolism particularly; specifically, Bifidobacterium showed higher efficacy in reducing blood glucose.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Endocrine and Metabolism, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Geriatric Diseases Institute of Chengdu, Chengdu, China
| | - Fan Yang
- Department of Endocrine and Metabolism, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Geriatric Diseases Institute of Chengdu, Chengdu, China
| | - Qiu Feng
- Department of Endocrine and Metabolism, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Geriatric Diseases Institute of Chengdu, Chengdu, China
| | - Yanghong Ou
- Department of Endocrine and Metabolism, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Geriatric Diseases Institute of Chengdu, Chengdu, China
| | - Jiaxing Zhang
- Department of Endocrine and Metabolism, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Geriatric Diseases Institute of Chengdu, Chengdu, China
| | - Haiyan Wan
- Department of Endocrine and Metabolism, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Geriatric Diseases Institute of Chengdu, Chengdu, China
| | - Hongyi Cao
- Department of Endocrine and Metabolism, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Geriatric Diseases Institute of Chengdu, Chengdu, China
| | - Peng Ning
- Department of Endocrine and Metabolism, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Geriatric Diseases Institute of Chengdu, Chengdu, China.
| |
Collapse
|
4
|
Shaheen N, Shaheen A, Diab RA, Saad AM, Abdelwahab OA, Soliman S, Hefnawy MT, Ramadan A, Meshref M, Nashwan AJ. Association of serum leptin and ghrelin levels with smoking status on body weight: a systematic review and meta-analysis. Front Psychiatry 2023; 14:1296764. [PMID: 38111614 PMCID: PMC10725976 DOI: 10.3389/fpsyt.2023.1296764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
Background and aims Smoking cigarettes is a major global health problem that affects appetite and weight. The aim of this systematic review was to determine how smoking affected plasma leptin and ghrelin levels. Methods A comprehensive search of PubMed, Scopus, Web of Science, and Ovid was conducted using a well-established methodology to gather all related publications. Results A total of 40 studies were included in the analysis of 11,336 patients. The overall effect showed a with a mean difference (MD) of -1.92[95%CI; -2.63: -1.20] and p = 0.00001. Subgroup analysis by study design revealed significant differences as well, but with high heterogeneity within the subgroups (I2 of 82.3%). Subgroup by sex showed that there was a significant difference in mean difference between the smoking and non-smoking groups for males (MD = -5.75[95% CI; -8.73: -2.77], p = 0.0002) but not for females (MD = -3.04[95% CI; -6.6:0.54], p = 0.10). Healthy, pregnant, diabetic and CVD subgroups found significant differences in the healthy (MD = -1.74[95% CI; -03.13: -0.35], p = 0.01) and diabetic (MD = -7.69[95% CI, -1.64: -0.73], p = 0.03). subgroups, but not in the pregnant or cardiovascular disease subgroups. On the other hand, the meta-analysis found no statistically significant difference in Ghrelin serum concentration between smokers and non-smokers (MD = 0.52[95% CI, -0.60:1.63], p = 0.36) and observed heterogeneity in the studies (I2 = 68%). Conclusion This study demonstrates a correlation between smoking and serum leptin/ghrelin levels, which explains smoking's effect on body weight. Systematic review registration https://www.crd.york.ac.uk/ prospero/display_record.php, identifier (Record ID=326680).
Collapse
Affiliation(s)
- Nour Shaheen
- Alexandria Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ahmed Shaheen
- Alexandria Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Rehab Adel Diab
- Faculty of Medicine, Al-Azhar University, Medical Research Group of Egypt, Cairo, Egypt
| | | | - Omar Ahmed Abdelwahab
- Faculty of Medicine, Al-Azhar University, Medical Research Group of Egypt, Cairo, Egypt
| | - Sama Soliman
- Faculty of Medicine, The Pavlov First State Medical University of St. Petersburg, St. Petersburg, Russia
| | - Mahmoud Tarek Hefnawy
- Faculty of Medicine, Zagazig University, Medical Research Group of Egypt, Cairo, Egypt
| | - Alaa Ramadan
- Faculty of Medicine, South Valley University, Qena, Egypt
| | - Mostafa Meshref
- Neurology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | |
Collapse
|
5
|
Candido ACR, Ferraz SD, Uggioni MLR, Zanevan IR, Colonetti L, Grande AJ, Colonetti T, Rosa MID. Omega-3 as an adjuvant in the treatment eating and psychological symptoms in patients with anorexia nervosa: a systematic review and meta-analyses. J Hum Nutr Diet 2023; 36:1970-1981. [PMID: 37226879 DOI: 10.1111/jhn.13187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND This study was carried out to assess the effects of omega-3 supplementation as an adjunct treatment for eating and psychological symptoms in patients with anorexia nervosa. METHODS We conducted a systematic review of the literature using the terms 'anorexia nervosa' AND 'Fatty Acids, Omega-3'. Five randomised controlled trials with a total of 144 participants, published between 2003 and 2022, were included. RESULTS The effects of supplementation of omega-3 on anxiety were standardised mean difference (SMD) 0.79, 95% confidence interval (CI) -0.08 to 1.66; p = 0.08; I² = 3%; two studies, 33 participants; moderate quality of evidence. For depression, the supplementation of omega-3 was SMD: 0.22, 95% CI: -0.50 to 0.93; p = 0.18; I² = 45%; two studies, 33 participants; moderate quality of evidence. For obsessive-compulsive disorder, the supplementation of omega-3 was SMD: -0.22, 95% CI: -0.70 to 2.25; p = 0.36; I² = 0%; three studies, 32 participants; low quality of evidence. CONCLUSION This research showed that regardless of dose, time or, if associated with other components, the use of omega-3 supplementations as an adjuvant treatment showed no evidence of effect in eating and psychological symptoms in patients with anorexia nervosa.
Collapse
Affiliation(s)
- Ana Claudia Rodrigues Candido
- Translational Biomedicine Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Sarah Dagostin Ferraz
- Translational Biomedicine Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Maria Laura Rodrigues Uggioni
- Translational Biomedicine Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Ivan Rosso Zanevan
- Translational Biomedicine Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Laura Colonetti
- Translational Biomedicine Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Antônio José Grande
- Laboratory of Evidence-Based Practice, Universidade Estadual de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Tamy Colonetti
- Laboratory of Evidence-Based Practice, Universidade Estadual de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Maria Inês da Rosa
- Translational Biomedicine Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| |
Collapse
|
6
|
Guldemir HH, Buyukuslu N, Yigit P, Cakici C, Ozdemir EM. Effects of omega fatty acids on the short-term postprandial satiety related peptides in rats. INT J VITAM NUTR RES 2023; 93:401-409. [PMID: 34986656 DOI: 10.1024/0300-9831/a000743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We aimed to assess the effects of omega fatty acids on time depending on responses of satiety hormones. Sixty adult rats were randomly divided into 4 groups; linoleic acid (LA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) groups. For each fatty acid, the dose of 400 mg/kg was applied by oral gavage. Blood samples were taken after the 15, 30, 60 and 120 minutes. Ghrelin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), peptide YY (PYY), leptin and insulin hormones were analyzed by ELISA. We observed the significant increases (p<0.05) of the levels of CCK between n-3 (ALA, at 60th min; EPA, at 30th and 60th min and DHA, at 60 min) and n-6 (LA) supplemented rats. The highest GLP-1 levels were in ALA (0.70 ng/mL) and DHA (0.67 ng/mL) supplemented groups at 60th and 120th min indicating n-3 fatty acids efficiency on satiety compared to LA. It seems that ALA at 60th min and EPA at 120th min could provide the highest satiety effect with the highest insulin response, while the efficiency of LA supplementation on insulin-induced satiety diminished. The only significant change in AUC values among all hormones was in the CCK of the ALA group (p=0.004). The level of leptin increased in DHA and EPA supplemented rats (p=0.140). Our results showed that dietary omega fatty acids influenced the releasing of hormones in different ways possibly depending on chain length or saturation degree. Comprehensive studies need to be addressed for each fatty acid on satiety-related peptide hormones.
Collapse
Affiliation(s)
- Hilal Hizli Guldemir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Anadolu University, Eskisehir, Turkey
| | - Nihal Buyukuslu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Pakize Yigit
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Cagri Cakici
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ekrem Musa Ozdemir
- Medical Research Center (MEDITAM), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
7
|
Elsheikh M, El Amrousy D, El-Mahdy H, Dawoud H, Harkan A, El-Barky A. Lipid profile after omega-3 supplementation in neonates with intrauterine growth retardation: a randomized controlled trial. Pediatr Res 2023; 94:1503-1509. [PMID: 37202530 PMCID: PMC10589086 DOI: 10.1038/s41390-023-02632-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Neonates with intrauterine growth restriction (IUGR) have a high lipid profile that predisposes them to cardiovascular disease later in life. We aimed to evaluate the effect of omega 3 supplementation on serum leptin level, lipid profile, and growth in neonates with IUGR. METHODS This clinical trial was conducted on 70 full-term neonates with IUGR. Neonates were randomly divided into two equal groups; the treatment group: received omega 3 supplement (40 mg/kg/day) for 2 weeks after the establishment of full feeding, and the control group, who were followed up to full feeding without any supplementation. Serum leptin level, total cholesterol (TC), high-density lipoprotein (HDL), triglycerides (TG), low-density lipoprotein (LDL), and anthropometric measurement were evaluated at admission and after 2 weeks of omega 3 supplementation in both groups. RESULTS After treatment, HDL significantly increased, unlike TC, TG, LDL, LDL, and serum leptin levels, which significantly decreased in the treatment group compared to the control group after treatment. Interestingly, weight, length, and ponderal index greatly increased in omega 3-treated neonates compared to the control group. CONCLUSION Omega 3 supplementations lowered serum leptin level, TG, TC, LDL, and VLDL but increased HDL and growth in neonates with IUGR. CLINICAL TRIAL REGISTRATION The study was registered at clinicaltrials.gov (NCT05242107). IMPACT Neonates with intrauterine growth retardation (IUGR) were reported to have a high lipid profile that predisposes them to cardiovascular disease later in life. Leptin is a hormone that adjusts dietary intake and body mass and has a significant role in fetal development. Omega 3 is known to be essential for neonatal growth and brain development. We aimed to evaluate the effect of omega 3 supplementation on serum leptin level, lipid profile, and growth in neonates with IUGR. We found that omega 3 supplementations lowered serum leptin level and serum lipid profile but increased high density lipoprotein and growth in neonates with IUGR.
Collapse
Affiliation(s)
- Mai Elsheikh
- Pediatric Department, Tanta University, Tanta, Egypt
| | | | - Heba El-Mahdy
- Pediatric Department, Tanta University, Tanta, Egypt
| | - Heba Dawoud
- Pediatric Department, Tanta University, Tanta, Egypt
| | - Ahmed Harkan
- Pediatric Department, Tanta University, Tanta, Egypt
| | | |
Collapse
|
8
|
Ahmadniay Motlagh H, Aalipanah E, Mazidi M, Faghih S. Effect of flaxseed consumption on central obesity, serum lipids, and adiponectin level in overweight or obese women: A randomised controlled clinical trial. Int J Clin Pract 2021; 75:e14592. [PMID: 34227198 DOI: 10.1111/ijcp.14592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Flaxseed may be beneficial for the management of obesity due to its high content of alpha-linolenic acid, fibre, and lignans. OBJECTIVE We aim to evaluate the effect of flaxseed consumption on serum lipids, adiponectin, leptin, and anthropometric indices in overweight or obese women. METHODS This randomised controlled clinical trial involved 60 overweight or obese women. Participants were randomly allocated into two groups: (a) a balanced diet plus 30 g/day milled flaxseed (as treatment group) and (b) a balanced diet plus 30 g/day milled rice (as control group). Anthropometric indices, serum lipids, leptin, and adiponectin level were measured at baseline and at the end of intervention after 12 weeks. RESULTS After 12 weeks of intervention, there was significantly higher reduction rate in waist circumference (WC) and waist-to-hip ratio (WHR) (both P < .05) in the flaxseed-consuming group compared with the control group. Moreover, adiponectin level was significantly increased from (12.11 ± 7.1) to (17.15 ± 6.1) in the flaxseed-consuming group compared with the control group from (12.48 ± 4.7) to (12.01 ± 5.8) (P = .002). However, no significant difference was observed in serum lipid level in the study groups before and after the intervention (all P > .05). CONCLUSION Flaxseed consumption may improve adiposity markers, such as adiponectin level. Thus, flaxseed consumption could be an adjunctive therapy to attenuate central obesity. Serum lipid profile has not changed meaningfully after flaxseed consumption.
Collapse
Affiliation(s)
- Hoda Ahmadniay Motlagh
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Erfaneh Aalipanah
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Mazidi
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Shiva Faghih
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Abu-Samak MS, Hasoun LZ, Barham A, Mohammad BA, Mosleh I, Aljaberi A, Awwad SH. The supplementary effects of omega-3 fatty acid alone and in a combination with vitamin D3 on serum leptin levels: A randomized clinical trial on men and women with vitamin D deficiency. PHARMACIA 2021. [DOI: 10.3897/pharmacia.68.e64422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Purpose: This randomized clinical trial (RCT) was designed to assess the effect of VD3, n-3FA, and their combination on serum leptin levels in people with vitamin D deficiency (VDD).
Subjects and methods: One hundred and forty six participants, were randomly assigned into four groups supplemented with the dose of 50,000 IU VD3 taken weekly (D), 300 mg n-3FA taken daily (Om), and their combination (D+Om) or control (C) for eight weeks. Fasting baseline and follow-up (10 weeks; 8 weeks supplementation plus washout period of 2 weeks) of serum 25 hydroxyvitamin D (25OHD), leptin, glucose, triglycerides (TG), parathyroid hormone (PTH), calcium, and phosphorus were assayed. A paired T-test was used to assess the changes in serum leptin levels over of the follow-up period.
Results: Significant increase in follow-up serum leptin (10.62 ± 7.18 to 14.42 ± 8.29 ng/mL, P = 0.002) and TG (154 ± 84.4 to 200.1 ± 79, P = 0.015) levels were observed in n-3-FA supplemented group. Combination therapy (VD3 plus n-3 FA) significantly increased serum 25OHD (13.49 ± 4.64 to 37.09 ± 11.13 ng/mL, P < 0.001), TG levels (114.3 ± 57.3 to 139.1 ± 60.7 mg/mL, P = 0.007) and insignificantly serum leptin (6.74 ± 4.87 to 8.01 ± 6.77 ng/mL, P = 0.269).
Conclusion: Our study referred that notable elevation in leptin and TG levels might be linked to leptin resistance. However, further RCTs are required to clarify possible consequences resulted from the extensive administration of n-3FA supplements and their combinations with high doses of VD3 supplements on humans’ health.
Collapse
|
10
|
Sepidarkish M, Rezamand G, Qorbani M, Heydari H, Estêvão MD, Omran D, Morvaridzadeh M, Roffey DM, Farsi F, Ebrahimi S, Shokri F, Heshmati J. Effect of omega-3 fatty acids supplementation on adipokines: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2021; 62:7561-7575. [PMID: 33998914 DOI: 10.1080/10408398.2021.1915743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Although a large body of literature reported the beneficial effects of omega-3 fatty acids (omega-3 FAs) consumption on adipokines levels, but recent findings from clinical trials are not univocal. The aim of this systematic review and meta-analysis was to evaluate the effect of omega-3 FAs supplements on adipokines. METHODS We searched Medline, Web of Science, Scopus, Embase, and Cochrane Library from inception to August 2020 without any particular language limitations. Outcomes were summarized as standardized mean difference (SMD) with 95% confidence intervals (CIs) estimated from Hedge's g and random effects modeling. RESULTS Fifty-two trials involving 4,568 participants were included. Omega-3 FAs intake was associated with a significant increase in plasma adiponectin levels (n = 43; 3,434 participants; SMD: 0.21, 95% CI: 0.04, 0.37; p = 0.01; I2= 80.14%). This meta-analysis indicates that supplementing participants with omega-3 fatty acids more than 2000 mg daily and more than 10 weeks resulted in a significant and more favorable improvement in plasma adiponectin levels. However, omega-3 FAs intake had no significant effect on leptin levels (SMD: -0.02, 95% CI: -0.20, 0.17, I2= 54.13%). CONCLUSION The evidence supports a beneficial effect of omega-3 FAs intake on serum adiponectin levels but does not appear to impact on leptin concentrations. Larger well-designed RCTs are still required to evaluate the effect of omega-3 FAs on leptin in specific diseases.
Collapse
Affiliation(s)
- Mahdi Sepidarkish
- Department of Biostatistics and Epidemiology, School of Public Health, Babol University of Medical Sciences, Babol, Iran
| | - Gholamreza Rezamand
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mostafa Qorbani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hafez Heydari
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - M Dulce Estêvão
- Universidade do Algarve, Escola Superior de Saúde, Campus de Gambelas, Faro, Portugal
| | - Dalia Omran
- Department of Endemic Medicine and Hepatology, Thabet hospital for Endemic diseases, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mojgan Morvaridzadeh
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Darren M Roffey
- Vancouver General Hospital, Vancouver Coastal Health, Vancouver, Canada
| | - Farnaz Farsi
- Student Research Committee, Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Ebrahimi
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Fatemeh Shokri
- Department of Health Education and Promotion, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Heshmati
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
11
|
Verduci E, Calcaterra V, Di Profio E, Fiore G, Rey F, Magenes VC, Todisco CF, Carelli S, Zuccotti GV. Brown Adipose Tissue: New Challenges for Prevention of Childhood Obesity. A Narrative Review. Nutrients 2021; 13:nu13051450. [PMID: 33923364 PMCID: PMC8145569 DOI: 10.3390/nu13051450] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Pediatric obesity remains a challenge in modern society. Recently, research has focused on the role of the brown adipose tissue (BAT) as a potential target of intervention. In this review, we revised preclinical and clinical works on factors that may promote BAT or browning of white adipose tissue (WAT) from fetal age to adolescence. Maternal lifestyle, type of breastfeeding and healthy microbiota can affect the thermogenic activity of BAT. Environmental factors such as exposure to cold or physical activity also play a role in promoting and activating BAT. Most of the evidence is preclinical, although in clinic there is some evidence on the role of omega-3 PUFAs (EPA and DHA) supplementation on BAT activation. Clinical studies are needed to dissect the early factors and their modulation to allow proper BAT development and functions and to prevent onset of childhood obesity.
Collapse
Affiliation(s)
- Elvira Verduci
- Department of Health Sciences, University of Milan, 20146 Milan, Italy
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Correspondence: (E.V.); (S.C.)
| | - Valeria Calcaterra
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| | - Elisabetta Di Profio
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Department of Animal Sciences for Health, Animal Production and Food Safety, University of Milan, 20133 Milan, Italy
| | - Giulia Fiore
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Federica Rey
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy;
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy
| | - Vittoria Carlotta Magenes
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Carolina Federica Todisco
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy;
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy
- Correspondence: (E.V.); (S.C.)
| | - Gian Vincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy;
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy
| |
Collapse
|
12
|
Żebrowska A, Hall B, Stolecka-Warzecha A, Stanula A, Sadowska-Krępa E. The Effect of Omega-3 Fatty Acid Supplementation on Serum Adipocytokines, Lipid Profile and Biochemical Markers of Inflammation in Recreational Runners. Nutrients 2021; 13:456. [PMID: 33573042 PMCID: PMC7912656 DOI: 10.3390/nu13020456] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The study aimed to evaluate the effects of a 3-week ω-3 PUFA supplementation on serum adipocytokines (i.e., adiponectin, leptin), neuregulin-4 (NRG4) and erythrocyte omega-3 (ω-3) fatty acid content, as well as the blood antioxidant defense capacity in non-elite endurance runners. METHODS Twenty-four runners were randomized into two groups: the supplemented group, who received omega free fatty acids extract containing 142 mg of EPA, 267 mg of DHA, 12 mg of vitamin E and 5 µg of vitamin D, each administrated at a dose of six capsules twice a day for three weeks, or the placebo group. Venous blood samples were withdrawn at the start and at the end of the study protocols to estimate serum biochemical variables. RESULTS A significantly higher ω-3 index and lower AA/EPA ratio was observed after ω-3 PUFA compared to pre-supplementation levels (p < 0.001 and p < 0.001, respectively). An increase in baseline adiponectin and NRG4 levels, as well as a decrease of leptin concentration and lipid profile improvement, were observed in subjects after a ω-3 PUFA diet. The increased ω-3 index had a significant effect on TNFα levels and a serum marker of antioxidant defense. CONCLUSIONS The ω-3 PUFA extract with added vitamin E and D supplementation may have a positive effect on the function of the adipocyte tissue, as well as the ability to prevent cardiovascular complications in athletes.
Collapse
Affiliation(s)
- Aleksandra Żebrowska
- Institute of Sport Sciences, Academy of Physical Education in Katowice, Mikołowska Street 72a, 40-065 Katowice, Poland; (A.S.); (E.S.-K.)
| | - Barbara Hall
- School of Biological Sciences, The University of Manchester, Manchester M13 9PL, UK;
| | - Anna Stolecka-Warzecha
- Department of Basic Biomedical Sciences, Silesia Medical University, 40-055 Katowice, Poland;
| | - Arkadiusz Stanula
- Institute of Sport Sciences, Academy of Physical Education in Katowice, Mikołowska Street 72a, 40-065 Katowice, Poland; (A.S.); (E.S.-K.)
| | - Ewa Sadowska-Krępa
- Institute of Sport Sciences, Academy of Physical Education in Katowice, Mikołowska Street 72a, 40-065 Katowice, Poland; (A.S.); (E.S.-K.)
| |
Collapse
|
13
|
Kalupahana NS, Goonapienuwala BL, Moustaid-Moussa N. Omega-3 Fatty Acids and Adipose Tissue: Inflammation and Browning. Annu Rev Nutr 2020; 40:25-49. [DOI: 10.1146/annurev-nutr-122319-034142] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
White adipose tissue (WAT) and brown adipose tissue (BAT) are involved in whole-body energy homeostasis and metabolic regulation. Changes to mass and function of these tissues impact glucose homeostasis and whole-body energy balance during development of obesity, weight loss, and subsequent weight regain. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs), which have known hypotriglyceridemic and cardioprotective effects, can also impact WAT and BAT function. In rodent models, these fatty acids alleviate obesity-associated WAT inflammation, improve energy metabolism, and increase thermogenic markers in BAT. Emerging evidence suggests that ω-3 PUFAs can also modulate gut microbiota impacting WAT function and adiposity. This review discusses molecular mechanisms, implications of these findings, translation to humans, and future work, especially with reference to the potential of these fatty acids in weight loss maintenance.
Collapse
Affiliation(s)
- Nishan Sudheera Kalupahana
- Department of Physiology, Faculty of Medicine, University of Peradeniya, Peradeniya, 20400, Sri Lanka
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, Texas 79409-1270, USA;,
| | - Bimba Lakmini Goonapienuwala
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, Texas 79409-1270, USA;,
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, Texas 79409-1270, USA;,
| |
Collapse
|
14
|
Salek M, Clark CCT, Taghizadeh M, Jafarnejad S. N-3 fatty acids as preventive and therapeutic agents in attenuating PCOS complications. EXCLI JOURNAL 2019; 18:558-575. [PMID: 31611740 PMCID: PMC6785778 DOI: 10.17179/excli2019-1534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/23/2019] [Indexed: 12/20/2022]
Abstract
To our knowledge, in spite of several trials exploring the beneficial effect of n-3 polyunsaturated fatty acids (PUFA) on polycystic ovary syndrome (PCOS), no comprehensive evidence has investigated the effects of n-3 PUFA consumption on PCOS complications. Therefore, our aim was to conduct a review to investigate the possible effect and related mechanisms. A comprehensive systematic search was conducted in Embase, MEDLINE/PubMed, Google Scholar, and SCOPUS, to identify studies investigating n-3 fatty acids as a preventative or therapeutic agent for the attenuation of PCOS complications. Subsequently, the impact of omega-3 on PCOS, omega-3 and inflammation, omega-3 and insulin resistance, omega-3 and adipokines, omega-3 and lipid metabolism, omega-3 and endothelial function and omega-3 and hormonal factors were discussed. There are multiple mechanisms by which n-3 PUFAs may exert their beneficial effects on PCOS, including anti-obesity, glycemic and hormonal hemostasis, anti-inflammatory, regulation of adipokine production and enhancement of endothelial function.N-3 PUFAs are a promising agent in relieving complications associated with PCOS. Although most of the studies in patients with PCOS reported an improvement in most complications after administration of omega-3 supplements, there is a distinct dearth of studies investigating the dietary intake of these types of fatty acids. Moreover, favorable effects regarding the improvement of dyslipidemia, regulation of adipokines, regulation of hormonal factors and enhancement of endothelial function are limited. Therefore, more trials are warranted to investigate palatable mechanisms for clarifying the metabolic and hormonal effects of these agents in PCOS.
Collapse
Affiliation(s)
- Mina Salek
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Cain C T Clark
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Sadegh Jafarnejad
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| |
Collapse
|
15
|
Huang F, del-Río-Navarro BE, Leija-Martinez J, Torres-Alcantara S, Ruiz-Bedolla E, Hernández-Cadena L, Barraza-Villarreal A, Romero-Nava R, Sanchéz-Muñoz F, Villafaña S, Marchat LA, Hong E. Effect of omega-3 fatty acids supplementation combined with lifestyle intervention on adipokines and biomarkers of endothelial dysfunction in obese adolescents with hypertriglyceridemia. J Nutr Biochem 2019; 64:162-169. [DOI: 10.1016/j.jnutbio.2018.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/09/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023]
|
16
|
Liu X, Li Y, Tobias DK, Wang DD, Manson JE, Willett WC, Hu FB. Changes in Types of Dietary Fats Influence Long-term Weight Change in US Women and Men. J Nutr 2018; 148:1821-1829. [PMID: 30247611 PMCID: PMC6209808 DOI: 10.1093/jn/nxy183] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022] Open
Abstract
Background The relation between dietary fat intake and body weight remains controversial. Few studies have examined long-term changes in types of dietary fat and weight change in longitudinal studies. Objective The objective of this study was to examine associations between intake of different types of fat and long-term weight change in US women and men. Methods The association between changes in consumption of varying types of fat and weight change was examined every 4 y through the use of multivariate models adjusted for age, baseline body mass index, and change in percentage energy from protein, intake of cereal fiber, fruits, and vegetables, alcohol use, and other lifestyle covariates in 3 prospective US cohorts, including 121,335 men and women free of diabetes, cardiovascular disease, cancer, or obesity over a 20- to 24-y follow-up. Dietary intakes and body weight were assessed via validated questionnaires. Cohort-specific results were pooled with the use of a random-effect meta-analysis. Results Compared with equivalent changes in carbohydrate intake, a 5% increase in energy from saturated fatty acid (SFA) and a 1% increase in energy from trans-fat were associated with 0.61 kg (95% CI: 0.54, 0.68 kg) and 0.69 kg (95% CI: 0.56, 0.84 kg) greater weight gain per 4-y period, respectively. A 5% increase in energy from polyunsaturated fatty acid (PUFA) was associated with less weight gain (-0.55 kg; 95% CI: -0.81, -0.29 kg). Increased intake of monounsaturated fatty acid (MUFA) from animal sources by 1% was associated with weight gain of 0.29 kg (95% CI: 0.25, 0.33 kg), whereas MUFA from plant sources was not associated with weight gain. Conclusions Different dietary fats have divergent associations with long-term weight change in US men and women. Replacing saturated and trans-fats with unsaturated fats, especially PUFAs, contributes to the prevention of age-related weight gain. These trials were registered at clinicaltrials.gov as NCT00005152 and NCT00005182.
Collapse
Affiliation(s)
- Xiaoran Liu
- Departments of Nutrition, Boston, MA,Address correspondence to FBH (e-mail: )
| | | | - Deirdre K Tobias
- Departments of Nutrition, Boston, MA,Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | | | - JoAnn E Manson
- Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA,Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Walter C Willett
- Departments of Nutrition, Boston, MA,Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Frank B Hu
- Departments of Nutrition, Boston, MA,Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
17
|
Farimani AR, Hariri M, Azimi-Nezhad M, Borji A, Zarei S, Hooshmand E. The effect of n-3 PUFAs on circulating adiponectin and leptin in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. Acta Diabetol 2018; 55:641-652. [PMID: 29453672 DOI: 10.1007/s00592-018-1110-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/29/2018] [Indexed: 01/01/2023]
Abstract
AIM N-3 PUFAs can potentially influence levels of inflammatory and non-inflammatory adipokines. Given the contradictory effects of n-3 PUFAs on serum levels of adipokines in type 2 diabetes, we conducted a systematic review and meta-analysis study of randomized placebo-controlled clinical trials that examined the effects of n-3 PUFAs on serum levels of leptin and adiponectin in patients with type 2 diabetes. METHODS The electronic databases, without regard to language restrictions including PubMed/Medline, Google Scholar, SCOPUS and ISI Web of Science until August 2017, were used to identify randomized controlled trials that assessed the effect of n-3 PUFAs on serum leptin and adiponectin concentrations in type 2 diabetes. Outcomes were extracted based on the mean ± SD as effect size at baseline and end of the intervention. Between-study heterogeneity was evaluated by the I2 estimates and their 95% CIs. Funnel plot asymmetry was used to investigate the existence of publication bias. Stata software and Review Manager were used for statistical data analysis. RESULTS Data from 10 eligible articles involved 494 subjects with type 2 diabetes mellitus (intervention groups = 254 and control groups = 240), with age between 44 and 70 years, treated with doses of 0.52-7.4 g/day n-3 PUFAs. Adiponectin concentration nonsignificantly increased by a MD = 0.17 µg/mL (95% CI - 0.11, 0.44). Also, leptin concentration nonsignificantly reduced by a MD = - 0.31 ng/mL (95% CI - 0.69, 0.07). CONCLUSION Plant and marine sources of n-3 PUFAs can modify serum leptin and adiponectin levels by increasing adiponectin and decreasing leptin levels in patients with type 2 diabetes. Due to some limitations in this study, further studies are needed to reach a definitive conclusion about the effect of n-3 PUFAs on the levels of leptin and adiponectin in T2DM.
Collapse
Affiliation(s)
- Azam Rezaei Farimani
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mitra Hariri
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mohsen Azimi-Nezhad
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Abasalt Borji
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Sadegh Zarei
- Department of Clinical Biochemistry, Shahid Sadoughi University of Medical Sciences, Yazd, Zip code: 9314634814, Iran
| | - Elham Hooshmand
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
18
|
Haghighatdoost F, Hariri M. Reply to the comments on effect of resveratrol on lipid profile: An updated systematic review and meta-analysis on randomized clinical trials. Pharmacol Res 2018; 133:317. [PMID: 29656003 DOI: 10.1016/j.phrs.2018.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 10/17/2022]
Affiliation(s)
- Fahimeh Haghighatdoost
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mitra Hariri
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
19
|
Becic T, Studenik C. Effects of Omega-3 Supplementation on Adipocytokines in Prediabetes and Type 2 Diabetes Mellitus: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Diabetes Metab J 2018; 42:101-116. [PMID: 29676540 PMCID: PMC5911513 DOI: 10.4093/dmj.2018.42.2.101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/28/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The objective of this systematic review and meta-analysis was to determine the effects of omega-3 supplementation on adipocytokine levels in adult prediabetic and diabetic individuals. METHODS We searched PubMed, Medline, EMBASE, Scopus, Web of Science, Google Scholar, Cochrane Trial Register, World Health Organization Clinical Trial Registry Platform, and Clinicaltrial.gov Registry from inception to August 1, 2017 for randomized controlled trials. Pooled effects of interventions were assessed as mean difference using random effects model. We conducted a sensitivity, publication bias and subgroup analysis. RESULTS Fourteen studies individuals (n=685) were included in the meta-analysis. Omega-3 supplementation increased levels of adiponectin (0.48 μg/mL; 95% confidence interval [CI], 0.27 to 0.68; P<0.00001, n=10 trials), but effects disappeared after sensitivity analysis. Tumor necrosis factor α (TNF-α) levels were reduced (-1.71; 95% CI, -3.38 to -0.14; P=0.03, n=8 trials). Treatment duration shorter than 12 weeks was associated with greater reduction than longer treatment duration. Levels of other adipocytokines were not significantly affected. Publication bias could generally not be excluded. CONCLUSION Eicosapentaenoic acid and docosahexaenoic acid supplementation may increase adiponectin and reduce TNF-α levels in this population group. However, due to overall study heterogeneity and potential publication bias, a cautious interpretation is needed.
Collapse
Affiliation(s)
- Tarik Becic
- Department of Pharmacology and Toxicology, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
| | - Christian Studenik
- Department of Pharmacology and Toxicology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Haghighatdoost F, Nobakht M. Gh BF, Hariri M. Effect of green tea on plasma leptin and ghrelin levels: A systematic review and meta-analysis of randomized controlled clinical trials. Nutrition 2018; 45:17-23. [DOI: 10.1016/j.nut.2017.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 06/26/2017] [Accepted: 06/30/2017] [Indexed: 01/22/2023]
|
21
|
Haghighatdoost F, Nobakht M Gh BF, Hariri M. Effect of Green Tea on Plasma Adiponectin Levels: A Systematic Review and Meta-analysis of Randomized Controlled Clinical Trials. J Am Coll Nutr 2017; 36:541-548. [PMID: 28853999 DOI: 10.1080/07315724.2017.1333470] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Our objective was to perform a systematic review and meta-analysis on randomized controlled trials (RCTs) assessing the effect of green tea on serum adiponectin concentration. METHOD We searched PubMed, ISI Web of Science, Scopus, and the Google Scholar databases up to November 2016. RCTs conducted among human adults studied the effects of green tea and green tea extract on serum adiponectin concentrations as an outcome variable was included. The weighted mean differences and standard deviations (SD) of change in serum adiponectin levels were calculated. The random effects model was used for deriving a summary of mean estimates with their corresponding SDs. The protocol was registered with PROSPERO (No. CRD42017057716). RESULT Fourteen RCTs were eligible to be included in the systematic review and the meta-analysis. Our analysis showed that green tea did not significantly affect adiponectin concentrations in comparison with placebo (weighted mean difference = -0.02 µg/ml, 95% confidence interval [CI], -0.41, 0.38; p = 0.936). There was a substantial heterogeneity between studies (I2 = 91.7%; p < 0.0001). Subgroup analyses based on sex, type of intervention, continent, and body mass index (BMI) could not explain the sources of heterogeneity. Metaregression analyses revealed that the dose and duration of green tea ingestion did not have any effect on adiponectin concentrations. CONCLUSION Green tea could not change the circulatory adiponectin levels. The dose and duration of green tea could not change the result. RCTs with longer follow-up periods and higher doses are needed to replicate our results.
Collapse
Affiliation(s)
- Fahimeh Haghighatdoost
- a Food Security Research Center , Isfahan University of Medical Sciences , Isfahan , Iran.,b Department of Community Nutrition, School of Nutrition and Food Science , Isfahan University of Medical Sciences , Isfahan , Iran
| | - B Fatemeh Nobakht M Gh
- c Department of Basic Medical Sciences , Neyshabur University of Medical Sciences , Neyshabur , Iran
| | - Mitra Hariri
- c Department of Basic Medical Sciences , Neyshabur University of Medical Sciences , Neyshabur , Iran
| |
Collapse
|
22
|
Poreba M, Mostowik M, Siniarski A, Golebiowska-Wiatrak R, Malinowski KP, Haberka M, Konduracka E, Nessler J, Undas A, Gajos G. Treatment with high-dose n-3 PUFAs has no effect on platelet function, coagulation, metabolic status or inflammation in patients with atherosclerosis and type 2 diabetes. Cardiovasc Diabetol 2017; 16:50. [PMID: 28410617 PMCID: PMC5391604 DOI: 10.1186/s12933-017-0523-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/19/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Despite numerous studies on cardioprotective effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs), there is limited evidence for n-3 PUFA-mediated effects, especially at its higher dose, on cardiovascular risk in patients with type 2 diabetes (DM2) and established atherosclerosis. PURPOSE To investigate the effect of daily treatment with a higher dose (2 g) of n-3 PUFAs on platelet function, coagulation parameters, fibrin clot properties, markers of systemic inflammation and metabolic status, in patients with atherosclerotic vascular disease and DM2 who receive optimal medical therapy. METHODS We conducted a prospective, double-blind, placebo-controlled, randomized, double-center study, in which thrombin generation (plasma thrombogenic potential from automated thrombogram), fibrin clot properties (plasma fibrin clot permeability; lysis time), platelet aggregation (light transmission aggregometry with adenosine diphosphate and arachidonic acid used as agonists), HbA1c, insulin level, lipid profiles, leptin and adiponectin levels, as well as markers of systemic inflammation (i.e., hsCRP, IL-6, TNF-α, ICAM-1, VCAM-1, and myeloperoxidase) were determined at baseline and at 3 months after treatment with 2 g/day of n-3 PUFAs (n = 36) or placebo (n = 38). Moreover, we assessed serum fatty acids of the phospholipid fraction by gas chromatography both at baseline and at the end of the study. RESULTS Majority of patients were treated with optimal medical therapy and achieved recommended treatment targets. Despite higher serum levels of eicosapentaenoic acid (EPA) (by 204%; p < 0.001) and docosahexaenoic acid (DHA) (by 62%; p < 0.0001) in n-3 PUFA group at the end of treatment no changes in platelet aggregation, thrombin generation, fibrin clot properties or markers of systemic inflammation were observed. No intergroup differences in the insulin, HbA1c and lipid levels were found at the end of the study. There was no change in adiponectin and leptin in interventional group, however leptin increased in control group (p = 0.01), therefore after study period leptin levels were lower in the interventional group (p = 0.01). Additionally, resolvin D1 did not differ between interventional and control group. CONCLUSIONS In conclusion, our study demonstrated that in patients with long-standing, well-controlled DM2 and atherosclerotic disease the treatment with a high dose of n-3 PUFAs (namely, 1 g/day of EPA and 1 g/day of DHA for 3 months) does not improve coagulation, metabolic, and inflammatory status when measured with the specified tests. The study was registered in ClinicalTrials.gov; identifier: NCT02178501. Registration date: April 12, 2014.
Collapse
Affiliation(s)
| | - Magdalena Mostowik
- John Paul II Hospital, Pradnicka 80, 31-202, Kraków, Poland.,Department of Medical Education, Jagiellonian University Medical College, Kraków, Poland
| | | | | | - Krzysztof Piotr Malinowski
- Institute of Public Health, Faculty of Health Science, Jagiellonian University Medical College, Kraków, Poland
| | - Maciej Haberka
- Department of Cardiology, School of Health Science, Medical University of Silesia, Katowice, Poland
| | - Ewa Konduracka
- John Paul II Hospital, Pradnicka 80, 31-202, Kraków, Poland.,Department of Coronary Disease and Heart Failure, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, Pradnicka 80, 31-202, Kraków, Poland
| | - Jadwiga Nessler
- John Paul II Hospital, Pradnicka 80, 31-202, Kraków, Poland.,Department of Coronary Disease and Heart Failure, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, Pradnicka 80, 31-202, Kraków, Poland
| | - Anetta Undas
- John Paul II Hospital, Pradnicka 80, 31-202, Kraków, Poland.,Institute of Cardiology, Jagiellonian University Medical College, Pradnicka 80, 31-202, Kraków, Poland
| | - Grzegorz Gajos
- John Paul II Hospital, Pradnicka 80, 31-202, Kraków, Poland. .,Department of Coronary Disease and Heart Failure, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, Pradnicka 80, 31-202, Kraków, Poland.
| |
Collapse
|
23
|
Sabour H, Norouzi Javidan A, Latifi S, Shidfar F, Heshmat R, Emami Razavi SH, Vafa MR, Larijani B. Omega-3 fatty acids' effect on leptin and adiponectin concentrations in patients with spinal cord injury: A double-blinded randomized clinical trial. J Spinal Cord Med 2015; 38:599-606. [PMID: 25096818 PMCID: PMC4535802 DOI: 10.1179/2045772314y.0000000251] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
CONTEXT Omega-3 fatty acids have been recently proposed to induce neural improvement in patients with spinal cord injury (SCI) while affecting some hormones including leptin and adiponectin. OBJECTIVES We tried to evaluate the effect of omega-3 fatty acids on circulatory concentrations of leptin and adiponectin among these patients. DESIGN This study is a double-blinded randomized clinical trial with intervention duration of 14 months. SETTING A tertiary rehabilitation center. PARTICIPANTS Total of 104 patients with SCI who did not meet our exclusion criteria entered the study. Those with history of diabetes, cancer, endocrinology disease, acute infection, and use of special medications were excluded. Patients were divided randomly into the treatment and control group by using permuted balanced block randomization. INTERVENTION The treatment group received two MorDHA® capsules per day (each capsule contain 465 mg of docosahexaenoic acid (DHA) and 63 mg of eicosapentaenoic acid (EPA)) for 14 months while the control group received placebo capsules with similar color, shape, and taste. MAIN OUTCOMES MEASURES Leptin and adiponectin concentrations in plasma were measured at the beginning of trial and then after 6 and 14 months. RESULTS Fourteen months of treatment with DHA and EPA did not influence concentrations of leptin but adiponectin level was significantly decreased (P: 0.03). Weight was positively correlated with leptin level at stage 0 of trial (P: 0.008, r=0.41) while this association was attenuated through stages of trial after intervention. CONCLUSION Our data show that omega-3 fatty acids may not affect plasma concentrations of leptin but adiponectin level is decreased in patients with SCI. Moreover, this intervention influences the linear relationship between weight and leptin after 14 months administration of DHA and EPA.
Collapse
Affiliation(s)
- Hadis Sabour
- Brain and Spinal Injury Research Center (BASIR), Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Norouzi Javidan
- Brain and Spinal Injury Research Center (BASIR), Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Latifi
- Brain and Spinal Injury Research Center (BASIR), Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Nutrition Department, Iran University of Medical Sciences, Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed-Hassan Emami Razavi
- Brain and Spinal Injury Research Center (BASIR), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Bagher Larijani
- Brain and Spinal Injury Research Center (BASIR), Tehran University of Medical Sciences, Tehran, Iran,Correspondence to: Bagher Larijani, Endocrinology and Metabolism Research Institute, 5th floor, Shariati Hospital, North Kargar Avenue, 1411413137, Tehran, Iran. ;
| |
Collapse
|
24
|
Martínez-Fernández L, Laiglesia LM, Huerta AE, Martínez JA, Moreno-Aliaga MJ. Omega-3 fatty acids and adipose tissue function in obesity and metabolic syndrome. Prostaglandins Other Lipid Mediat 2015. [PMID: 26219838 DOI: 10.1016/j.prostaglandins.2015.07.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The n-3 long-chain polyunsaturated fatty acids (n-3 PUFAs) such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) have been reported to improve obesity-associated metabolic disorders including chronic inflammation, insulin resistance and dyslipidaemia. Growing evidence exits about adipose tissue as a target in mediating the beneficial effects of these marine n-3 PUFAs in adverse metabolic syndrome manifestations. Therefore, in this manuscript we focus in reviewing the current knowledge about effects of marine n-3 PUFAs on adipose tissue metabolism and secretory functions. This scope includes n-3 PUFAs actions on adipogenesis, lipogenesis and lipolysis as well as on fatty acid oxidation and mitochondrial biogenesis. The effects of n-3 PUFAs on adipose tissue glucose uptake and insulin signaling are also summarized. Moreover, the roles of peroxisome proliferator-activated receptor γ (PPARγ) and AMPK activation in mediating n-3 PUFAs actions on adipose tissue functions are discussed. Finally, the mechanisms underlying the ability of n-3 PUFAs to prevent and/or ameliorate adipose tissue inflammation are also revised, focusing on the role of n-3 PUFAs-derived specialized proresolving lipid mediators such as resolvins, protectins and maresins.
Collapse
Affiliation(s)
- Leyre Martínez-Fernández
- Department of Nutrition, Food Science and Physiology, School of Pharmacy, University of Navarra, Spain; Centre for Nutrition Research, School of Pharmacy, University of Navarra, Spain
| | - Laura M Laiglesia
- Department of Nutrition, Food Science and Physiology, School of Pharmacy, University of Navarra, Spain; Centre for Nutrition Research, School of Pharmacy, University of Navarra, Spain
| | - Ana E Huerta
- Department of Nutrition, Food Science and Physiology, School of Pharmacy, University of Navarra, Spain; Centre for Nutrition Research, School of Pharmacy, University of Navarra, Spain
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, School of Pharmacy, University of Navarra, Spain; Centre for Nutrition Research, School of Pharmacy, University of Navarra, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - María J Moreno-Aliaga
- Department of Nutrition, Food Science and Physiology, School of Pharmacy, University of Navarra, Spain; Centre for Nutrition Research, School of Pharmacy, University of Navarra, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
25
|
Sáinz N, González-Navarro CJ, Martínez JA, Moreno-Aliaga MJ. Leptin signaling as a therapeutic target of obesity. Expert Opin Ther Targets 2015; 19:893-909. [PMID: 25726860 DOI: 10.1517/14728222.2015.1018824] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Leptin is a hormone with a key role in food intake and body weight homeostasis. Congenital leptin deficiency (CLD) is a rare disease that causes hyperphagia and early severe obesity. However, common obesity conditions are associated with hyperleptinemia and leptin resistance. AREAS COVERED The main signaling pathways activated by leptin as well as the mechanisms underlying the regulatory actions of leptin on food intake and on lipid and glucose metabolism are reviewed. The potential mechanisms involving leptin resistance and the main regulatory hormonal and nutritional factors controlling leptin production/functions are also analyzed. The pathophysiology of leptin in human obesity, and especially the trials analyzing effects of leptin replacement therapy in patients with CLD or in subjects with common obesity and in post-obese weight-reduced subjects are also summarized. EXPERT OPINION The use of drugs or specific bioactive food components with anti-inflammatory properties to reduce the inflammatory state associated with obesity, especially at the hypothalamus, may help to overcome leptin resistance. Research should also be focused on investigating dietary strategies, food supplements or drugs capable of avoiding or reversing the leptin fall during weight management, in order to promote sustained body weight lowering and weight loss maintenance.
Collapse
Affiliation(s)
- Neira Sáinz
- University of Navarra, Centre for Nutrition Research, School of Pharmacy , C/Irunlarrea 1, 31008 Pamplona , Spain
| | | | | | | |
Collapse
|