1
|
Fanis P, Morrou M, Tomazou M, Alghol HAM, Spyrou GM, Neocleous V, Phylactou LA. Identification of puberty related miRNAs in the hypothalamus of female mice. Mol Cell Endocrinol 2025; 598:112468. [PMID: 39842623 DOI: 10.1016/j.mce.2025.112468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/03/2025] [Accepted: 01/20/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND AND AIMS Puberty is a crucial developmental stage marked by the transition from childhood to adulthood, organized by complex hormonal signaling within the neuroendocrine system. The hypothalamus, a central region in this system, regulates pubertal functions through the hypothalamic-pituitary-gonadal (HPG) axis. Gonadotropin-releasing hormone (GnRH) neurons, essential in puberty control, release GnRH in a pulsatile manner, initiating the production of sex hormones. Major influence in pubertal timing has been attributed to genetic predisposition, environmental factors, and nutritional status. MicroRNAs (miRNAs), small non-coding RNA molecules, have emerged as key regulators in various cellular processes by either repressing genes or activating them by inhibiting their repressors. The present study aims to investigate the involvement of miRNAs in the control of puberty. METHODS Small RNA sequencing was used to identify and compare the total population of miRNAs in the hypothalamus of female mice before, during and after puberty. Bioinformatic analysis was applied to analyse the expression profile of miRNAs with altered levels followed by pathway enrichment analysis. RESULTS Expression levels of several miRNAs were found up- or down-regulated from pre-pubertal to pubertal stage. Furthermore, monitoring the levels of these miRNAs at the post-pubertal stage revealed four expression patterns, in which pathway analysis displayed the associations of these miRNAs with developmental processes, cell cycle regulation, metabolic biosynthesis and epigenetic regulation. CONCLUSION The findings of the present study improve our understanding of the molecular pathways underlying puberty and stress the significance of miRNAs in fine-tuning gene expression within the hypothalamus during this critical developmental stage.
Collapse
Affiliation(s)
- Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Maria Morrou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marios Tomazou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Hend Abdulgadr M Alghol
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George M Spyrou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
| |
Collapse
|
2
|
Neocleous V, Fanis P, Toumba M, Skordis N, Phylactou LA. Genetic diagnosis of endocrine disorders in Cyprus through the Cyprus Institute of Neurology and Genetics: an ENDO-ERN Reference Center. Orphanet J Rare Dis 2024; 19:167. [PMID: 38637882 PMCID: PMC11027394 DOI: 10.1186/s13023-024-03171-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/30/2024] [Indexed: 04/20/2024] Open
Abstract
The report covers the current and past activities of the department Molecular Genetics-Function and Therapy (MGFT) at the Cyprus Institute of Neurology and Genetics (CING), an affiliated Reference Center for the European Reference Network on Rare Endocrine Conditions (Endo-ERN).The presented data is the outcome of > 15 years long standing collaboration between MGFT and endocrine specialists from the local government hospitals and the private sector. Up-to-date > 2000 genetic tests have been performed for the diagnosis of inherited rare endocrine disorders. The major clinical entities included Congenital Adrenal Hyperplasia (CAH) due to pathogenic variants in CYP21A2 gene and Multiple Endocrine Neoplasia (MEN) type 2 due to pathogenic variants in the RET proto-oncogene. Other rare and novel pathogenic variants in ANOS1, WDR11, FGFR1, RNF216, and CHD7 genes were also found in patients with Congenital Hypogonadotropic Hypogonadism. Interestingly, a few patients with Disorders of Sexual Differentiation (DSD) shared rare pathogenic variants in the SRD5A2, HSD17B3 and HSD3B2 while patients with Glucose and Insulin Homeostasis carried theirs in GCK and HNF1A genes. Lastly, MGFT over the last few years has established an esteemed diagnostic and research program on premature puberty with emphasis on the implication of MKRN3 gene on the onset of the disease and the identification of other prognosis biomarkers.As an Endo-ERN member MGFT department belongs to this large European network and holds the same humanistic ideals which aim toward the improvements of health care for patients with rare endocrine conditions in respect to improved and faster diagnosis.
Collapse
Affiliation(s)
- Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Meropi Toumba
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Department of Pediatrics, Pediatric Endocrinology Clinic, Aretaeio Hospital, Nicosia, Cyprus
| | - Nicos Skordis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Division of Paediatric Endocrinology, Paedi Center for Specialized Paediatrics, Nicosia, Cyprus
- School of Medicine, University of Nicosia, Nicosia, Cyprus
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
| |
Collapse
|
3
|
Brito VN, Canton APM, Seraphim CE, Abreu AP, Macedo DB, Mendonca BB, Kaiser UB, Argente J, Latronico AC. The Congenital and Acquired Mechanisms Implicated in the Etiology of Central Precocious Puberty. Endocr Rev 2023; 44:193-221. [PMID: 35930274 PMCID: PMC9985412 DOI: 10.1210/endrev/bnac020] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 01/20/2023]
Abstract
The etiology of central precocious puberty (CPP) is multiple and heterogeneous, including congenital and acquired causes that can be associated with structural or functional brain alterations. All causes of CPP culminate in the premature pulsatile secretion of hypothalamic GnRH and, consequently, in the premature reactivation of hypothalamic-pituitary-gonadal axis. The activation of excitatory factors or suppression of inhibitory factors during childhood represent the 2 major mechanisms of CPP, revealing a delicate balance of these opposing neuronal pathways. Hypothalamic hamartoma (HH) is the most well-known congenital cause of CPP with central nervous system abnormalities. Several mechanisms by which hamartoma causes CPP have been proposed, including an anatomical connection to the anterior hypothalamus, autonomous neuroendocrine activity in GnRH neurons, trophic factors secreted by HH, and mechanical pressure applied to the hypothalamus. The importance of genetic and/or epigenetic factors in the underlying mechanisms of CPP has grown significantly in the last decade, as demonstrated by the evidence of genetic abnormalities in hypothalamic structural lesions (eg, hamartomas, gliomas), syndromic disorders associated with CPP (Temple, Prader-Willi, Silver-Russell, and Rett syndromes), and isolated CPP from monogenic defects (MKRN3 and DLK1 loss-of-function mutations). Genetic and epigenetic discoveries involving the etiology of CPP have had influence on the diagnosis and familial counseling providing bases for potential prevention of premature sexual development and new treatment targets in the future. Global preventive actions inducing healthy lifestyle habits and less exposure to endocrine-disrupting chemicals during the lifespan are desirable because they are potentially associated with CPP.
Collapse
Affiliation(s)
- Vinicius N Brito
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ana P M Canton
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Carlos Eduardo Seraphim
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
| | - Delanie B Macedo
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
- Núcleo de Atenção Médica Integrada, Centro de Ciências da Saúde,
Universidade de Fortaleza, Fortaleza 60811 905,
Brazil
| | - Berenice B Mendonca
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
| | - Jesús Argente
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology and
Department of Pediatrics, Universidad Autónoma de Madrid, Spanish PUBERE Registry,
CIBER of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, IMDEA
Institute, Madrid 28009, Spain
| | - Ana Claudia Latronico
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| |
Collapse
|
4
|
Mørup N, Stakaitis R, Main AM, Golubickaite I, Hagen CP, Juul A, Almstrup K. Circulating levels and the bioactivity of miR-30b increase during pubertal progression in boys. Front Endocrinol (Lausanne) 2023; 14:1120115. [PMID: 36742409 PMCID: PMC9893272 DOI: 10.3389/fendo.2023.1120115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Puberty marks the transition from childhood to adulthood and is initiated by activation of a pulsatile GnRH secretion from the hypothalamus. MKRN3 functions as a pre-pubertal break on the GnRH pulse generator and hypothalamic expression and circulating levels of MKRN3 decrease peri-pubertally. In rodents, microRNA miR-30b seems to directly target hypothalamic MKRN3 expression - and in boys, circulating levels of miR-30b-5p increase when puberty is pharmacologically induced. Similarly, miR-200b-3p and miR-155-5p have been suggested to inhibit expression of other proteins potentially involved in the regulation of GnRH secretion. Here we measure circulating levels of these three miRNAs as boys progress through puberty. MATERIALS AND METHODS Forty-six boys from the longitudinal part of the Copenhagen Puberty Study were included. All boys underwent successive clinical examinations including estimation of testis size by palpation. miR-30b-5p, miR-200b-3p, and miR-155-5p were measured in serum by RT-qPCR using a kit sensitive to the phosphorylation status of the miRNAs. Thirty-nine boys had miRNA levels measured in three consecutive samples (pre-, peri-, and post-pubertally) and seven boys had miR-30b-5p levels measured in ten consecutive samples during the pubertal transition. RESULTS When circulating levels of miR-30b-5p in pre- and peri-pubertal samples were compared with post-pubertal levels, we observed a significant increase of 2.3 and 2.2-fold (p-value<6.0×10-4), respectively, and a larger fraction of miR-30b-5p appeared to be phosphorylated post-pubertally indicating an increase in its bioactivity. We also observed a negative correlation between circulating levels of miR-30b-5p and MKRN3. The inter-individual variation in circulating miR-30b levels was substantial and we could not define a clinical threshold for miR-30b-5p suggestive of imminent puberty. Also, miR-155-5p showed significantly increasing levels from the peri- to the post-pubertal stage (p=3.0×10-3), whereas miR-200b-3p did not consistently increase. CONCLUSION Both circulating levels of miR-30b-5p and its bioactivity increase during the pubertal transition in boys supporting its role in the activation of the HPG axis at the onset of physiologically normal puberty.
Collapse
Affiliation(s)
- Nina Mørup
- The Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- The International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, Copenhagen, Denmark
- *Correspondence: Nina Mørup, ; Kristian Almstrup,
| | - Rytis Stakaitis
- The Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- The International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, Copenhagen, Denmark
- The Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ailsa Maria Main
- The Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- The International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, Copenhagen, Denmark
- The Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ieva Golubickaite
- The Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- The International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, Copenhagen, Denmark
- The Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Casper P. Hagen
- The Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- The International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, Copenhagen, Denmark
| | - Anders Juul
- The Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- The International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, Copenhagen, Denmark
- The Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Almstrup
- The Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- The International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, Copenhagen, Denmark
- The Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Nina Mørup, ; Kristian Almstrup,
| |
Collapse
|
5
|
Fanis P, Morrou M, Tomazou M, Michailidou K, Spyrou GM, Toumba M, Skordis N, Neocleous V, Phylactou LA. Methylation status of hypothalamic Mkrn3 promoter across puberty. Front Endocrinol (Lausanne) 2022; 13:1075341. [PMID: 36714607 PMCID: PMC9880154 DOI: 10.3389/fendo.2022.1075341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Makorin RING finger protein 3 (MKRN3) is an important factor located on chromosome 15 in the imprinting region associated with Prader-Willi syndrome. Imprinted MKRN3 is expressed in hypothalamic regions essential for the onset of puberty and mutations in the gene have been found in patients with central precocious puberty. The pubertal process is largely controlled by epigenetic mechanisms that include, among other things, DNA methylation at CpG dinucleotides of puberty-related genes. In the present study, we investigated the methylation status of the Mkrn3 promoter in the hypothalamus of the female mouse before, during and after puberty. Initially, we mapped the 32 CpG dinucleotides in the promoter, the 5'UTR and the first 50 nucleotides of the coding region of the Mkrn3 gene. Moreover, we identified a short CpG island region (CpG islet) located within the promoter. Methylation analysis using bisulfite sequencing revealed that CpG dinucleotides were methylated regardless of developmental stage, with the lowest levels of methylation being found within the CpG islet region. In addition, the CpG islet region showed significantly lower methylation levels at the pre-pubertal stage when compared with the pubertal or post-pubertal stage. Finally, in silico analysis of transcription factor binding sites on the Mkrn3 CpG islet identified the recruitment of 29 transcriptional regulators of which 14 were transcriptional repressors. Our findings demonstrate the characterization and differential methylation of the CpG dinucleotides located in the Mkrn3 promoter that could influence the transcriptional activity in pre-pubertal compared to pubertal or post-pubertal period. Further studies are needed to clarify the possible mechanisms and effects of differential methylation of the Mkrn3 promoter.
Collapse
Affiliation(s)
- Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Maria Morrou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marios Tomazou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George M. Spyrou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Meropi Toumba
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Child Endocrine Care, Department of Pediatrics, Aretaeio Hospital, Nicosia, Cyprus
| | - Nicos Skordis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Division of Pediatric Endocrinology, Paedi Center for Specialized Pediatrics, Nicosia, Cyprus
- Medical School, University of Nicosia, Nicosia, Cyprus
| | - Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Leonidas A. Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- *Correspondence: Leonidas A. Phylactou,
| |
Collapse
|
6
|
Tajima T. Genetic causes of central precocious puberty. Clin Pediatr Endocrinol 2022; 31:101-109. [PMID: 35928377 PMCID: PMC9297165 DOI: 10.1297/cpe.2022-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/07/2022] [Indexed: 11/12/2022] Open
Abstract
Central precocious puberty (CPP) is a condition in which the
hypothalamus–pituitary–gonadal system is activated earlier than the normal developmental
stage. The etiology includes organic lesions in the brain; however, in the case of
idiopathic diseases, environmental and/or genetic factors are involved in the development
of CPP. A genetic abnormality in KISS1R, that encodes the kisspeptin
receptor, was first reported in 2008 as a cause of idiopathic CPP. Furthermore, genetic
alterations in KISS1, MKRN3, DLK1, and
PROKR2 have been reported in idiopathic and/or familial CPP. Of these,
MKRN3 has the highest frequency of pathological variants associated
with CPP worldwide; but, abnormalities in MKRN3 are rare in patients in
East Asia, including Japan. MKRN3 and DLK1 are maternal
imprinting genes; thus, CPP develops when a pathological variant is inherited from the
father. The mechanism of CPP due to defects in MKRN3 and
DLK1 has not been completely clarified, but it is suggested that both
may negatively control the progression of puberty. CPP due to such a single gene
abnormality is extremely rare, but it is important to understand the mechanisms of puberty
and reproduction. A further development in the genetics of CPP is expected in the
future.
Collapse
Affiliation(s)
- Toshihiro Tajima
- Department of Pediatrics, Jichi Medical University Tochigi Children’ Medical Center, Tochigi, Japan
| |
Collapse
|
7
|
Neocleous V, Fanis P, Toumba M, Gorka B, Kousiappa I, Tanteles GA, Iasonides M, Nicolaides NC, Christou YP, Michailidou K, Nicolaou S, Papacostas SS, Christoforidis A, Kyriakou A, Vlachakis D, Skordis N, Phylactou LA. Pathogenic and Low-Frequency Variants in Children With Central Precocious Puberty. Front Endocrinol (Lausanne) 2021; 12:745048. [PMID: 34630334 PMCID: PMC8498594 DOI: 10.3389/fendo.2021.745048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022] Open
Abstract
Background Central precocious puberty (CPP) due to premature activation of GnRH secretion results in early epiphyseal fusion and to a significant compromise in the achieved final adult height. Currently, few genetic determinants of children with CPP have been described. In this translational study, rare sequence variants in MKRN3, DLK1, KISS1, and KISS1R genes were investigated in patients with CPP. Methods Fifty-four index girls and two index boys with CPP were first tested by Sanger sequencing for the MKRN3 gene. All children found negative (n = 44) for the MKRN3 gene were further investigated by whole exome sequencing (WES). In the latter analysis, the status of variants in genes known to be related with pubertal timing was compared with an in-house Cypriot control cohort (n = 43). The identified rare variants were initially examined by in silico computational algorithms and confirmed by Sanger sequencing. Additionally, a genetic network for the MKRN3 gene, mimicking a holistic regulatory depiction of the crosstalk between MKRN3 and other genes was designed. Results Three previously described pathogenic MKRN3 variants located in the coding region of the gene were identified in 12 index girls with CPP. The most prevalent pathogenic MKRN3 variant p.Gly312Asp was exclusively found among the Cypriot CPP cohort, indicating a founder effect phenomenon. Seven other CPP girls harbored rare likely pathogenic upstream variants in the MKRN3. Among the 44 CPP patients submitted to WES, nine rare DLK1 variants were identified in 11 girls, two rare KISS1 variants in six girls, and two rare MAGEL2 variants in five girls. Interestingly, the frequent variant rs10407968 (p.Gly8Ter) of the KISS1R gene appeared to be less frequent in the cohort of patients with CPP. Conclusion The results of the present study confirm the importance of the MKRN3-imprinted gene in genetics of CPP and its key role in pubertal timing. Overall, the results of the present study have emphasized the importance of an approach that aligns genetics and clinical aspects, which is necessary for the management and treatment of CPP.
Collapse
Affiliation(s)
- Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Meropi Toumba
- Child Endocrine Care, Department of Pediatrics, Aretaeio Hospital, Nicosia, Cyprus
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Barbara Gorka
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Ioanna Kousiappa
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Department of Neurobiology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George A Tanteles
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Department of Clinical Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Michalis Iasonides
- Department of Pediatrics, Iliaktida Paediatric & Adolescent Medical Centre, Limassol, Cyprus
- University of Nicosia Medical School, Nicosia, Cyprus
| | - Nicolas C Nicolaides
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Yiolanda P Christou
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Department of Neurobiology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyriaki Michailidou
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Stella Nicolaou
- Division of Pediatric Endocrinology, Archbishop Makarios III Hospital, Nicosia, Cyprus
| | - Savvas S Papacostas
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Department of Neurobiology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- University of Nicosia Medical School, Nicosia, Cyprus
- Centre for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia, Nicosia, Cyprus
| | - Athanasios Christoforidis
- First Pediatric Department, School of Medicine, Faculty of Medical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Kyriakou
- Division of Pediatric Endocrinology, Archbishop Makarios III Hospital, Nicosia, Cyprus
- Developmental Endocrinology Research Group, School of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
- Lab of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| | - Nicos Skordis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- St George's, University of London Medical School, University of Nicosia, Nicosia, Cyprus
- Division of Pediatric Endocrinology, Paedi Center for specialized Pediatrics, Nicosia, Cyprus
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| |
Collapse
|
8
|
Varimo T, Iivonen AP, Känsäkoski J, Wehkalampi K, Hero M, Vaaralahti K, Miettinen PJ, Niedziela M, Raivio T. Familial central precocious puberty: two novel MKRN3 mutations. Pediatr Res 2021; 90:431-435. [PMID: 33214675 DOI: 10.1038/s41390-020-01270-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/12/2020] [Accepted: 10/18/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Paternally inherited loss-of-function mutations in MKRN3 underlie central precocious puberty (CPP). We describe clinical and genetic features of CPP patients with paternally inherited MKRN3 mutations in two independent families. METHODS The single coding exon of MKRN3 was analyzed in three patients with CPP and their family members, followed by segregation analyses. Additionally, we report the patients' responses to GnRH analog treatment. RESULTS A paternally inherited novel heterozygous c.939C>G, p.(Ile313Met) missense mutation affecting the RING finger domain of MKRN3 was found in a Finnish girl with CPP (age at presentation 6 years). Two Polish siblings (a girl presenting with B2 at the age of 4 years and a boy with adult size testes at the age of 9 years) had inherited a novel heterozygous MKRN3 mutation c.1237_1252delGGAGACACATGCTTTT p.(Gly413Thrfs*63) from their father. The girls were treated with GnRH analogs, which exhibited suppression of the hypothalamic-pituitary-gonadal axis. In contrast, the male patient was not treated, yet he reached his target height. CONCLUSIONS We describe two novel MKRN3 mutations in three CPP patients. The first long-term data on a boy with CPP due to an MKRN3 mutation questions the role of GnRH analog treatment in augmenting adult height in males with this condition. IMPACT We describe the genetic cause for central precocious puberty (CPP) in two families. This report adds two novel MKRN3 mutations to the existing literature. One of the mutations, p.(Ile313Met) affects the RING finger domain of MKRN3, which has been shown to be important for repressing the promoter activity of KISS1 and TAC3. We describe the first long-term observation of a male patient with CPP due to a paternally inherited MKRN3 loss-of-function mutation. Without GnRH analog treatment, he achieved an adult height that was in accordance with his mid-parental target height.
Collapse
Affiliation(s)
- Tero Varimo
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - Anna-Pauliina Iivonen
- Stem Cells and Metabolism Research Program, Research Program Unit, University of Helsinki, Helsinki, Finland
| | - Johanna Känsäkoski
- Stem Cells and Metabolism Research Program, Research Program Unit, University of Helsinki, Helsinki, Finland
| | - Karoliina Wehkalampi
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - Matti Hero
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - Kirsi Vaaralahti
- Stem Cells and Metabolism Research Program, Research Program Unit, University of Helsinki, Helsinki, Finland
| | - Päivi J Miettinen
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - Marek Niedziela
- Department of Pediatric Endocrinology and Rheumatology, Karol Jonscher's Clinical Hospital, Poznan University of Medical Sciences, Poznan, Poland
| | - Taneli Raivio
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland. .,Stem Cells and Metabolism Research Program, Research Program Unit, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
9
|
Rosenfield RL, Cooke DW, Radovick S. Puberty in the Female and Its Disorders. SPERLING PEDIATRIC ENDOCRINOLOGY 2021:528-626. [DOI: 10.1016/b978-0-323-62520-3.00016-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
10
|
Maione L, Naulé L, Kaiser UB. Makorin RING finger protein 3 and central precocious puberty. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2020; 14:152-159. [PMID: 32984644 PMCID: PMC7518508 DOI: 10.1016/j.coemr.2020.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Makorin RING finger protein 3 (MKRN3) is a key inhibitor of the hypothalamic-pituitary-gonadal axis. Loss-of-function mutations in MKRN3 cause familial and sporadic central precocious puberty (CPP), while polymorphisms are associated with age at menarche. To date, 115 patients with CPP carrying MKRN3 mutations have been described, harboring 48 different genetic variants. The prevalence of MKRN3 mutations in genetically screened populations with CPP is estimated at 9.0%. Girls are more commonly and more seriously affected than boys. MKRN3 is expressed in humans and rodents in the central nervous system. Circulating levels in humans and hypothalamic expression in rodents decrease during pubertal progression. Although some MKRN3 regulators have been identified, the precise mechanism by which MKRN3 inhibits the hypothalamic-pituitary-gonadal axis remains elusive. The role of makorins in developmental physiology and organ differentiation and the role of maternal imprinting are discussed herein.
Collapse
Affiliation(s)
- Luigi Maione
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lydie Naulé
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
11
|
Roberts SA, Kaiser UB. GENETICS IN ENDOCRINOLOGY: Genetic etiologies of central precocious puberty and the role of imprinted genes. Eur J Endocrinol 2020; 183:R107-R117. [PMID: 32698138 PMCID: PMC7682746 DOI: 10.1530/eje-20-0103] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022]
Abstract
Pubertal timing is regulated by the complex interplay of genetic, environmental, nutritional and epigenetic factors. Criteria for determining normal pubertal timing, and thus the definition of precocious puberty, have evolved based on published population studies. The significance of the genetic influence on pubertal timing is supported by familial pubertal timing and twin studies. In contrast to the many monogenic causes associated with hypogonadotropic hypogonadism, only four monogenic causes of central precocious puberty (CPP) have been described. Loss-of-function mutations in Makorin Ring Finger Protein 3(MKRN3), a maternally imprinted gene on chromosome 15 within the Prader-Willi syndrome locus, are the most common identified genetic cause of CPP. More recently, several mutations in a second maternally imprinted gene, Delta-like noncanonical Notch ligand 1 (DLK1), have also been associated with CPP. Polymorphisms in both genes have also been associated with the age of menarche in genome-wide association studies. Mutations in the genes encoding kisspeptin (KISS1) and its receptor (KISS1R), potent activators of GnRH secretion, have also been described in association with CPP, but remain rare monogenic causes. CPP has both short- and long-term health implications for children, highlighting the importance of understanding the mechanisms contributing to early puberty. Additionally, given the role of mutations in the imprinted genes MKRN3 and DLK1 in pubertal timing, other imprinted candidate genes should be considered for a role in puberty initiation.
Collapse
Affiliation(s)
- Stephanie A. Roberts
- Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Ursula B. Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
Liu M, Fan L, Gong CX. A novel heterozygous MKRN3 nonsense mutation in a Chinese girl with idiopathic central precocious puberty: A case report. Medicine (Baltimore) 2020; 99:e22295. [PMID: 32957387 PMCID: PMC7505322 DOI: 10.1097/md.0000000000022295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RATIONALE Central precocious puberty (CPP) is caused by the premature activation of the hypothalamic-pituitary-gonadal axis. Recently, the makorin ring finger protein 3 (MKRN3) mutations represent the most common genetic defects associated with CPP. However, the MKRN3 mutation is relatively rare in Asian countries. Here, we identified a novel heterozygous MKRN3 nonsense mutation (p. Gln363) causing CPP in a Chinese girl. PATIENT CONCERNS The index case is a 7-year-old Chinese girl who presented rapidly progressive precocious puberty with the onset of menstrual period 2 months after breast development, the advanced bone age (11 years), and the accelerated growth velocity (10 cm/year). Her basal luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels, as well as the peak LH/FSH values after the gonadotropin-releasing hormone (GnRH) stimulation test were significantly elevated.Pelvic B ultrasound showed the presence of ovarian follicles with diameters ≥0.4 cm. Uterine length also indicated the onset of puberty. Contrast-enhanced magnetic resonance imaging (MRI) did not disclose any abnormality in the pituitary. Additionally, our present case was obese companies with impaired glucose tolerance (IGT) at the baseline assessment. Genetic analysis revealed a novel heterozygous nonsense mutation (c1087C>T; p. Gln363) in the maternally imprinted MKRN3, which inherited from the girl's father. DIAGNOSIS Combined with the symptoms, hormonal data, and the results of the pelvic B ultrasound, the girl was diagnosed as CPP. INTERVENTIONS The girl has been treated with a GnRH analog (3.75 mg every 4 wks) for 1 year and 5 months. OUTCOMES The puberty signs have since not progressed during the follow-up period, which indicates that the GnRH analogs treatment is effective. LESSONS This case was obese companied with IGT at the baseline assessment and exhibited stronger LH/FSH response to GnRH stimulation test. Therefore, clinicians should highlight the importance of weight management and the long-term follow-up to monitor the adverse health outcomes, especially for the polycystic ovary syndrome in later life.
Collapse
|
13
|
Pagani S, Calcaterra V, Acquafredda G, Montalbano C, Bozzola E, Ferrara P, Gasparri M, Villani A, Bozzola M. MKRN3 and KISS1R mutations in precocious and early puberty. Ital J Pediatr 2020; 46:39. [PMID: 32228714 PMCID: PMC7104496 DOI: 10.1186/s13052-020-0808-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/23/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Pubertal timing is known to be influenced by interactions among various genetic, nutritional, environmental and socio-economic factors, although the ultimate mechanisms underlying the increase in pulsatile GnRH secretion at puberty have yet to be fully elucidated. The aim of our research was to verify the role of KISSR1 (previously named GPR54) and MKRN3 genes on pubertal timing. METHODS We analyzed the DNA sequence of these genes in 13 girls affected by central precocious puberty (CPP) who showed onset of puberty before 8 years of age, and in 6 girls affected by early puberty (EP) between 8 and 10 years of age. RESULTS Direct sequencing of the KISS1R (GPR54) gene revealed two SNPs. One SNP is a missense variant (rs 350,132) that has been previously reported in connection to CPP in Korean girls. The other variant that we found in the GPR54 gene (rs764046557) was a missense SNP located in exon 5 at position 209 of the aminoacid. We identified this variant in only one CPP patient. Automatic sequencing of MKRN3 in all patients revealed three variants in eight subjects. In 6 out of 19 (31.5%) patients (3/13 CPP patients and 3/6 EP patients) we found the synonymous variant c.663C > T (rs2239669). Another synonymous variant (rs140467331) was found in one of our CPP patients, as well as one missense variant (rs760981395) in another CPP patient. CONCLUSION In conclusion, we identified sequence variations of the KISS1R and MKRN3 genes, two of the most frequent genetic causes of ICPP. Our results suggest that these variants might be inducible factors in the pathogenesis of CPP.
Collapse
Affiliation(s)
- Sara Pagani
- Department of Internal Medicine and Therapeutics, Pediatrics and Adolescent Care Unit, University of Pavia, Via Aselli 43, 27100, Pavia, Italy
| | - Valeria Calcaterra
- Department of Internal Medicine and Therapeutics, Pediatrics and Adolescent Care Unit, University of Pavia, Via Aselli 43, 27100, Pavia, Italy
| | - Gloria Acquafredda
- Immunology and Transplantation Laboratory, Pediatric Hematology and Oncology, Fondazione IRCCS San Matteo, Pavia, Italy
| | - Chiara Montalbano
- Department of Internal Medicine and Therapeutics, Pediatrics and Adolescent Care Unit, University of Pavia, Via Aselli 43, 27100, Pavia, Italy
| | - Elena Bozzola
- Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Pietro Ferrara
- Institute of Pediatrics, Catholic University, Rome, Italy
| | | | - Alberto Villani
- Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Mauro Bozzola
- Department of Internal Medicine and Therapeutics, Pediatrics and Adolescent Care Unit, University of Pavia, Via Aselli 43, 27100, Pavia, Italy.
| |
Collapse
|
14
|
Arifuzzaman M, Mitra S, Das R, Hamza A, Absar N, Dash R. In silico analysis of nonsynonymous single-nucleotide polymorphisms (nsSNPs) of the SMPX gene. Ann Hum Genet 2019; 84:54-71. [PMID: 31583691 DOI: 10.1111/ahg.12350] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/06/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023]
Abstract
Mutations in the SMPX gene can disrupt the regular activity of the SMPX protein, which is involved in the hearing process. Recent reports showing a link between nonsynonymous single-nucleotide polymorphisms (nsSNPs) in SMPX and hearing loss, thus classifying deleterious SNPs in SMPX will be an uphill task before designing a more extensive population study. In this study, damaging nsSNPs of SMPX from the dbSNP database were identified by using 13 bioinformatics tools. Initially, the impact of nsSNPs in the SMPX gene were evaluated through different in silico predictors; and the deleterious convergent changes were analyzed by energy-minimization-guided residual network analysis. In addition, the pathogenic effects of mutations in SMPX-mediated protein-protein interactions were also characterized by structural modeling and binding energy calculations. A total of four mutations (N19D, A29T, K54N, and S71L) were found to be highly deleterious by all the tools, which are located at highly conserved regions. Furthermore, all four mutants showed structural alterations, and the communities of amino acids for mutant proteins were readily changed, compared to the wild-type. Among them, A29T (rs772775896) was revealed as the most damaging nsSNP, which caused significant structural deviation of the SMPX protein, as a result reducing the binding affinity to other functional partners. These findings reflect the computational insights into the deleterious role of nsSNPs in SMPX, which might be helpful for subjecting wet-lab confirmatory analysis.
Collapse
Affiliation(s)
- Md Arifuzzaman
- College of Pharmacy, Yeungnam University, Gyeongbuk, Republic of Korea
| | - Sarmistha Mitra
- Plasma Bioscience Research Center, Plasma-Bio Display, Kwangwoon University, Seoul, Republic of Korea
| | - Raju Das
- Department of Biochemistry and Biotechnology, University of Science & Technology Chittagong, Chittagong, Bangladesh
| | - Amir Hamza
- Department of Biochemistry, Hallym University, Gangwon, Republic of Korea
| | - Nurul Absar
- Department of Biochemistry and Biotechnology, University of Science & Technology Chittagong, Chittagong, Bangladesh
| | - Raju Dash
- Department of Anatomy, Dongguk University Graduate School of Medicine, Gyeongju, Republic of Korea
| |
Collapse
|
15
|
Valadares LP, Meireles CG, De Toledo IP, Santarem de Oliveira R, Gonçalves de Castro LC, Abreu AP, Carroll RS, Latronico AC, Kaiser UB, Guerra ENS, Lofrano-Porto A. MKRN3 Mutations in Central Precocious Puberty: A Systematic Review and Meta-Analysis. J Endocr Soc 2019; 3:979-995. [PMID: 31041429 PMCID: PMC6483926 DOI: 10.1210/js.2019-00041] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/19/2019] [Indexed: 01/19/2023] Open
Abstract
MKRN3 mutations represent the most common genetic cause of central precocious puberty (CPP) but associations between genotype and clinical features have not been extensively explored. This systematic review and meta-analysis investigated genotype-phenotype associations and prevalence of MKRN3 mutations in CPP. The search was conducted in seven electronic databases (Cochrane, EMBASE, LILACS, LIVIVO, PubMed, Scopus, and Web of Science) for articles published until 4 September 2018. Studies evaluating MKRN3 mutations in patients with CPP were considered eligible. A total of 22 studies, studying 880 subjects with CPP, fulfilled the inclusion criteria. Eighty-nine subjects (76 girls) were identified as harboring MKRN3 mutations. Girls, compared with boys, exhibited earlier age at pubertal onset (median, 6.0 years; range, 3.0 to 7.0 vs 8.5 years; range, 5.9 to 9.0; P < 0.001), and higher basal FSH levels (median, 4.3 IU/L; range, 0.7 to 13.94 IU/L vs 2.45 IU/L; range, 0.8 to 13.70 IU/L; P = 0.003), and bone age advancement (ΔBA; median, 2.3 years; range, -0.9 to 5.2 vs 1.2 years; range, 0.0 to 2.3; P = 0.01). Additional dysmorphisms were uncommon. A total of 14 studies evaluating 857 patients were included for quantitative analysis, with a pooled overall mutation prevalence of 9.0% (95% CI, 0.04 to 0.15). Subgroup analysis showed that prevalence estimates were higher in males, familial cases, and in non-Asian countries. In conclusion, MKRN3 mutations are associated with nonsyndromic CPP and manifest in a sex-dimorphic manner, with girls being affected earlier. They represent a common cause of CPP in western countries, especially in boys and familial cases.
Collapse
Affiliation(s)
- Luciana Pinto Valadares
- Molecular Pharmacology Laboratory, Health Sciences Faculty, University of Brasilia, Brasilia, DF, Brazil
| | - Cinthia Gabriel Meireles
- Molecular Pharmacology Laboratory, Health Sciences Faculty, University of Brasilia, Brasilia, DF, Brazil
| | - Isabela Porto De Toledo
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasilia, Brasilia, DF, Brazil
| | - Renata Santarem de Oliveira
- Gonadal and Adrenal Diseases Clinics, University Hospital of Brasilia, University of Brasilia, Brasilia, DF, Brazil
- Pediatric Endocrinology Unit, Department of Pediatrics, University Hospital of Brasília, Faculty of Medicine, University of Brasilia, DF, Brazil
- Jose Alencar Brasilia Children´s Hospital, State Secretary of Health, Brasilia, DF, Brazil
| | - Luiz Cláudio Gonçalves de Castro
- Pediatric Endocrinology Unit, Department of Pediatrics, University Hospital of Brasília, Faculty of Medicine, University of Brasilia, DF, Brazil
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rona S Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ana Claudia Latronico
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular, LIM42, Hospital das Clínicas, Disciplina Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Eliete Neves Silva Guerra
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasilia, Brasilia, DF, Brazil
| | - Adriana Lofrano-Porto
- Molecular Pharmacology Laboratory, Health Sciences Faculty, University of Brasilia, Brasilia, DF, Brazil
- Gonadal and Adrenal Diseases Clinics, University Hospital of Brasilia, University of Brasilia, Brasilia, DF, Brazil
| |
Collapse
|
16
|
Grandone A, Cirillo G, Sasso M, Tornese G, Luongo C, Festa A, Marzuillo P, Miraglia Del Giudice E. MKRN3 Levels in Girls with Central Precocious Puberty during GnRHa Treatment: A Longitudinal Study. Horm Res Paediatr 2019; 90:190-195. [PMID: 30269125 DOI: 10.1159/000493134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/16/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recently, mutations of makorin RING finger protein 3 (MKRN3) have been identified in familial central precocious puberty (CPP). Serum levels of this protein decline before the pubertal onset in healthy girls and boys and are lower in patients with CPP compared to prepubertal matched pairs. The aim of our study was to investigate longitudinal changes in circulating MKRN3 levels in patients with CPP before and during GnRH analogs (GnRHa) treatment. METHODS We performed a longitudinal prospective study. We enrolled 15 patients with CPP aged 7.2 years (range: 2-8) with age at breast development onset < 8 years and 12 control girls matched for the time from puberty onset (mean age 11.8 ± 1.2 years). Serum values of MKRN3, gonadotropins, and 17β-estradiol were evaluated before and during treatment with GnRHa (at 6 and 12 months). The MKRN3 gene was genotyped in CPP patients. In the girls from the control group, only basal levels were analyzed. RESULTS No MKRN3 mutations were found among CPP patients. MKRN3 levels declined significantly from baseline to 6 months of GnRHa treatment (p = 0.0007) and from 6 to 12 months of treatment (p = 0.003); MKRN3 levels at 6 months were significantly lower than in the control girls (p < 0.0001). CONCLUSIONS We showed that girls with CPP had a decline in peripheral levels of MKRN3 during GnRHa treatment. Our data suggest a suppression of MKRN3 by continuous pharmacological administration of GnRHa.
Collapse
Affiliation(s)
- Anna Grandone
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Grazia Cirillo
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Marcella Sasso
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Gianluca Tornese
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Caterina Luongo
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Adalgisa Festa
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Pierluigi Marzuillo
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples,
| | - Emanuele Miraglia Del Giudice
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
17
|
Fanis P, Skordis N, Toumba M, Papaioannou N, Makris A, Kyriakou A, Neocleous V, Phylactou LA. Central Precocious Puberty Caused by Novel Mutations in the Promoter and 5'-UTR Region of the Imprinted MKRN3 Gene. Front Endocrinol (Lausanne) 2019; 10:677. [PMID: 31636607 PMCID: PMC6787840 DOI: 10.3389/fendo.2019.00677] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Central Precocious Puberty (CPP) is clinically defined by the development of secondary sexual characteristics before the age of 8 years in girls and 9 years in boys. To date, mutations in the coding region of KISS1, KISS1R, PROKR2, DLK1, and MKRN3 genes have been reported as causative for CPP. This study investigated the presence of causative mutations in both the promoter and the 5'-UTR regions of the MKRN3 gene. Methods: Sanger DNA sequencing was used for screening the proximal promoter and 5'-UTR region of the MKRN3 gene in a group of 73 index girls with CPP. Mutations identified were cloned in luciferase reporter gene vectors and transiently transfected in GN11 cells in order to check for changes in the activity of the MKRN3 promoter. GN11 cells were previously checked for Mkrn3 expression using lentivirus mediated knock-down. In silico analysis was implemented for the detection of changes in the mRNA secondary structure of the mutated MKRN3 5'-UTR. Results: Three novel heterozygous mutations (-166, -865, -886 nt upstream to the transcription start site) located in the proximal promoter region of the MKRN3 gene were identified in six non-related girls with CPP. Four of these girls shared the -865 mutation, one the -166, and another one the -886. A 5'-UTR (+13 nt downstream to the transcription start site) novel mutation was also identified in a girl with similar clinical phenotype. Gene reporter assay evaluated the identified promoter mutations and demonstrated a significant reduction of MKRN3 promoter activity in transfected GN11 cells. In silico analysis for the mutated 5'-UTR predicted a significant change of the mRNA secondary structure. The minimum free energy (MFE) of the mutated 5'-UTR was higher when compared to the corresponding wild-type indicating less stable RNA secondary structure. Conclusion: Our findings demonstrated novel genetic alterations in the promoter and 5'-UTR regulatory regions of the MKRN3 gene. These changes add to another region to check for the etiology of CPP.
Collapse
Affiliation(s)
- Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Nicos Skordis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Pediatric Endocrine Clinic, Paedi Center for Specialized Pediatrics, Nicosia, Cyprus
| | - Meropi Toumba
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Department of Pediatrics, Iasis Hospital, Paphos, Cyprus
| | - Nikoletta Papaioannou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Anestis Makris
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Andreas Kyriakou
- Developmental Endocrinology Research Group, School of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Leonidas A. Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- *Correspondence: Leonidas A. Phylactou
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW To summarize advances in the genetics underlying variation in normal pubertal timing, precocious puberty, and delayed puberty, and to discuss mechanisms by which genes may regulate pubertal timing. RECENT FINDINGS Genome-wide association studies have identified hundreds of loci that affect pubertal timing in the general population in both sexes and across ethnic groups. Single genes have been implicated in both precocious and delayed puberty. Potential mechanisms for how these genetic loci influence pubertal timing may include effects on the development and function of the GnRH neuronal network and the responsiveness of end-organs. SUMMARY There has been significant progress in identifying genetic loci that affect normal pubertal timing, and the first single-gene causes of precocious and delayed puberty are being described. How these genes influence pubertal timing remains to be determined.
Collapse
Affiliation(s)
- Jia Zhu
- Division of Endocrinology, Department of Medicine, Boston Children's Hospital
| | - Temitope O Kusa
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yee-Ming Chan
- Division of Endocrinology, Department of Medicine, Boston Children's Hospital.,Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Simsek E, Demiral M, Ceylaner S, Kırel B. Two Frameshift Mutations in MKRN3 in Turkish Patients with Familial Central Precocious Puberty. Horm Res Paediatr 2018; 87:405-411. [PMID: 27798941 DOI: 10.1159/000450923] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/16/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Little is known about the genetic causes responsible for idiopathic central precocious puberty (iCPP). More recently, described loss-of-function mutations in the makorin ring finger protein 3 (MKRN3) gene have been demonstrated to be involved in the pathogenesis of familial iCPP. AIM The objective of this study was to investigate the potential role of MKRN3 in patients with familial iCPP. METHODS We investigated potential sequence variations in the maternal imprinted MKRN3 gene using Next Generation Sequencing (NGS) analysis in 31 participants from 2 families (6 participants were diagnosed with familial iCPP on the basis of clinical and hormonal findings). Six patients diagnosed with familial iCPP and their unaffected first- and second-degree relatives, including their grandparents, were screened for MKRN3 gene variants. RESULTS Two heterozygous frameshift mutations (c.441_441delG, p.H148Tfs*23 and c803_803delAT, p.M268Vfs*23) were described in the MKRN3 gene in 2 probands with familial iCPP and in some of their family members. These frameshift mutations create a premature stop codon and result in a truncated protein. CONCLUSIONS Our report further expands the MKRN3 gene mutation spectrum in patients with familial iCPP. Screening for potential MKRN3 variants should be performed in patients with familial iCPP as well as in patients with sporadic iCPP.
Collapse
Affiliation(s)
- Enver Simsek
- Department of Paediatric Endocrinology, Eskisehir Osmangazi University School of Medicine, Eskisehir, Turkey
| | | | | | | |
Collapse
|
20
|
Grandone A, Cirillo G, Sasso M, Capristo C, Tornese G, Marzuillo P, Luongo C, Rosaria Umano G, Festa A, Coppola R, Miraglia Del Giudice E, Perrone L. MKRN3 levels in girls with central precocious puberty and correlation with sexual hormone levels: a pilot study. Endocrine 2018; 59:203-208. [PMID: 28299573 DOI: 10.1007/s12020-017-1281-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/06/2017] [Indexed: 01/23/2023]
Abstract
PURPOSE Recently, mutations of makorin RING-finger protein 3 (MKRN3) have been described in familial central precocious puberty. Serum levels of this protein decline before the pubertal onset in healthy girls and boys. The aim of the study is to investigate MKRN3 circulating levels in patients with central precocious puberty. METHODS We performed an observational cross-sectional study. We enrolled 17 patients with central precocious puberty aged 7 years (range: 2-8 years) and breast development onset <8 years; 17 prepubertal control age-matched patients aged 6.3 years (2-8.2); and 10 pubertal stage-matched control patients aged 11.4 years (9-14). Serum values of MKRN3, gonadotropins, (17)estradiol and Anti-Müllerian Hormone were evaluated and the MKRN3 genotyped in central precocious puberty patients. RESULTS No MKRN3 mutation was found among central precocious puberty patients. MKRN3 levels were lower in patients with central precocious puberty compared to prepubertal age-matched ones (p: 0.0004) and comparable to those matched for pubertal stage. MKRN3 levels were inversely correlated to Body Mass Index Standard Deviations (r:-0.35; p:0.02), Luteinizing Hormone (r:-0.35; p:0.03), FSH (r:-0.37; p:0.02), and (17)estradiol (r: -0.36; p:0.02). CONCLUSIONS We showed that girls with central precocious puberty had lower peripheral levels of MKRN3 compared to age-matched pairs and that they negatively correlated to gonadotropins, estrogen, and BMI. Our findings support the MKRN3 involvement in central precocious puberty also in absence of deleterious mutations, although our sample size is small. In addition our data suggest the role of MKRN3 in the complex mechanism controlling puberty onset and its interaction with other factors affecting puberty such as nutrition.
Collapse
Affiliation(s)
- Anna Grandone
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Grazia Cirillo
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Marcella Sasso
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Carlo Capristo
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Gianluca Tornese
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | - Pierluigi Marzuillo
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy.
| | - Caterina Luongo
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppina Rosaria Umano
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Adalgisa Festa
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Ruggero Coppola
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Emanuele Miraglia Del Giudice
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Laura Perrone
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
21
|
Jeong HR, Lee HS, Hwang JS. Makorin ring finger 3 gene analysis in Koreans with familial precocious puberty. J Pediatr Endocrinol Metab 2017; 30:1197-1201. [PMID: 28988223 DOI: 10.1515/jpem-2016-0471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 08/24/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND Precocious puberty is known as an idiopathic, sporadic disease. Recently, specific mutations have been shown to cause familial central precocious puberty (CPP). The makorin ring finger 3 (MKRN3) gene plays a key role in puberty; loss-of-function mutations in the gene trigger familial CPP. To date, most described patients have been Western; few Asians with CPP have been documented. OBJECTIVE To identify MKRN3 gene mutations or polymorphisms in Korean patients with familial CPP. METHODS 26 patients with CPP and their parents (total 13 families) were recruited. We measured endocrine and auxological parameters, and sequenced all MKRN3 exons. RESULTS We found no MKRN3 mutations. Two MKRN3 exon polymorphisms were identified. The g.23566445 C/T polymorphism was found in eight families; a novel single nucleotide polymorphism (SNP) g.23567001 A/C was found in one family. These variants are synonymous SNPs; their functional roles remain unknown. CONCLUSIONS MKRN3 mutation is uncommon in Korean patients with familial CPP. Ethnic variation in the MKRN3 mutational status is thus evident.
Collapse
|
22
|
Liu H, Kong X, Chen F. Mkrn3 functions as a novel ubiquitin E3 ligase to inhibit Nptx1 during puberty initiation. Oncotarget 2017; 8:85102-85109. [PMID: 29156706 PMCID: PMC5689596 DOI: 10.18632/oncotarget.19347] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022] Open
Abstract
Central precocious puberty (CPP) is attributed to the disorder of some trigger factors those can activate the hypothalamic-pituitary-gonadal axis controlled by GnRH neurons. Many recent studies reveal one of those trigger factors, Makorin ring finger protein 3 (Mkrn3), whose loss-of-function mutations are implicated in CPP. Although Mkrn3 contained zinc Ring finger domain is considered as a putative E3 ubiquitin ligase, its actual function is never reported. Here, our results demonstrated that in mice hypothalamus before and when puberty initiated, Mkrn3 expressed the reversed tendency with Nptx1, which is an important secreted protein for neuron development. Furthermore, our data manifested that Mkrn3 interacted and suppressed Nptx1 activity. And the Ring finger domain of Mkrn3 contained was determined to be essential for binding with Nptx1 for its polyubiquitination during the puberty initiation. Our study shed light on the molecular insights into the function of Mkrn3 in the events of puberty initiation.
Collapse
Affiliation(s)
- Huifang Liu
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangxin Kong
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengling Chen
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
The first Japanese case of central precocious puberty with a novel MKRN3 mutation. Hum Genome Var 2017; 4:17017. [PMID: 28546864 PMCID: PMC5435957 DOI: 10.1038/hgv.2017.17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 02/07/2023] Open
Abstract
MKRN3, located on chromosome 15q11.2, encodes makorin ring-finger 3, which is an upstream suppressor of the hypothalamic-pituitary-gonadal axis. Mutation of this gene induces central precocious puberty (CPP). As MKRN3 is maternally imprinted, only the paternal allele is expressed. This is the first report of an 8-year-old Japanese girl with CPP caused by a novel frameshift mutation in MKRN3 (p.Glu229Argfs*3).
Collapse
|
24
|
Ortiz-Cabrera NV, Riveiro-Álvarez R, López-Martínez MÁ, Pérez-Segura P, Aragón-Gómez I, Trujillo-Tiebas MJ, Soriano-Guillén L. Clinical Exome Sequencing Reveals MKRN3 Pathogenic Variants in Familial and Nonfamilial Idiopathic Central Precocious Puberty. Horm Res Paediatr 2016; 87:88-94. [PMID: 27931036 DOI: 10.1159/000453262] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/04/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Idiopathic central precocious puberty (ICPP) is the premature activation of the hypothalamic-pituitary-gonadal axis in the absence of organic disease. Up to now, just gain-of-function mutations of KISS1/KISS1R and loss-of-function mutations of the maternally imprinted gene MKRN3 are the known genetic causes of ICPP. Our intention is to evaluate variants present in genes related to the pubertal onset pathway that could act as disease-causing or predisposing variants. METHODS We studied the clinical exome of 20 patients diagnosed with ICPP using the Illumina platform. The bioinformatics analysis was performed using 2 different programs, and the variants were filtered according to a list of genes related to the gonadotropin-releasing hormone pathway. RESULTS In a "sporadic case," we found a missense variant in MKRN3 NM_005664.3: c.203G>A, causing the protein change NP_005655.1:p.Arg68His, predicted as pathogenic by 2 informatics tools. The proband carrying this variant was diagnosed with ICPP at 7.75 years of age. We did not find any pathogenic variants in KISS1, KISS1R, LIN28, GNRH, GNRHR, TACR3, and TAC3. CONCLUSION MKRN3 is the most frequent genetic cause of familial ICPP, so it is wise to screen for MKRN3 mutations in all patients with familial ICPP and in patients with an unclear paternal pubertal history.
Collapse
|
25
|
Shin YL. An update on the genetic causes of central precocious puberty. Ann Pediatr Endocrinol Metab 2016; 21:66-9. [PMID: 27462581 PMCID: PMC4960016 DOI: 10.6065/apem.2016.21.2.66] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 06/27/2016] [Indexed: 11/20/2022] Open
Abstract
Central precocious puberty (CPP) is caused by the premature reactivation of the hypothalamic-pituitary-gonadal axis. Genetic, nutritional, and environmental factors play a crucial role in determining pubertal timing. Recently mutations in kisspeptin (KISS1), kisspeptin receptor (KISS1R), and makorin RING finger protein 3 (MKRN3) genes have been identified as genetic causes of CPP. In particular, the MKRN3 gene is known to affect pubertal initiation. The MKRN3 gene is located on chromosome 15q11-q13 in the Prader-Willi syndrome (PWS) critical region. MKRN3 deficiency, due to a loss of function mutation, leads to the withdrawal of hypothalamic inhibition and prompts pulsatile gonadotropin-releasing hormone secretion, resulting in precocious puberty. The exact functions of these genes associated with CPP are still not well understood. Larger studies are required to discover the mechanisms involved in pubertal development.
Collapse
Affiliation(s)
- Young-Lim Shin
- Department of Pediatrics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| |
Collapse
|
26
|
Stecchini MF, Macedo DB, Reis ACS, Abreu AP, Moreira AC, Castro M, Kaiser UB, Latronico AC, Antonini SR. Time Course of Central Precocious Puberty Development Caused by an MKRN3 Gene Mutation: A Prismatic Case. Horm Res Paediatr 2016; 86:126-130. [PMID: 27424312 PMCID: PMC5061599 DOI: 10.1159/000447515] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/09/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Loss-of-function mutations in the imprinted gene MKRN3 represent the most common known genetic defects associated with central precocious puberty (CPP). METHODS We report the first case of a girl carrying an MKRN3 mutation detected in childhood and followed until the development of pubertal signs. RESULTS The girl was screened at the age of 4 years because of a positive family history; her sister had developed CPP at 6 years of age and was found to harbor the MKRN3 p.Pro161Argfs*16 mutation, inherited from their asymptomatic father. During close follow-up, she initially developed increased growth velocity at 6 years (9 cm/year), followed by a slightly increased basal luteinizing hormone level (0.4 mIU/ml) and, ultimately, clinical thelarche with rapid progression (Tanner stage 1-3) between 6.3 and 6.7 years. In the context of a loss-of-function MKRN3 mutation and a positive family history, these features established the diagnosis of CPP and supported the initiation of treatment with a gonadotropin-releasing hormone analog. The absence of significant bone age advancement, pubic or axillary hair, or behavioral or social problems could be ascribed to the early diagnosis. CONCLUSION The identification of carriers of MKRN3 mutations may contribute to early diagnosis of CPP, facilitating treatment decisions and guiding genetic counseling and prompt intervention in familial cases.
Collapse
Affiliation(s)
- Monica F. Stecchini
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo. Ribeirao Preto - SP, Brazil
| | - Delanie B. Macedo
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular, LIM42, Hospital das Clinicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo. Sao Paulo - SP, Brazil
| | - Ana Claudia S. Reis
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo. Ribeirao Preto - SP, Brazil
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School. Boston - MA, USA
| | - Ayrton C. Moreira
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo. Ribeirao Preto - SP, Brazil
| | - Margaret Castro
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo. Ribeirao Preto - SP, Brazil
| | - Ursula B. Kaiser
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School. Boston - MA, USA
| | - Ana Claudia Latronico
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular, LIM42, Hospital das Clinicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo. Sao Paulo - SP, Brazil
| | - Sonir R. Antonini
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo. Ribeirao Preto - SP, Brazil
| |
Collapse
|