1
|
Cortez I, Gaffney CM, Vichare R, Crelli CV, Liu L, Lee E, Edralin J, Nichols JM, Pham HV, Mehdi S, Janjic JM, Shepherd AJ. Neuromuscular Polytrauma Pain is Resolved by Macrophage COX-2 Nanoimmunomodulation. Int J Nanomedicine 2024; 19:7253-7271. [PMID: 39050880 PMCID: PMC11268785 DOI: 10.2147/ijn.s460418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Soft tissue injuries often involve muscle and peripheral nerves and are qualitatively distinct from single-tissue injuries. Prior research suggests that damaged innervation compromises wound healing. To test this in a traumatic injury context, we developed a novel mouse model of nerve and lower limb polytrauma, which features greater pain hypersensitivity and more sustained macrophage infiltration than either injury in isolation. We also show that macrophages are crucial mediators of pain hypersensitivity in this model by delivering macrophage-targeted nanoemulsions laden with the cyclooxygenase-2 (COX-2) inhibitor celecoxib. This treatment was more effective in males than females, and more effective when delivered 3 days post-injury than 7 days post-injury. The COX-2 inhibiting nanoemulsion drove widespread anti-inflammatory changes in cytokine expression in polytrauma-affected peripheral nerves. Our data shed new light on the modulation of inflammation by injured nerve input and demonstrate macrophage-targeted nanoimmunomodulation can produce rapid and sustained pain relief following complex injuries.
Collapse
Affiliation(s)
- Ibdanelo Cortez
- Laboratories of Neuroimmunology, Department of Symptom Research, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Caitlyn M Gaffney
- Laboratories of Neuroimmunology, Department of Symptom Research, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Riddhi Vichare
- School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Caitlin V Crelli
- School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Lu Liu
- School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Eric Lee
- Laboratories of Neuroimmunology, Department of Symptom Research, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jules Edralin
- Laboratories of Neuroimmunology, Department of Symptom Research, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - James M Nichols
- Laboratories of Neuroimmunology, Department of Symptom Research, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hoang Vu Pham
- Laboratories of Neuroimmunology, Department of Symptom Research, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Syed Mehdi
- Laboratories of Neuroimmunology, Department of Symptom Research, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jelena M Janjic
- School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Andrew J Shepherd
- Laboratories of Neuroimmunology, Department of Symptom Research, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
2
|
You JE, Kim EJ, Kim HW, Kim JS, Kim K, Kim PH. Exploring the Role of Guanylate-Binding Protein-2 in Activated Microglia-Mediated Neuroinflammation and Neuronal Damage. Biomedicines 2024; 12:1130. [PMID: 38791092 PMCID: PMC11117630 DOI: 10.3390/biomedicines12051130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Neuron damage by microglia, which act as macrophage cells in the brain, can result in various brain diseases. However, the function of pro-inflammatory or anti-inflammatory microglia in the neurons remains controversial. Guanylate-binding protein-2 (GBP2) is expressed and activated in the microglia in the early phase of the inflammatory response and plays an important role in controlling immune responses. In this study, we evaluated whether GBP2 initially reduces the immune response induced by microglia, and whether microglia induce pro-inflammatory functions in neurons via GBP2 expression. In lipopolysaccharide (LPS)-stimulated microglia, we assessed the expression of GBP2 and how it affects neurons via activated microglia. The biological functions of microglia due to the downregulation of the GBP2 gene were examined using short hairpin RNA (shRNA)-RNA-GBP2. Downregulated GBP2 affected the function of mitochondria in the microglia and showed reduced neuronal damage when compared to the control group in the co-culture system. Furthermore, this protein was observed to be highly expressed in the brains of dementia mice. Our results are the first to report that the downregulation of GBP2 in activated microglia has an anti-inflammatory function. This study suggests that the GBP2 gene can be used as a therapeutic target biomarker for inflammation-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Ji-Eun You
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Republic of Korea; (J.-E.Y.); (E.-J.K.)
| | - Eun-Ji Kim
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Republic of Korea; (J.-E.Y.); (E.-J.K.)
| | - Ho Won Kim
- Myunggok Medical Research Institute, College of Medical School, Konyang University, Daejeon 35365, Republic of Korea; (H.W.K.); (J.-S.K.)
| | - Jong-Seok Kim
- Myunggok Medical Research Institute, College of Medical School, Konyang University, Daejeon 35365, Republic of Korea; (H.W.K.); (J.-S.K.)
| | - Kyunggon Kim
- Department of Digital Medicine, College of Medicine, University of Ulsan, Seoul 05505, Republic of Korea;
- Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Pyung-Hwan Kim
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Republic of Korea; (J.-E.Y.); (E.-J.K.)
| |
Collapse
|
3
|
Pandya VA, Patani R. The role of glial cells in amyotrophic lateral sclerosis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:381-450. [PMID: 38802179 DOI: 10.1016/bs.irn.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) has traditionally been considered a neuron-centric disease. This view is now outdated, with increasing recognition of cell autonomous and non-cell autonomous contributions of central and peripheral nervous system glia to ALS pathomechanisms. With glial research rapidly accelerating, we comprehensively interrogate the roles of astrocytes, microglia, oligodendrocytes, ependymal cells, Schwann cells and satellite glia in nervous system physiology and ALS-associated pathology. Moreover, we highlight the inter-glial, glial-neuronal and inter-system polylogue which constitutes the healthy nervous system and destabilises in disease. We also propose classification based on function for complex glial reactive phenotypes and discuss the pre-requisite for integrative modelling to advance translation. Given the paucity of life-enhancing therapies currently available for ALS patients, we discuss the promising potential of harnessing glia in driving ALS therapeutic discovery.
Collapse
Affiliation(s)
- Virenkumar A Pandya
- University College London Medical School, London, United Kingdom; The Francis Crick Institute, London, United Kingdom.
| | - Rickie Patani
- The Francis Crick Institute, London, United Kingdom; Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, Queen Square, London, United Kingdom.
| |
Collapse
|
4
|
Komine O, Ohnuma S, Hinohara K, Hara Y, Shimada M, Akashi T, Watanabe S, Sobue A, Kawade N, Ogi T, Yamanaka K. Genetic background variation impacts microglial heterogeneity and disease progression in amyotrophic lateral sclerosis model mice. iScience 2024; 27:108872. [PMID: 38318390 PMCID: PMC10839647 DOI: 10.1016/j.isci.2024.108872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/07/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Recent single-cell analyses have revealed the complexity of microglial heterogeneity in brain development, aging, and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). Disease-associated microglia (DAMs) have been identified in ALS mice model, but their role in ALS pathology remains unclear. The effect of genetic background variations on microglial heterogeneity and functions remains unknown. Herein, we established and analyzed two mice models of ALS with distinct genetic backgrounds of C57BL/6 and BALB/c. We observed that the change in genetic background from C57BL/6 to BALB/c affected microglial heterogeneity and ALS pathology and its progression, likely due to the defective induction of neurotrophic factor-secreting DAMs and impaired microglial survival. Single-cell analyses of ALS mice revealed new markers for each microglial subtype and a possible association between microglial heterogeneity and systemic immune environments. Thus, we highlighted the role of microglia in ALS pathology and importance of genetic background variations in modulating microglial functions.
Collapse
Affiliation(s)
- Okiru Komine
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Syuhei Ohnuma
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Kunihiko Hinohara
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi, Japan
- Center for 5D Cell Dynamics, Nagoya University, Nagoya, Aichi, Japan
| | - Yuichiro Hara
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Mayuko Shimada
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tomohiro Akashi
- Center for 5D Cell Dynamics, Nagoya University, Nagoya, Aichi, Japan
- Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Seiji Watanabe
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Akira Sobue
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
- Medical Interactive Research and Academia Industry Collaboration Center, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan
| | - Noe Kawade
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Aichi, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Aichi, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Aichi, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Aichi, Japan
| |
Collapse
|
5
|
Choi HJ, Han M, Seo H, Park CY, Lee EH, Park J. The new insight into the inflammatory response following focused ultrasound-mediated blood-brain barrier disruption. Fluids Barriers CNS 2022; 19:103. [PMID: 36564820 PMCID: PMC9783406 DOI: 10.1186/s12987-022-00402-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Despite the great potential of FUS-BBB disruption (FUS-BBBD), it is still controversial whether FUS-BBBD acts as an inducing factor of neuro-inflammation or not, and the biological responses after FUS-BBBD triggers the inflammatory process are poorly understood. The aim of this study is to investigate the safety window for FUS levels based on a comprehensive safety assessment. METHODS The mice were treated with two different ultrasound parameters (0.25 MPa and 0.42 MPa) in the thalamus region of brain. The efficacy of BBB opening was verified by dynamic contrast-enhanced MRI (DCE-MRI) and the cavitation monitoring. The transcriptome analysis was performed to investigate the molecular response for the two BBBD conditions after FUS-mediated BBB opening in time-dependent manners. Histological analysis was used for evaluation of the tissue damage, neuronal degeneration, and activation of glial cells induced by FUS-BBBD. RESULTS The BBBD, as quantified by the Ktrans, was approximately threefold higher in 0.42 MPa-treated group than 0.25 MPa-treated group. While the minimal tissue/cellular damage was found in 0.25 MPa-treated group, visible damages containing microhemorrhages and degenerating neurons were detected in 0.42 MPa-treated group in accordance with the extent of BBBD. In transcriptome analysis, 0.42 MPa-treated group exhibited highly dynamic changes in the expression levels of an inflammatory response or NF-κB pathway-relative genes in a time-dependent manner whereas, 0.25 MPa was not altered. Interestingly, although it is clear that 0.42 MPa induces neuroinflammation through glial activation, neuroprotective properties were evident by the expression of A2-type astrocytes. CONCLUSIONS Our findings propose that a well-defined BBBD parameter of 0.25 MPa could ensure the safety without cellular/tissue damage or sterile inflammatory response in the brain. Furthermore, the fact that the excessive sonication parameters at 0.42 MPa could induce a sterile inflammation response via glial activation suggested the possibility that could lead to tissue repair toward the homeostasis of the brain microenvironment through A2-type reactive astrocytes.
Collapse
Affiliation(s)
- Hyo Jin Choi
- grid.496160.c0000 0004 6401 4233Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hubub), 80, Cheombok-Ro, Dong-Gu, Daegu, 41061 Republic of Korea
| | - Mun Han
- grid.496160.c0000 0004 6401 4233Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hubub), 80, Cheombok-Ro, Dong-Gu, Daegu, 41061 Republic of Korea
| | - Hyeon Seo
- grid.256681.e0000 0001 0661 1492Department of Computer Science, Gyeongsang National University, 501, Jinju-Daero, Jinju, Gyeongsangnam-Do 52828 Republic of Korea
| | - Chan Yuk Park
- grid.496160.c0000 0004 6401 4233Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hubub), 80, Cheombok-Ro, Dong-Gu, Daegu, 41061 Republic of Korea
| | - Eun-Hee Lee
- grid.496160.c0000 0004 6401 4233Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hubub), 80, Cheombok-Ro, Dong-Gu, Daegu, 41061 Republic of Korea
| | - Juyoung Park
- grid.256155.00000 0004 0647 2973College of Future Industry, Department of High-Tech Medical Device, Gachon University, 1342, Seongnam-Daero, Sujeong-Gu, Seongnam, Gyeonggi 13120 Republic of Korea
| |
Collapse
|
6
|
Hajji N, Garcia-Revilla J, Soto MS, Perryman R, Symington J, Quarles CC, Healey DR, Guo Y, Orta-Vázquez ML, Mateos-Cordero S, Shah K, Bomalaski J, Anichini G, Tzakos AG, Crook T, O’Neill K, Scheck AC, Venero JL, Syed N. Arginine deprivation alters microglial polarity and synergizes with radiation to eradicate non-arginine-auxotrophic glioblastoma tumors. J Clin Invest 2022; 132:e142137. [PMID: 35113813 PMCID: PMC8920336 DOI: 10.1172/jci142137] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/28/2022] [Indexed: 11/21/2022] Open
Abstract
New approaches for the management of glioblastoma (GBM) are an urgent and unmet clinical need. Here, we illustrate that the efficacy of radiotherapy for GBM is strikingly potentiated by concomitant therapy with the arginine-depleting agent ADI-PEG20 in a non-arginine-auxotrophic cellular background (argininosuccinate synthetase 1 positive). Moreover, this combination led to durable and complete radiological and pathological response, with extended disease-free survival in an orthotopic immune-competent model of GBM, with no significant toxicity. ADI-PEG20 not only enhanced the cellular sensitivity of argininosuccinate synthetase 1-positive GBM to ionizing radiation by elevated production of nitric oxide (˙NO) and hence generation of cytotoxic peroxynitrites, but also promoted glioma-associated macrophage/microglial infiltration into tumors and turned their classical antiinflammatory (protumor) phenotype into a proinflammatory (antitumor) phenotype. Our results provide an effective, well-tolerated, and simple strategy to improve GBM treatment that merits consideration for early evaluation in clinical trials.
Collapse
Affiliation(s)
- Nabil Hajji
- John Fulcher Molecular Neuro-oncology Laboratory, Department Brain Sciences, Imperial College, London, United Kingdom
| | - Juan Garcia-Revilla
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío (HUVR)/CSIC, University of Seville, Seville, Spain
| | - Manuel Sarmiento Soto
- John Fulcher Molecular Neuro-oncology Laboratory, Department Brain Sciences, Imperial College, London, United Kingdom
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío (HUVR)/CSIC, University of Seville, Seville, Spain
| | - Richard Perryman
- John Fulcher Molecular Neuro-oncology Laboratory, Department Brain Sciences, Imperial College, London, United Kingdom
| | - Jake Symington
- John Fulcher Molecular Neuro-oncology Laboratory, Department Brain Sciences, Imperial College, London, United Kingdom
| | - Chad C. Quarles
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Deborah R. Healey
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Yijie Guo
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | | | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John Bomalaski
- Polaris Pharmaceuticals Inc., San Diego, California, USA
| | - Giulio Anichini
- John Fulcher Molecular Neuro-oncology Laboratory, Department Brain Sciences, Imperial College, London, United Kingdom
| | - Andreas G. Tzakos
- Department of Chemistry, University of Ioannina, Ioannina, Greece
- Institute of Materials Science and Computing, University Research Center of Ioannina, Ioannina, Greece
| | - Timothy Crook
- John Fulcher Molecular Neuro-oncology Laboratory, Department Brain Sciences, Imperial College, London, United Kingdom
| | - Kevin O’Neill
- John Fulcher Molecular Neuro-oncology Laboratory, Department Brain Sciences, Imperial College, London, United Kingdom
| | - Adrienne C. Scheck
- Department of Child Health, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Jose Luis Venero
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío (HUVR)/CSIC, University of Seville, Seville, Spain
| | - Nelofer Syed
- John Fulcher Molecular Neuro-oncology Laboratory, Department Brain Sciences, Imperial College, London, United Kingdom
| |
Collapse
|
7
|
Mandolfo O, Parker H, Bigger B. Innate Immunity in Mucopolysaccharide Diseases. Int J Mol Sci 2022; 23:1999. [PMID: 35216110 PMCID: PMC8879755 DOI: 10.3390/ijms23041999] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Mucopolysaccharidoses are rare paediatric lysosomal storage disorders, characterised by accumulation of glycosaminoglycans within lysosomes. This is caused by deficiencies in lysosomal enzymes involved in degradation of these molecules. Dependent on disease, progressive build-up of sugars may lead to musculoskeletal abnormalities and multi-organ failure, and in others, to cognitive decline, which is still a challenge for current therapies. The worsening of neuropathology, observed in patients following recovery from flu-like infections, suggests that inflammation is highly implicated in disease progression. This review provides an overview of the pathological features associated with the mucopolysaccharidoses and summarises current knowledge regarding the inflammatory responses observed in the central nervous system and periphery. We propose a model whereby progressive accumulation of glycosaminoglycans elicits an innate immune response, initiated by the Toll-like receptor 4 pathway, but also precipitated by secondary storage components. Its activation induces cells of the immune system to release pro-inflammatory cytokines, such as TNF-α and IL-1, which induce progression through chronic neuroinflammation. While TNF-α is mostly associated with bone and joint disease in mucopolysaccharidoses, increasing evidence implicates IL-1 as a main effector of innate immunity in the central nervous system. The (NOD)-like receptor protein 3 inflammasome is therefore implicated in chronic neuroinflammation and should be investigated further to identify novel anti-inflammatory treatments.
Collapse
Affiliation(s)
- Oriana Mandolfo
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3721 Stopford Building, Oxford Road, Manchester M13 9PT, UK;
| | - Helen Parker
- Division of Immunology, Immunity to Infection and Respiratory Medicine, The Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK;
| | - Brian Bigger
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3721 Stopford Building, Oxford Road, Manchester M13 9PT, UK;
| |
Collapse
|
8
|
Senjor E, Perišić Nanut M, Breznik B, Mitrović A, Mlakar J, Rotter A, Porčnik A, Lah Turnšek T, Kos J. Cystatin F acts as a mediator of immune suppression in glioblastoma. Cell Oncol (Dordr) 2021; 44:1051-1063. [PMID: 34189679 DOI: 10.1007/s13402-021-00618-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2021] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Glioblastoma, the most aggressive type of brain cancer, is composed of heterogeneous populations of differentiated cells, cancer stem cells and immune cells. Cystatin F, an endogenous inhibitor of lysosomal cysteine peptidases, regulates the function of cytotoxic immune cells. The aim of this study was to determine which type of cells expresses cystatin F in glioblastoma and to determine the role of cystatin F during disease progression. METHODS RT-qPCR and immunohistochemistry were used to determine cystatin F mRNA and protein levels in glioblastoma tissue samples. The internalization of cystatin F was analyzed by Western blotting. Enzyme kinetics, real time invasion and calcein release cytotoxicity assays were used to assess the role of internalized cystatin F. RESULTS We found that cystatin F was not expressed in non-cancer brain tissues, but that its expression increased with glioma progression. In tumor tissues, extensive staining was observed in cancer stem-like cells and microglia/monocytes, which secrete cystatin F into their microenvironment. In trans activity of cystatin F was confirmed using an in vitro glioblastoma cell model. Internalized cystatin F affected cathepsin L activity in glioblastoma cells and decreased their invasiveness. In addition, we found that cystatin F decreased the susceptibility of glioblastoma cells to the cytotoxic activity of natural killer (NK) cells. CONCLUSIONS Our data implicate cystatin F as a mediator of immune suppression in glioblastoma. Increased cystatin F mRNA and protein levels in immune, glioblastoma and glioblastoma stem-like cells or trans internalized cystatin F may have an impact on decreased susceptibility of glioblastoma cells to NK cytotoxicity.
Collapse
Affiliation(s)
- Emanuela Senjor
- Department of Biotechnology, Jožef Stefan Institute, Jamova cesta 39, SI-1000, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Milica Perišić Nanut
- Department of Biotechnology, Jožef Stefan Institute, Jamova cesta 39, SI-1000, Ljubljana, Slovenia
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, SI-1000, Ljubljana, Slovenia
| | - Ana Mitrović
- Department of Biotechnology, Jožef Stefan Institute, Jamova cesta 39, SI-1000, Ljubljana, Slovenia
| | - Jernej Mlakar
- Institute of Pathology, Medical Faculty, University of Ljubljana, Korytkova 2, SI-1000, Ljubljana, Slovenia
| | - Ana Rotter
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, SI-1000, Ljubljana, Slovenia
| | - Andrej Porčnik
- Department of Neurosurgery, University Clinical Centre Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Tamara Lah Turnšek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, SI-1000, Ljubljana, Slovenia
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Jamova cesta 39, SI-1000, Ljubljana, Slovenia. .,Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
9
|
Chaudhary R, Morris RJ, Steinson E. The multifactorial roles of microglia and macrophages in the maintenance and progression of glioblastoma. J Neuroimmunol 2021; 357:577633. [PMID: 34153803 DOI: 10.1016/j.jneuroim.2021.577633] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/26/2021] [Accepted: 06/11/2021] [Indexed: 01/18/2023]
Abstract
The functional characteristics of glial cells, in particular microglia, have attained considerable importance in several diseases, including glioblastoma, the most hostile and malignant type of intracranial tumor. Microglia performs a highly significant role in the brain's inflammatory response mechanism. They exhibit anti-tumor properties via phagocytosis and the activation of a number of different cytotoxic substances. Some tumor-derived factors, however, transform these microglial cells into immunosuppressive and tumor-supportive, facilitating survival and progression of tumorigenic cells. Glioma-associated microglia and/or macrophages (GAMs) accounts for a large proportion of glioma infiltrating cells. Once within the tumor, GAMs exhibit a distinct phenotype of initiation that subsequently supports the growth and development of tumorigenic cells, angiogenesis and stimulates the infiltration of healthy brain regions. Interventions that suppress or prohibit the induction of GAMs at the tumor site or attenuate their immunological activities accommodating anti-tumor actions are likely to exert positive impact on glioblastoma treatment. In the present paper, we aim to summarize the most recent knowledge of microglia and its physiology, as well as include a very brief description of different molecular factors involved in microglia and glioblastoma interplay. We further address some of the major signaling pathways that regulate the baseline motility of glioblastoma progression. Finally, we discussed a number of therapeutic approaches regarding glioblastoma treatment.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, India.
| | - Rhianna J Morris
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Emma Steinson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
10
|
Ebrahimi KH, Gilbert-Jaramillo J, James WS, McCullagh JSO. Interferon-stimulated gene products as regulators of central carbon metabolism. FEBS J 2020; 288:3715-3726. [PMID: 33185982 PMCID: PMC8359365 DOI: 10.1111/febs.15625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
In response to viral infections, the innate immune system rapidly activates expression of several interferon-stimulated genes (ISGs), whose protein and metabolic products are believed to directly interfere with the viral life cycle. Here, we argue that biochemical reactions performed by two specific protein products of ISGs modulate central carbon metabolism to support a broad-spectrum antiviral response. We demonstrate that the metabolites generated by metalloenzymes nitric oxide synthase and the radical S-adenosylmethionine (SAM) enzyme RSAD2 inhibit the activity of the housekeeping and glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH). We discuss that this inhibition is likely to stimulate a range of metabolic and signalling processes to support a broad-spectrum immune response. Based on these analyses, we propose that inhibiting GAPDH in individuals with deteriorated cellular innate immune response like elderly might help in treating viral diseases such as COVID-19.
Collapse
Affiliation(s)
- Kourosh H Ebrahimi
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, UK
| | - Javier Gilbert-Jaramillo
- Sir William Dunn School of Pathology, University of Oxford, UK.,Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| | - William S James
- Sir William Dunn School of Pathology, University of Oxford, UK
| | - James S O McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, UK
| |
Collapse
|
11
|
Gray SC, Kinghorn KJ, Woodling NS. Shifting equilibriums in Alzheimer's disease: the complex roles of microglia in neuroinflammation, neuronal survival and neurogenesis. Neural Regen Res 2020; 15:1208-1219. [PMID: 31960800 PMCID: PMC7047786 DOI: 10.4103/1673-5374.272571] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/02/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease is the leading cause of dementia. Its increased prevalence in developed countries, due to the sharp rise in ageing populations, presents one of the costliest challenges to modern medicine. In order to find disease-modifying therapies to confront this challenge, a more complete understanding of the pathogenesis of Alzheimer's disease is necessary. Recent studies have revealed increasing evidence for the roles played by microglia, the resident innate immune system cells of the brain. Reflecting the well-established roles of microglia in reacting to pathogens and inflammatory stimuli, there is now a growing literature describing both protective and detrimental effects for individual cytokines and chemokines produced by microglia in Alzheimer's disease. A smaller but increasing number of studies have also addressed the divergent roles played by microglial neurotrophic and neurogenic factors, and how their perturbation may play a key role in the pathogenesis of Alzheimer's disease. Here we review recent findings on the roles played by microglia in neuroinflammation, neuronal survival and neurogenesis in Alzheimer's disease. In each case, landmark studies have provided evidence for the divergent ways in which microglia can either promote neuronal function and survival, or perturb neuronal function, leading to cell death. In many cases, the secreted molecules of microglia can lead to divergent effects depending on the magnitude and context of microglial activation. This suggests that microglial functions must be maintained in a fine equilibrium, in order to support healthy neuronal function, and that the cellular microenvironment in the Alzheimer's disease brain disrupts this fine balance, leading to neurodegeneration. Thus, an understanding of microglial homeostasis, both in health and across the trajectory of the disease state, will improve our understanding of the pathogenic mechanisms underlying Alzheimer's disease, and will hopefully lead to the development of microglial-based therapeutic strategies to restore equilibrium in the Alzheimer's disease brain.
Collapse
Affiliation(s)
- Sophie C. Gray
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Kerri J. Kinghorn
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Nathaniel S. Woodling
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
12
|
Preconditioning with toll-like receptor agonists attenuates seizure activity and neuronal hyperexcitability in the pilocarpine rat model of epilepsy. Neuroscience 2019; 408:388-399. [DOI: 10.1016/j.neuroscience.2019.04.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 01/24/2023]
|
13
|
System x c- in microglia is a novel therapeutic target for post-septic neurological and psychiatric illness. Sci Rep 2019; 9:7562. [PMID: 31101857 PMCID: PMC6525204 DOI: 10.1038/s41598-019-44006-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 05/07/2019] [Indexed: 01/17/2023] Open
Abstract
Post-septic neurological and psychiatric illness (PSNPI) including dementia and depression may be observed after sepsis. However, the etiology of PSNPI and therapeutic treatment of PSNPI are unclear. We show that glutamate produced from microglia through the activity of system xc− plays a role in PSNPI. We established a mouse model of PSNPI by lipopolysaccharide (LPS) treatment that shows a disturbance of short/working memory and depression-like hypoactivity. Glutamate receptor antagonists (MK801 and DNQX) reduced these phenotypes, and isolated microglia from LPS-treated mice released abundant glutamate. We identified system xc− as a source of the extracellular glutamate. xCT, a component of system xc−, was induced and expressed in microglia after LPS treatment. In xCT knockout mice, PSNPI were decreased compared to those in wildtype mice. Moreover, TNF-α and IL-1β expression in wildtype mice was increased after LPS treatment, but inhibited in xCT knockout mice. Thus, system xc− in microglia may be a therapeutic target for PSNPI. The administration of sulfasalazine, an inhibitor of xCT, in symptomatic and post-symptomatic mice improved PSNPI. Our results suggest that glutamate released from microglia through system xc− plays a critical role in the manifestations of PSNPI and that system xc− may be a therapeutic target for PSNPI.
Collapse
|
14
|
Development of brain PET imaging agents: Strategies for imaging neuroinflammation in Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 165:371-399. [DOI: 10.1016/bs.pmbts.2019.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|