1
|
Dyer LA, Rugonyi S. Fetal Blood Flow and Genetic Mutations in Conotruncal Congenital Heart Disease. J Cardiovasc Dev Dis 2021; 8:90. [PMID: 34436232 PMCID: PMC8397097 DOI: 10.3390/jcdd8080090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022] Open
Abstract
In congenital heart disease, the presence of structural defects affects blood flow in the heart and circulation. However, because the fetal circulation bypasses the lungs, fetuses with cyanotic heart defects can survive in utero but need prompt intervention to survive after birth. Tetralogy of Fallot and persistent truncus arteriosus are two of the most significant conotruncal heart defects. In both defects, blood access to the lungs is restricted or non-existent, and babies with these critical conditions need intervention right after birth. While there are known genetic mutations that lead to these critical heart defects, early perturbations in blood flow can independently lead to critical heart defects. In this paper, we start by comparing the fetal circulation with the neonatal and adult circulation, and reviewing how altered fetal blood flow can be used as a diagnostic tool to plan interventions. We then look at known factors that lead to tetralogy of Fallot and persistent truncus arteriosus: namely early perturbations in blood flow and mutations within VEGF-related pathways. The interplay between physical and genetic factors means that any one alteration can cause significant disruptions during development and underscore our need to better understand the effects of both blood flow and flow-responsive genes.
Collapse
Affiliation(s)
- Laura A. Dyer
- Department of Biology, University of Portland, Portland, OR 97203, USA;
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
2
|
Lettieri A, Oleari R, Paganoni AJJ, Gervasini C, Massa V, Fantin A, Cariboni A. Semaphorin Regulation by the Chromatin Remodeler CHD7: An Emerging Genetic Interaction Shaping Neural Cells and Neural Crest in Development and Cancer. Front Cell Dev Biol 2021; 9:638674. [PMID: 33869187 PMCID: PMC8047133 DOI: 10.3389/fcell.2021.638674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
CHD7 is a chromatin remodeler protein that controls gene expression via the formation of multi-protein complexes with specific transcription factors. During development, CHD7 controls several differentiation programs, mainly by acting on neural progenitors and neural crest (NC) cells. Thus, its roles range from the central nervous system to the peripheral nervous system and the organs colonized by NC cells, including the heart. Accordingly, mutated CHD7 is linked to CHARGE syndrome, which is characterized by several neuronal dysfunctions and by malformations of NC-derived/populated organs. Altered CHD7 has also been associated with different neoplastic transformations. Interestingly, recent evidence revealed that semaphorins, a class of molecules involved in developmental and pathological processes similar to those controlled by CHD7, are regulated by CHD7 in a context-specific manner. In this article, we will review the recent insights that support the existence of genetic interactions between these pathways, both during developmental processes and cancer progression.
Collapse
Affiliation(s)
- Antonella Lettieri
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alyssa J J Paganoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Cristina Gervasini
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valentina Massa
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alessandro Fantin
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
3
|
Jiao B, Liu S, Tan X, Lu P, Wang D, Xu H. Class-3 semaphorins: Potent multifunctional modulators for angiogenesis-associated diseases. Biomed Pharmacother 2021; 137:111329. [PMID: 33545660 DOI: 10.1016/j.biopha.2021.111329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 11/29/2022] Open
Abstract
Semaphorins, the neuronal guidance cues, were shown to have broad influences on pathophysiological processes such as bone remodeling, immune responses, and angiogenesis. In particular, Class-3 Semaphorins (SEMA3) is considered a vital regulator involved in angiogenesis. Scientific evidence has pointed to the role of angiogenesis in many diseases, and numerous efforts have been made to explore the possibilities of curing those diseases by targeting angiogenesis. Nevertheless, the efficacies are limited owing to the complex mechanisms of angiogenesis. Hence, investigating the mechanisms of SEMA3 in angiogenesis may contribute to novel therapeutics for diseases. Previous reviews mainly focused on the various functions of semaphorins in one particular disease, and the specific angiogenesis mechanism of SEMA3 in diverse diseases has not been well elucidated. Additionally, the role of SEMA3 in angiogenesis remains elusive, as contradicting results have been found in different disease types. Some evidence from recent studies implies that, while most SEMA3 molecules inhibit pathological angiogenesis in different diseases, occasionally SEMA3 may also promote angiogenesis. This review summarizes the specific role of SEMA3 in a variety of angiogenesis-associated diseases, and documents SEMA3 may be a promising therapeutic target for treating angiogenesis-associated diseases.
Collapse
Affiliation(s)
- Bo Jiao
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiyang Liu
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xi Tan
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pei Lu
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Danning Wang
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hui Xu
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
4
|
Richter F, Morton SU, Kim SW, Kitaygorodsky A, Wasson LK, Chen KM, Zhou J, Qi H, Patel N, DePalma SR, Parfenov M, Homsy J, Gorham JM, Manheimer KB, Velinder M, Farrell A, Marth G, Schadt EE, Kaltman JR, Newburger JW, Giardini A, Goldmuntz E, Brueckner M, Kim R, Porter GA, Bernstein D, Chung WK, Srivastava D, Tristani-Firouzi M, Troyanskaya OG, Dickel DE, Shen Y, Seidman JG, Seidman CE, Gelb BD. Genomic analyses implicate noncoding de novo variants in congenital heart disease. Nat Genet 2020; 52:769-777. [PMID: 32601476 PMCID: PMC7415662 DOI: 10.1038/s41588-020-0652-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/22/2020] [Indexed: 02/07/2023]
Abstract
A genetic etiology is identified for one-third of patients with congenital heart disease (CHD), with 8% of cases attributable to coding de novo variants (DNVs). To assess the contribution of noncoding DNVs to CHD, we compared genome sequences from 749 CHD probands and their parents with those from 1,611 unaffected trios. Neural network prediction of noncoding DNV transcriptional impact identified a burden of DNVs in individuals with CHD (n = 2,238 DNVs) compared to controls (n = 4,177; P = 8.7 × 10-4). Independent analyses of enhancers showed an excess of DNVs in associated genes (27 genes versus 3.7 expected, P = 1 × 10-5). We observed significant overlap between these transcription-based approaches (odds ratio (OR) = 2.5, 95% confidence interval (CI) 1.1-5.0, P = 5.4 × 10-3). CHD DNVs altered transcription levels in 5 of 31 enhancers assayed. Finally, we observed a DNV burden in RNA-binding-protein regulatory sites (OR = 1.13, 95% CI 1.1-1.2, P = 8.8 × 10-5). Our findings demonstrate an enrichment of potentially disruptive regulatory noncoding DNVs in a fraction of CHD at least as high as that observed for damaging coding DNVs.
Collapse
Affiliation(s)
- Felix Richter
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah U Morton
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Seong Won Kim
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Alexander Kitaygorodsky
- Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY, USA
| | - Lauren K Wasson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | - Jian Zhou
- Flatiron Institute, Simons Foundation, New York, NY, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hongjian Qi
- Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY, USA
| | - Nihir Patel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Jason Homsy
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for External Innovation, Takeda Pharmaceuticals USA, Cambridge, MA, USA
| | - Joshua M Gorham
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Kathryn B Manheimer
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Sema4, Stamford, CT, USA
| | - Matthew Velinder
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Andrew Farrell
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Gabor Marth
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Sema4, Stamford, CT, USA
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan R Kaltman
- Heart Development and Structural Diseases Branch, Division of Cardiovascular Sciences, NHLBI/NIH, Bethesda, MD, USA
| | | | | | - Elizabeth Goldmuntz
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Martina Brueckner
- Departments of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Richard Kim
- Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - George A Porter
- Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Daniel Bernstein
- Department of Pediatrics, Stanford University, Palo Alto, CA, USA
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University Medical Center, New York, NY, USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease and University of California San Francisco, San Francisco, CA, USA
| | - Martin Tristani-Firouzi
- Division of Pediatric Cardiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Olga G Troyanskaya
- Flatiron Institute, Simons Foundation, New York, NY, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Diane E Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Yufeng Shen
- Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY, USA
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Cardiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Bruce D Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Gil V, Del Río JA. Functions of Plexins/Neuropilins and Their Ligands during Hippocampal Development and Neurodegeneration. Cells 2019; 8:E206. [PMID: 30823454 PMCID: PMC6468495 DOI: 10.3390/cells8030206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 12/22/2022] Open
Abstract
There is emerging evidence that molecules, receptors, and signaling mechanisms involved in vascular development also play crucial roles during the development of the nervous system. Among others, specific semaphorins and their receptors (neuropilins and plexins) have, in recent years, attracted the attention of researchers due to their pleiotropy of functions. Their functions, mainly associated with control of the cellular cytoskeleton, include control of cell migration, cell morphology, and synapse remodeling. Here, we will focus on their roles in the hippocampal formation that plays a crucial role in memory and learning as it is a prime target during neurodegeneration.
Collapse
Affiliation(s)
- Vanessa Gil
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Parc Científic de Barcelona, 08028 Barcelona, Spain.
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Spain.
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08028 Barcelona, Spain.
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain.
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Parc Científic de Barcelona, 08028 Barcelona, Spain.
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Spain.
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08028 Barcelona, Spain.
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
6
|
Alamri A, Soussi Gounni A, Kung SKP. View Point: Semaphorin-3E: An Emerging Modulator of Natural Killer Cell Functions? Int J Mol Sci 2017; 18:E2337. [PMID: 29113093 PMCID: PMC5713306 DOI: 10.3390/ijms18112337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/21/2017] [Accepted: 11/01/2017] [Indexed: 12/29/2022] Open
Abstract
Semaphorin-3E (Sema-3E) is a member of a large family of proteins originally identified as axon guidance cues in neural development. It is expressed in different cell types, such as immune cells, cancer cells, neural cells, and epithelial cells. Subsequently, dys-regulation of Sema-3E expression has been reported in various biological processes that range from cancers to autoimmune and allergic diseases. Recent work in our laboratories revealed a critical immunoregulatory role of Sema-3E in experimental allergic asthma. We further speculate possible immune modulatory function(s) of Sema-3E on natural killer (NK) cells.
Collapse
Affiliation(s)
- Abdulaziz Alamri
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada.
| | - Abdelilah Soussi Gounni
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada.
| | - Sam K P Kung
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada.
| |
Collapse
|
7
|
Masuda T, Taniguchi M. Contribution of semaphorins to the formation of the peripheral nervous system in higher vertebrates. Cell Adh Migr 2016; 10:593-603. [PMID: 27715392 PMCID: PMC5160040 DOI: 10.1080/19336918.2016.1243644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Semaphorins are a large family of proteins characterized by sema domains and play a key role not only in the formation of neural circuits, but in the immune system, angiogenesis, tumor progression, and bone metabolism. To date, 15 semaphorins have been reported to be involved in the formation of the peripheral nervous system (PNS) in higher vertebrates. A number of experiments have revealed their functions in the PNS, where they act mainly as axonal guidance cues (as repellents or attractants). Semaphorins also play an important role in the migration of neurons and formation of sensory-motor connections in the PNS. This review summarizes recent knowledge regarding the functions of higher vertebrate semaphorins in the formation of the PNS.
Collapse
Affiliation(s)
- Tomoyuki Masuda
- a Department of Neurobiology , Faculty of Medicine, University of Tsukuba , Ibaraki , Japan.,b Doctoral and Master's Programs in Kansei , Behavioral and Brain Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba , Ibaraki , Japan
| | - Masahiko Taniguchi
- c Department of Cell Science , Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine , Hokkaido , Japan
| |
Collapse
|
8
|
Visser JJ, Cheng Y, Perry SC, Chastain AB, Parsa B, Masri SS, Ray TA, Kay JN, Wojtowicz WM. An extracellular biochemical screen reveals that FLRTs and Unc5s mediate neuronal subtype recognition in the retina. eLife 2015; 4:e08149. [PMID: 26633812 PMCID: PMC4737655 DOI: 10.7554/elife.08149] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 12/01/2015] [Indexed: 12/25/2022] Open
Abstract
In the inner plexiform layer (IPL) of the mouse retina, ~70 neuronal subtypes organize their neurites into an intricate laminar structure that underlies visual processing. To find recognition proteins involved in lamination, we utilized microarray data from 13 subtypes to identify differentially-expressed extracellular proteins and performed a high-throughput biochemical screen. We identified ~50 previously-unknown receptor-ligand pairs, including new interactions among members of the FLRT and Unc5 families. These proteins show laminar-restricted IPL localization and induce attraction and/or repulsion of retinal neurites in culture, placing them in an ideal position to mediate laminar targeting. Consistent with a repulsive role in arbor lamination, we observed complementary expression patterns for one interaction pair, FLRT2-Unc5C, in vivo. Starburst amacrine cells and their synaptic partners, ON-OFF direction-selective ganglion cells, express FLRT2 and are repelled by Unc5C. These data suggest a single molecular mechanism may have been co-opted by synaptic partners to ensure joint laminar restriction.
Collapse
Affiliation(s)
- Jasper J Visser
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Yolanda Cheng
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Steven C Perry
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Andrew Benjamin Chastain
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Bayan Parsa
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Shatha S Masri
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Thomas A Ray
- Department of Neurobiology, Duke University School of Medicine, Durham, United States
- Department of Opthalmology, Duke University School of Medicine, Durham, United States
| | - Jeremy N Kay
- Department of Neurobiology, Duke University School of Medicine, Durham, United States
- Department of Opthalmology, Duke University School of Medicine, Durham, United States
| | - Woj M Wojtowicz
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|