1
|
Micale L, Vourlia A, Fusco C, Pracella R, Karagiannis DC, Nardella G, Vaccaro L, Leone MP, Gramazio A, Dentici ML, Aiello C, Novelli A, Xenou L, Sui Y, Eichler EE, Cacchiarelli D, Mavrothalassitis G, Castori M. Heterozygous variants disrupting the interaction of ERF with activated ERK1/2 cause microcephaly, developmental delay, and skeletal anomalies. Eur J Hum Genet 2024:10.1038/s41431-024-01721-9. [PMID: 39668184 DOI: 10.1038/s41431-024-01721-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 10/17/2024] [Indexed: 12/14/2024] Open
Abstract
Heterozygous deleterious null alleles and specific missense variants in the DNA-binding domain of the ETS2 repressor factor (ERF) cause craniosynostosis, while the recurrent p.(Tyr89Cys) missense variant is associated with Chitayat syndrome. Exome and whole transcriptome sequencing revealed the ERF de novo in-frame indel c.911_913del selectively removing the serine of the FSF motif, which interacts with the extracellular signal-regulated kinases (ERKs), in a 10-year-old girl with microcephaly, multiple congenital joint dislocations, generalized joint hypermobility, and Pierre-Robin sequence. Three additional cases with developmental delay variably associated with microcephaly, Pierre-Robin sequence and minor skeletal anomalies were detected carrying heterozygous de novo non-truncating alleles (two with c.911_913del and one with the missense c.907 T > A change) in the same FSF motif. Protein affinity maps, co-immunoprecipitation experiments and subcellular distribution showed that both the variants impair the interaction between ERF and activated ERK1/2 and increase ERF nuclear localization, affecting ERF repressor activity that may lead to developmental defects. Our work expands the phenotypic spectrum of ERF-related disorders to a pleiotropic condition with microcephaly, developmental delay and skeletal anomalies, that we termed MIDES syndrome, and adds to the understanding of the relevance of the ERF-ERK interaction in human development and disease.
Collapse
Affiliation(s)
- Lucia Micale
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Viale Cappuccini snc, 71013, San Giovanni Rotondo, Italy.
| | - Aikaterini Vourlia
- IMBB, FORTH, 71003, Heraklion, Crete, Greece
- Medical School, University of Crete, 71003, Heraklion, Crete, Greece
| | - Carmela Fusco
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Viale Cappuccini snc, 71013, San Giovanni Rotondo, Italy
| | - Riccardo Pracella
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Viale Cappuccini snc, 71013, San Giovanni Rotondo, Italy
| | | | - Grazia Nardella
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Viale Cappuccini snc, 71013, San Giovanni Rotondo, Italy
| | - Lorenzo Vaccaro
- Armenise/Harvard Laboratory of Integrative Genomics, Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, Italy
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | - Maria Pia Leone
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Viale Cappuccini snc, 71013, San Giovanni Rotondo, Italy
| | - Antonio Gramazio
- Armenise/Harvard Laboratory of Integrative Genomics, Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, Italy
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | - Maria Lisa Dentici
- Rare Diseases and Medical Genetics, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Chiara Aiello
- Translational Cytogenetics, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Antonio Novelli
- Translational Cytogenetics, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Lydia Xenou
- IMBB, FORTH, 71003, Heraklion, Crete, Greece
| | - Yang Sui
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Davide Cacchiarelli
- Armenise/Harvard Laboratory of Integrative Genomics, Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, Italy
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
- Genomics and Experimental Medicine Program, Scuola Superiore Meridionale, Naples, Italy
| | - George Mavrothalassitis
- IMBB, FORTH, 71003, Heraklion, Crete, Greece.
- Medical School, University of Crete, 71003, Heraklion, Crete, Greece.
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Viale Cappuccini snc, 71013, San Giovanni Rotondo, Italy
| |
Collapse
|
2
|
Hirano Y, Kuroda Y, Enomoto Y, Naruto T, Muroya K, Kurosawa K. Noonan syndrome-like phenotype associated with an ERF frameshift variant. Am J Med Genet A 2024; 194:e63652. [PMID: 38741564 DOI: 10.1002/ajmg.a.63652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 04/27/2024] [Indexed: 05/16/2024]
Abstract
Noonan syndrome is a so-called "RASopathy," that is characterized by short stature, distinctive facial features, congenital heart defects, and developmental delay. Of individuals with a clinical diagnosis of Noonan syndrome, 80%-90% have pathogenic variants in the known genes implicated in the disorder, but the molecular mechanism is unknown in the remaining cases. Heterozygous pathogenic variants of ETS2 repressor factor (ERF), which functions as a repressor in the RAS/MAPK signaling pathway, cause syndromic craniosynostosis. Here, we report an ERF frameshift variant cosegregating with a Noonan syndrome-like phenotype in a family. The proband was a 3-year-old female who presented with dysmorphic facial features, including proptosis, hypertelorism, slightly down slanted palpebral fissures, low-set posteriorly rotated ears, depressed nasal bridge, short stature, and developmental delay. Exome sequencing of the proband identified a heterozygous ERF variant [NM_006494.4: c.185del p.(Glu62Glyfs*15)]. Her mother and sister showed a similar phenotype and had the same heterozygous ERF variant. A large proportion of the previously reported patients with syndromic craniosynostosis and pathogenic ERF variants also showed characteristic features that overlap with those of Noonan syndrome. The present finding supports an association between heterozygous ERF variants and a Noonan syndrome-like phenotype.
Collapse
Affiliation(s)
- Yasuhiro Hirano
- Department of Pediatrics, Hiratsuka City Hospital, Hiratsuka, Kanagawa, Japan
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yukiko Kuroda
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yumi Enomoto
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Takuya Naruto
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Koji Muroya
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| |
Collapse
|
3
|
Dentici ML, Niceta M, Lepri FR, Mancini C, Priolo M, Bonnard AA, Cappelletti C, Leoni C, Ciolfi A, Pizzi S, Cordeddu V, Rossi C, Ferilli M, Mucciolo M, Colona VL, Fauth C, Bellini M, Biasucci G, Sinibaldi L, Briuglia S, Gazzin A, Carli D, Memo L, Trevisson E, Schiavariello C, Luca M, Novelli A, Michot C, Sweertvaegher A, Germanaud D, Scarano E, De Luca A, Zampino G, Zenker M, Mussa A, Dallapiccola B, Cavé H, Digilio MC, Tartaglia M. Loss-of-function variants in ERF are associated with a Noonan syndrome-like phenotype with or without craniosynostosis. Eur J Hum Genet 2024; 32:954-963. [PMID: 38824261 PMCID: PMC11291927 DOI: 10.1038/s41431-024-01642-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/09/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Pathogenic, largely truncating variants in the ETS2 repressor factor (ERF) gene, encoding a transcriptional regulator negatively controlling RAS-MAPK signaling, have been associated with syndromic craniosynostosis involving various cranial sutures and Chitayat syndrome, an ultrarare condition with respiratory distress, skeletal anomalies, and facial dysmorphism. Recently, a single patient with craniosynostosis and a phenotype resembling Noonan syndrome (NS), the most common disorder among the RASopathies, was reported to carry a de novo loss-of-function variant in ERF. Here, we clinically profile 26 individuals from 15 unrelated families carrying different germline heterozygous variants in ERF and showing a phenotype reminiscent of NS. The majority of subjects presented with a variable degree of global developmental and/or language delay. Their shared facial features included absolute/relative macrocephaly, high forehead, hypertelorism, palpebral ptosis, wide nasal bridge, and low-set/posteriorly angulated ears. Stature was below the 3rd centile in two-third of the individuals, while no subject showed typical NS cardiac involvement. Notably, craniosynostosis was documented only in three unrelated individuals, while a dolichocephalic aspect of the skull in absence of any other evidence supporting a premature closing of sutures was observed in other 10 subjects. Unilateral Wilms tumor was diagnosed in one individual. Most cases were familial, indicating an overall low impact on fitness. Variants were nonsense and frameshift changes, supporting ERF haploinsufficiency. These findings provide evidence that heterozygous loss-of-function variants in ERF cause a "RASopathy" resembling NS with or without craniosynostosis, and allow a first dissection of the molecular circuits contributing to MAPK signaling pleiotropy.
Collapse
Affiliation(s)
- Maria Lisa Dentici
- Rare Diseases and Medical Genetics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Marcello Niceta
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | | | - Cecilia Mancini
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Manuela Priolo
- Medical and Molecular Genetics, Ospedale Cardarelli, 80131, Naples, Italy
| | - Adeline Alice Bonnard
- Service de de Génétique Moléculaire Hôpital Robert Debré, GHU AP-HP Nord - Université Paris Cité, INSERM UMR_S1131, Institut Universitaire d'Hématologie, Université Paris Cité, Paris-Cité, 75019, Paris, France
| | - Camilla Cappelletti
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
- Department of Biomedicine and Prevention, Università di Roma "Tor Vergata", 00133, Rome, Italy
| | - Chiara Leoni
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Simone Pizzi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Viviana Cordeddu
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Cesare Rossi
- Medical Genetics, IRCSS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Marco Ferilli
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Mafalda Mucciolo
- Translational Cytogenomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Vito Luigi Colona
- Rare Diseases and Medical Genetics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Christine Fauth
- Institute for Human Genetics, Medical University Innsbruck, 6020, Innsbruck, Austria
| | - Melissa Bellini
- Pediatrics and Neonatology, Gugliemo da Saliceto Hospital, 29121, Piacenza, Italy
| | - Giacomo Biasucci
- Pediatrics and Neonatology, Gugliemo da Saliceto Hospital, 29121, Piacenza, Italy
| | - Lorenzo Sinibaldi
- Rare Diseases and Medical Genetics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Silvana Briuglia
- Genetics and Pharmacogenetics, Ospedale Universitario "Gaetano Martino", 98125, Messina, Italy
| | - Andrea Gazzin
- Pediatric Clinical Genetics, Ospedale Pediatrico "Regina Margherita", 10126, Torino, Italy
| | - Diana Carli
- Department of Medical Sciences, Università of Torino, 10126, Torino, Italy
| | - Luigi Memo
- Medical Genetics, Institute for Maternal and Child Health-IRCCS, Burlo Garofolo, 34127, Trieste, Italy
| | - Eva Trevisson
- Department of Women's and Children's Health, Università di Padova, 35128, Padova, Italy
| | - Concetta Schiavariello
- Department of Pediatrics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Maria Luca
- Department of Medical Sciences, Università of Torino, 10126, Torino, Italy
| | - Antonio Novelli
- Translational Cytogenomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Caroline Michot
- Center for Skeletal Dysplasia, Necker-Enfants Malades Hospital, Paris Cité University, INSERM UMR 1163, Imagine Institute, 75015, Paris, France
| | - Anne Sweertvaegher
- Service de Pédiatrie, Centre hospitalier de Saint-Quentin, 02321, Saint-Quentin, France
| | - David Germanaud
- Département de Génétique, CEA Paris-Saclay, NeuroSpin, Gif-sur-Yvette, France
- Service de Génétique Clinique, AP-HP, Hôpital Robert-Debré, 75019, Paris, France
| | - Emanuela Scarano
- Department of Pediatrics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Alessandro De Luca
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni, Rotondo, Italy
| | - Giuseppe Zampino
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, 39120, Magdeburg, Germany
| | - Alessandro Mussa
- Department of Medical Sciences, Università of Torino, 10126, Torino, Italy
| | - Bruno Dallapiccola
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Helene Cavé
- Service de de Génétique Moléculaire Hôpital Robert Debré, GHU AP-HP Nord - Université Paris Cité, INSERM UMR_S1131, Institut Universitaire d'Hématologie, Université Paris Cité, Paris-Cité, 75019, Paris, France
| | - Maria Cristina Digilio
- Rare Diseases and Medical Genetics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy.
| |
Collapse
|