1
|
Espinoza KS, Hermanson KN, Beard CA, Schwartz NU, Snider JM, Low BE, Wiles MV, Hannun YA, Obeid LM, Snider AJ. A novel HSPB1 S139F mouse model of Charcot-Marie-Tooth Disease. Prostaglandins Other Lipid Mediat 2023; 169:106769. [PMID: 37625781 PMCID: PMC10843462 DOI: 10.1016/j.prostaglandins.2023.106769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/01/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Charcot-Marie-Tooth Disease (CMT) is a commonly inherited peripheral polyneuropathy. Clinical manifestations for this disease include symmetrical distal polyneuropathy, altered deep tendon reflexes, distal sensory loss, foot deformities, and gait abnormalities. Genetic mutations in heat shock proteins have been linked to CMT2. Specifically, mutations in the heat shock protein B1 (HSPB1) gene encoding for heat shock protein 27 (Hsp27) have been linked to CMT2F and distal hereditary motor and sensory neuropathy type 2B (dHMSN2B) subtype. The goal of the study was to examine the role of an endogenous mutation in HSPB1 in vivo and to define the effects of this mutation on motor function and pathology in a novel animal model. As sphingolipids have been implicated in hereditary and sensory neuropathies, we examined sphingolipid metabolism in central and peripheral nervous tissues in 3-month-old HspS139F mice. Though sphingolipid levels were not altered in sciatic nerves from HspS139F mice, ceramides and deoxyceramides, as well as sphingomyelins (SMs) were elevated in brain tissues from HspS139F mice. Histology was utilized to further characterize HspS139F mice. HspS139F mice exhibited no alterations to the expression and phosphorylation of neurofilaments, or in the expression of acetylated α-tubulin in the brain or sciatic nerve. Interestingly, HspS139F mice demonstrated cerebellar demyelination. Locomotor function, grip strength and gait were examined to define the role of HspS139F in the clinical phenotypes associated with CMT2F. Gait analysis revealed no differences between HspWT and HspS139F mice. However, both coordination and grip strength were decreased in 3-month-old HspS139F mice. Together these data suggest that the endogenous S139F mutation in HSPB1 may serve as a mouse model for hereditary and sensory neuropathies such as CMT2F.
Collapse
Affiliation(s)
- Keila S Espinoza
- Department of Physiology, University of Arizona, Tucson, AZ 85721, USA
| | - Kyra N Hermanson
- Department of Physiology, University of Arizona, Tucson, AZ 85721, USA
| | - Cameron A Beard
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ 85721, USA
| | - Nicholas U Schwartz
- Department of Neurology, Stanford University Medical Center, Stanford, CA 94304, USA
| | - Justin M Snider
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ 85721, USA; University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
| | - Benjamin E Low
- Technology Evaluation and Development, The Jackson Laboratory, Bar Harbor, ME, USA; Genetic Resource Science, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Michael V Wiles
- Technology Evaluation and Development, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Yusuf A Hannun
- Department of Medicine and Stony Brook Cancer Center, Stony Brook, NY 11794, USA; Northport Veterans Affairs Medical Center, Northport, NY 11768, USA
| | - Lina M Obeid
- Department of Medicine and Stony Brook Cancer Center, Stony Brook, NY 11794, USA; Northport Veterans Affairs Medical Center, Northport, NY 11768, USA
| | - Ashley J Snider
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ 85721, USA; University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
2
|
Kim S, Coukos R, Gao F, Krainc D. Dysregulation of organelle membrane contact sites in neurological diseases. Neuron 2022; 110:2386-2408. [PMID: 35561676 PMCID: PMC9357093 DOI: 10.1016/j.neuron.2022.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/21/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
The defining evolutionary feature of eukaryotic cells is the emergence of membrane-bound organelles. Compartmentalization allows each organelle to maintain a spatially, physically, and chemically distinct environment, which greatly bolsters individual organelle function. However, the activities of each organelle must be balanced and are interdependent for cellular homeostasis. Therefore, properly regulated interactions between organelles, either physically or functionally, remain critical for overall cellular health and behavior. In particular, neuronal homeostasis depends heavily on the proper regulation of organelle function and cross talk, and deficits in these functions are frequently associated with diseases. In this review, we examine the emerging role of organelle contacts in neurological diseases and discuss how the disruption of contacts contributes to disease pathogenesis. Understanding the molecular mechanisms underlying the formation and regulation of organelle contacts will broaden our knowledge of their role in health and disease, laying the groundwork for the development of new therapies targeting interorganelle cross talk and function.
Collapse
Affiliation(s)
- Soojin Kim
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Robert Coukos
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Fanding Gao
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|
3
|
Sun SC, Ma D, Li MY, Zhang RX, Huang C, Huang HJ, Xie YZ, Wang ZJ, Liu J, Cai DC, Liu CX, Yang Q, Bao FX, Gong XL, Li JR, Hui Z, Wei XF, Zhong JM, Zhou WJ, Shang X, Zhang C, Liu XG, Tang BS, Xiong F, Xu XM. Mutations in C1orf194, encoding a calcium regulator, cause dominant Charcot-Marie-Tooth disease. Brain 2020; 142:2215-2229. [PMID: 31199454 DOI: 10.1093/brain/awz151] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/13/2019] [Accepted: 04/10/2019] [Indexed: 12/27/2022] Open
Abstract
Charcot-Marie-Tooth disease is a hereditary motor and sensory neuropathy exhibiting great clinical and genetic heterogeneity. Here, the identification of two heterozygous missense mutations in the C1orf194 gene at 1p21.2-p13.2 with Charcot-Marie-Tooth disease are reported. Specifically, the p.I122N mutation was the cause of an intermediate form of Charcot-Marie-Tooth disease, and the p.K28I missense mutation predominately led to the demyelinating form. Functional studies demonstrated that the p.K28I variant significantly reduced expression of the protein, but the p.I122N variant increased. In addition, the p.I122N mutant protein exhibited the aggregation in neuroblastoma cell lines and the patient's peroneal nerve. Either gain-of-function or partial loss-of-function mutations to C1ORF194 can specify different causal mechanisms responsible for Charcot-Marie-Tooth disease with a wide range of clinical severity. Moreover, a knock-in mouse model confirmed that the C1orf194 missense mutation p.I121N led to impairments in motor and neuromuscular functions, and aberrant myelination and axonal phenotypes. The loss of normal C1ORF194 protein altered intracellular Ca2+ homeostasis and upregulated Ca2+ handling regulatory proteins. These findings describe a novel protein with vital functions in peripheral nervous systems and broaden the causes of Charcot-Marie-Tooth disease, which open new avenues for the diagnosis and treatment of related neuropathies.
Collapse
Affiliation(s)
- Shun-Chang Sun
- Department of Clinical Laboratory, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Di Ma
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Mei-Yi Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Ru-Xu Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Cheng Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Hua-Jie Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Yong-Zhi Xie
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhong-Ju Wang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - De-Cheng Cai
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Cui-Xian Liu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Qi Yang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Fei-Xiang Bao
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Xiao-Li Gong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Jie-Ru Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Zheng Hui
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Xiao-Feng Wei
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Jian-Mei Zhong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Wan-Jun Zhou
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Xuan Shang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Cheng Zhang
- Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xing-Guo Liu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou 510515, P.R. China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, P.R.China
| | - Xiang-Min Xu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou 510515, P.R. China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, P.R.China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brian Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, P.R. China
| |
Collapse
|
4
|
English AM, Hughes AL. Knowing When to Let Go: Lysosomes Regulate Inter-Mitochondrial Tethering. Dev Cell 2020; 50:259-260. [PMID: 31386859 DOI: 10.1016/j.devcel.2019.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In this issue of Developmental Cell, Wong et al. (2019) show that the lysosomal GTPase Rab7 regulates inter-mitochondrial contacts to control mitochondrial motility and identify dysregulated inter-mitochondrial tethering as a common theme in Charcot-Marie-Tooth (CMT) type 2 disease.
Collapse
Affiliation(s)
- Alyssa M English
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Adam L Hughes
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
5
|
Song GJ, Gupta DP, Rahman MH, Park HT, Al Ghouleh I, Bisello A, Lee MG, Park JY, Park HH, Jun JH, Chung KW, Choi BO, Suk K. Loss-of-function of EBP50 is a new cause of hereditary peripheral neuropathy: EBP50 functions in peripheral nerve system. Glia 2020; 68:1794-1809. [PMID: 32077526 DOI: 10.1002/glia.23805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022]
Abstract
Finding causative genetic mutations is important in the diagnosis and treatment of hereditary peripheral neuropathies. This study was conducted to find new genes involved in the pathophysiology of hereditary peripheral neuropathy. We identified a new mutation in the EBP50 gene, which is co-segregated with neuropathic phenotypes, including motor and sensory deficit in a family with Charcot-Marie-Tooth disease. EBP50 is known to be important for the formation of microvilli in epithelial cells, and the discovery of this gene mutation allowed us to study the function of EBP50 in the nervous system. EBP50 was strongly expressed in the nodal and paranodal regions of sciatic nerve fibers, where Schwann cell microvilli contact the axolemma, and at the growth tips of primary Schwann cells. In addition, EBP50 expression was decreased in mouse models of peripheral neuropathy. Knockout mice were used to study EBP50 function in the peripheral nervous system. Interestingly motor function deficit and abnormal histology of nerve fibers were observed in EBP50+/- heterozygous mice at 12 months of age, but not 3 months. in vitro studies using Schwann cells showed that NRG1-induced AKT activation and migration were significantly reduced in cells overexpressing the I325V mutant of EBP50 or cells with knocked-down EBP50 expression. In conclusion, we show for the first time that loss of function due to EBP50 gene deficiency or mutation can cause peripheral neuropathy.
Collapse
Affiliation(s)
- Gyun Jee Song
- Department of Medical Science, Institute for Bio-Medical Convergence, Catholic Kwandong University, International St. Mary's Hospital, Incheon, Republic of Korea
| | - Deepak Prasad Gupta
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Md Habibur Rahman
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hwan Tae Park
- Department of Molecular Neuroscience, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Imad Al Ghouleh
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alessandro Bisello
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Maan-Gee Lee
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Yong Park
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Jin Hyun Jun
- Department of Senior Healthcare, BK21 Plus Program, Graduate School of Eulji University, Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam, Republic of Korea
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju, Republic of Korea
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
6
|
Eggermann K, Gess B, Häusler M, Weis J, Hahn A, Kurth I. Hereditary Neuropathies. DEUTSCHES ARZTEBLATT INTERNATIONAL 2019; 115:91-97. [PMID: 29478438 DOI: 10.3238/arztebl.2018.0091] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 06/30/2017] [Accepted: 11/22/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hereditary peripheral neuropathies constitute a large group of genetic diseases, with an overall prevalence of 1:2500. In recent years, the use of so-called next-generation sequencing (NGS) has led to the identification of many previously unknown involved genes and genetic defects that cause neuropathy. In this article, we review the procedures and utility of genetic evaluation for hereditary neurop - athies, while also considering the implications of the fact that causally directed treatment of these disorders is generally unavailable. METHODS This review is based on pertinent publications retrieved by a PubMed search employing the search terms "hereditary neuropathy," "Charcot-Marie-Tooth disease," "hereditary sensory neuropathy," and "hereditary motor neuropathy." RESULTS With rare exceptions, the diagnostic evaluation for hereditary neuropathies proceeds in stepwise fashion, beginning with the study of individual genes. If this fails to detect any abnormality, NGS analysis, which involves the sequencing of many different genes in parallel and has now become available for routine diagnosis, should be performed early on in the diagnostic work-up. Exome and genome analyses are currently performed only when considered to be indicated in the individual case. Whenever a hereditary neuropathy is suspected, other (including potentially treatable) causes of neuropathy should be ruled out. Mutations in neurop athy-associated genes may also be associated with other clinical entities such as spastic paraplegia or myopathy. Thus, interdisciplinary assessment is necessary. CONCLUSION The molecular diagnosis of neuropathies has become much more successful through the use of NGS. Although causally directed treatment approaches still need to be developed, the correct diagnosis puts an end to the often highly stressful search for a cause and enables determination of the risk of disease in other members of the patient's family.
Collapse
Affiliation(s)
- Katja Eggermann
- Institute of Human Genetics, Uniklinik RWTH Aachen; Department of Neurology, Uniklinik RWTH Aachen; Department of Pediatrics, Division of Neuropediatrics and Social Pediatrics, Uniklinik RWTH Aachen; Department of Neuropediatrics, Developmental Medicine and Epileptology, Children's Medical Center; Giessen, University of Giessen; Institute of Neuropathology, Uniklinik RWTH Aachen
| | | | | | | | | | | |
Collapse
|
7
|
Wong YC, Peng W, Krainc D. Lysosomal Regulation of Inter-mitochondrial Contact Fate and Motility in Charcot-Marie-Tooth Type 2. Dev Cell 2019; 50:339-354.e4. [PMID: 31231042 DOI: 10.1016/j.devcel.2019.05.033] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 02/25/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
Abstract
Properly regulated mitochondrial networks are essential for cellular function and implicated in multiple diseases. Mitochondria undergo fission and fusion events, but the dynamics and regulation of a third event of inter-mitochondrial contact formation remain unclear. Using super-resolution imaging, we demonstrate that inter-mitochondrial contacts frequently form and play a fundamental role in mitochondrial networks by restricting mitochondrial motility. Inter-mitochondrial contact untethering events are marked and regulated by mitochondria-lysosome contacts, which are modulated by RAB7 GTP hydrolysis. Moreover, inter-mitochondrial contact formation and untethering are further regulated by Mfn1/2 and Drp1 GTP hydrolysis, respectively. Surprisingly, endoplasmic reticulum tubules are also present at inter-mitochondrial contact untethering events, in addition to mitochondrial fission and fusion events. Importantly, we find that multiple Charcot-Marie-Tooth type 2 disease-linked mutations in Mfn2 (CMT2A), RAB7 (CMT2B), and TRPV4 (CMT2C) converge on prolonged inter-mitochondrial contacts and defective mitochondrial motility, highlighting a role for inter-mitochondrial contacts in mitochondrial network regulation and disease.
Collapse
Affiliation(s)
- Yvette C Wong
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Wesley Peng
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
8
|
Murakami T, Sunada Y. Schwann Cell and the Pathogenesis of Charcot–Marie–Tooth Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:301-321. [DOI: 10.1007/978-981-32-9636-7_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Punetha J, Mackay-Loder L, Harel T, Coban-Akdemir Z, Jhangiani SN, Gibbs RA, Lee I, Terespolsky D, Lupski JR, Posey JE. Identification of a pathogenic PMP2 variant in a multi-generational family with CMT type 1: Clinical gene panels versus genome-wide approaches to molecular diagnosis. Mol Genet Metab 2018; 125:302-304. [PMID: 30249361 PMCID: PMC6326168 DOI: 10.1016/j.ymgme.2018.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 01/07/2023]
Abstract
Charcot-Marie-Tooth (CMT) disease type 1 is an inherited peripheral neuropathy characterized by demyelination and reduced nerve conduction velocities. We present a multi-generational family with peripheral neuropathy in whom clinical CMT panel testing failed to conclude a molecular diagnosis. We found a PMP2 pathogenic variant c.155T > C, p.(Ile52Thr) that segregates with disease suggesting that PMP2 variants should be considered in patients with neuropathy and that it may be prudent to include in clinical CMT gene panels.
Collapse
Affiliation(s)
- Jaya Punetha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Loren Mackay-Loder
- Department of Laboratory Medicine - Genetics Program, Trillium Health Partners, Mississauga, ON L5M 2N1, Canada
| | - Tamar Harel
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem 9112001, Israel
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ian Lee
- Department of Laboratory Medicine - Genetics Program, Trillium Health Partners, Mississauga, ON L5M 2N1, Canada
| | - Deborah Terespolsky
- Department of Laboratory Medicine - Genetics Program, Trillium Health Partners, Mississauga, ON L5M 2N1, Canada
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Quadros Santos Monteiro Fonseca AT, Zanoteli E. Charcot-Marie-Tooth disease. REVISTA MÉDICA CLÍNICA LAS CONDES 2018. [DOI: 10.1016/j.rmclc.2018.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
11
|
You Y, Wang X, Li S, Zhao X, Zhang X. Exome sequencing reveals a novel MFN2 missense mutation in a Chinese family with Charcot-Marie-Tooth type 2A. Exp Ther Med 2018; 16:2281-2286. [PMID: 30210586 PMCID: PMC6122517 DOI: 10.3892/etm.2018.6513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) is a group of inherited peripheral neuropathies. To date, mutations in >80 genes are reportedly associated with CMT. Protein mitofusin 2 encoded by MFN2 serves an essential role in mitochondrial fusion and regulation of apoptosis, which has previously been reported to be highly associated with an axonal form of neuropathy (CMT2A). In the present study, a large Chinese family with severe CMT was reported and a genetic analysis of the disease was performed. A detailed physical examination for CMT was performed in 13 family members and electrophysiological examinations were performed in 3 affected family members. Whole-exome sequencing was performed on the proband, and the suspected variants were identified by Sanger sequencing. The pathogenicity of mutation was verified by restriction fragment length polymorphism analysis in the family followed by a bioinformatics analysis. A novel c.1190G>C; p.(R397P) mutation in the MFN2 gene was identified in the proband, and co-segregated between genotype and phenotype in the family. The substituted amino acid changed the hydrophobicity and charge characteristics of the mitofusin 2 coiled-coiled domain; thus it may affect its biological function. In summary, a novel pathogenic mutation was identified in a Chinese family with CMT, which expands the phenotypic and mutational spectrum of CMT2A, and provides evidence for prenatal interventions and more precise pharmacological treatments to this family.
Collapse
Affiliation(s)
- Yi You
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P.R. China
| | - Xiaodong Wang
- Department of Paediatric Orthopaedics, The Children's Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Shan Li
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P.R. China
| | - Xiuli Zhao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P.R. China
| | - Xue Zhang
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P.R. China
| |
Collapse
|
12
|
Ackerman SD, Luo R, Poitelon Y, Mogha A, Harty BL, D'Rozario M, Sanchez NE, Lakkaraju AKK, Gamble P, Li J, Qu J, MacEwan MR, Ray WZ, Aguzzi A, Feltri ML, Piao X, Monk KR. GPR56/ADGRG1 regulates development and maintenance of peripheral myelin. J Exp Med 2018; 215:941-961. [PMID: 29367382 PMCID: PMC5839751 DOI: 10.1084/jem.20161714] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/03/2017] [Accepted: 12/15/2017] [Indexed: 01/26/2023] Open
Abstract
Myelin is a multilamellar sheath generated by specialized glia called Schwann cells (SCs) in the peripheral nervous system (PNS), which serves to protect and insulate axons for rapid neuronal signaling. In zebrafish and rodent models, we identify GPR56/ADGRG1 as a conserved regulator of PNS development and health. We demonstrate that, during SC development, GPR56-dependent RhoA signaling promotes timely radial sorting of axons. In the mature PNS, GPR56 is localized to distinct SC cytoplasmic domains, is required to establish proper myelin thickness, and facilitates organization of the myelin sheath. Furthermore, we define plectin-a scaffolding protein previously linked to SC domain organization, myelin maintenance, and a series of disorders termed "plectinopathies"-as a novel interacting partner of GPR56. Finally, we show that Gpr56 mutants develop progressive neuropathy-like symptoms, suggesting an underlying mechanism for peripheral defects in some human patients with GPR56 mutations. In sum, we define Gpr56 as a new regulator in the development and maintenance of peripheral myelin.
Collapse
Affiliation(s)
- Sarah D Ackerman
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO
| | - Rong Luo
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, MA
| | - Yannick Poitelon
- Departments of Biochemistry and Neurology, Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY
| | - Amit Mogha
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO
| | - Breanne L Harty
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO
| | - Mitchell D'Rozario
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO
| | - Nicholas E Sanchez
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO
| | | | - Paul Gamble
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO
| | - Jun Li
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY
| | - Matthew R MacEwan
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
| | - Wilson Zachary Ray
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zürich, Switzerland
| | - M Laura Feltri
- Departments of Biochemistry and Neurology, Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY
| | - Xianhua Piao
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, MA
| | - Kelly R Monk
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
13
|
Muhammad AKMG, Kim K, Epifantseva I, Aghamaleky-Sarvestany A, Simpkinson ME, Carmona S, Landeros J, Bell S, Svaren J, Baloh RH. Cell transplantation strategies for acquired and inherited disorders of peripheral myelin. Ann Clin Transl Neurol 2018; 5:186-200. [PMID: 29468179 PMCID: PMC5817839 DOI: 10.1002/acn3.517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 01/26/2023] Open
Abstract
Objective To investigate transplantation of rat Schwann cells or human iPSC-derived neural crest cells and derivatives into models of acquired and inherited peripheral myelin damage. Methods Primary cultured rat Schwann cells labeled with a fluorescent protein for monitoring at various times after transplantation. Human-induced pluripotent stem cells (iPSCs) were differentiated into neural crest stem cells, and subsequently toward a Schwann cell lineage via two different protocols. Cell types were characterized using flow cytometry, immunocytochemistry, and transcriptomics. Rat Schwann cells and human iPSC derivatives were transplanted into (1) nude rats pretreated with lysolecithin to induce demyelination or (2) a transgenic rat model of dysmyelination due to PMP22 overexpression. Results Rat Schwann cells transplanted into sciatic nerves with either toxic demyelination or genetic dysmyelination engrafted successfully, and migrated longitudinally for relatively long distances, with more limited axial migration. Transplanted Schwann cells engaged existing axons and displaced dysfunctional Schwann cells to form normal-appearing myelin. Human iPSC-derived neural crest stem cells and their derivatives shared similar engraftment and migration characteristics to rat Schwann cells after transplantation, but did not further differentiate into Schwann cells or form myelin. Interpretation These results indicate that cultured Schwann cells surgically delivered to peripheral nerve can engraft and form myelin in either acquired or inherited myelin injury, as proof of concept for pursuing cell therapy for diseases of peripheral nerve. However, lack of reliable technology for generating human iPSC-derived Schwann cells for transplantation therapy remains a barrier in the field.
Collapse
Affiliation(s)
- A K M G Muhammad
- Board of Governors Regenerative Medicine Institute Cedars-Sinai Medical Center 8700 Beverly Boulevard Los Angeles California 90048
| | - Kevin Kim
- Board of Governors Regenerative Medicine Institute Cedars-Sinai Medical Center 8700 Beverly Boulevard Los Angeles California 90048
| | - Irina Epifantseva
- Board of Governors Regenerative Medicine Institute Cedars-Sinai Medical Center 8700 Beverly Boulevard Los Angeles California 90048
| | - Arwin Aghamaleky-Sarvestany
- Board of Governors Regenerative Medicine Institute Cedars-Sinai Medical Center 8700 Beverly Boulevard Los Angeles California 90048
| | - Megan E Simpkinson
- Board of Governors Regenerative Medicine Institute Cedars-Sinai Medical Center 8700 Beverly Boulevard Los Angeles California 90048
| | - Sharon Carmona
- Board of Governors Regenerative Medicine Institute Cedars-Sinai Medical Center 8700 Beverly Boulevard Los Angeles California 90048
| | - Jesse Landeros
- Board of Governors Regenerative Medicine Institute Cedars-Sinai Medical Center 8700 Beverly Boulevard Los Angeles California 90048
| | - Shaughn Bell
- Board of Governors Regenerative Medicine Institute Cedars-Sinai Medical Center 8700 Beverly Boulevard Los Angeles California 90048
| | - John Svaren
- Waisman Center and Department of Comparative Biosciences University of Wisconsin-Madison Madison Wisconsin 53706
| | - Robert H Baloh
- Board of Governors Regenerative Medicine Institute Cedars-Sinai Medical Center 8700 Beverly Boulevard Los Angeles California 90048.,Department of Neurology Cedars-Sinai Medical Center 8700 Beverly Boulevard Los Angeles California 90048
| |
Collapse
|
14
|
Schwartz NU, Linzer RW, Truman JP, Gurevich M, Hannun YA, Senkal CE, Obeid LM. Decreased ceramide underlies mitochondrial dysfunction in Charcot-Marie-Tooth 2F. FASEB J 2018; 32:1716-1728. [PMID: 29133339 DOI: 10.1096/fj.201701067r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease is the most commonly inherited neurologic disorder, but its molecular mechanisms remain unclear. One variant of CMT, 2F, is characterized by mutations in heat shock protein 27 (Hsp27). As bioactive sphingolipids have been implicated in neurodegenerative diseases, we sought to determine if their dysregulation is involved in CMT. Here, we show that Hsp27 knockout mice demonstrated decreases in ceramide in peripheral nerve tissue and that the disease-associated Hsp27 S135F mutant demonstrated decreases in mitochondrial ceramide. Given that Hsp27 is a chaperone protein, we examined its role in regulating ceramide synthases (CerSs), an enzyme family responsible for catalyzing generation of the sphingolipid ceramide. We determined that CerSs colocalized with Hsp27, and upon the presence of S135F mutants, CerS1 lost its colocalization with mitochondria suggesting that decreased mitochondrial ceramides result from reduced mitochondrial CerS localization rather than decreased CerS activity. Mitochondria in mutant cells appeared larger with increased interconnectivity. Furthermore, mutant cell lines demonstrated decreased mitochondrial respiratory function and increased autophagic flux. Mitochondrial structural and functional changes were recapitulated by blocking ceramide generation pharmacologically. These results suggest that mutant Hsp27 decreases mitochondrial ceramide levels, producing structural and functional changes in mitochondria leading to neuronal degeneration.-Schwartz, N. U., Linzer, R. W., Truman, J.-P., Gurevich, M., Hannun, Y. A., Senkal, C. E., Obeid, L. M. Decreased ceramide underlies mitochondrial dysfunction in Charcot-Marie-Tooth 2F.
Collapse
Affiliation(s)
- Nicholas U Schwartz
- Department of Neurobiology and Behavior, Stony Brook University School of Medicine, Stony Brook, New York, USA
| | - Ryan W Linzer
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, USA
| | - Jean-Philip Truman
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, USA
| | - Mikhail Gurevich
- Department of Pharmacology, Stony Brook University School of Medicine, Stony Brook, New York, USA.,Department of Orthopaedics, Stony Brook University School of Medicine, Stony Brook, New York, USA; and
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, USA
| | - Can E Senkal
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, USA
| | - Lina M Obeid
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, USA.,Northport Veterans Affairs Medical Center, Northport, New York, USA
| |
Collapse
|
15
|
|
16
|
Intrathecal gene therapy rescues a model of demyelinating peripheral neuropathy. Proc Natl Acad Sci U S A 2016; 113:E2421-9. [PMID: 27035961 DOI: 10.1073/pnas.1522202113] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Inherited demyelinating peripheral neuropathies are progressive incurable diseases without effective treatment. To develop a gene therapy approach targeting myelinating Schwann cells that can be translatable, we delivered a lentiviral vector using a single lumbar intrathecal injection and a myelin-specific promoter. The human gene of interest, GJB1, which is mutated in X-linked Charcot-Marie-Tooth Disease (CMT1X), was delivered intrathecally into adult Gjb1-null mice, a genetically authentic model of CMT1X that develops a demyelinating peripheral neuropathy. We obtained widespread, stable, and cell-specific expression of connexin32 in up to 50% of Schwann cells in multiple lumbar spinal roots and peripheral nerves. Behavioral and electrophysiological analysis revealed significantly improved motor performance, quadriceps muscle contractility, and sciatic nerve conduction velocities. Furthermore, treated mice exhibited reduced numbers of demyelinated and remyelinated fibers and fewer inflammatory cells in lumbar motor roots, as well as in the femoral motor and sciatic nerves. This study demonstrates that a single intrathecal lentiviral gene delivery can lead to Schwann cell-specific expression in spinal roots extending to multiple peripheral nerves. This clinically relevant approach improves the phenotype of an inherited neuropathy mouse model and provides proof of principle for treating inherited demyelinating neuropathies.
Collapse
|
17
|
Sporadic hereditary motor and sensory neuropathies: Advances in the diagnosis using next generation sequencing technology. J Neurol Sci 2015; 359:409-17. [DOI: 10.1016/j.jns.2015.09.377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/07/2015] [Accepted: 09/28/2015] [Indexed: 11/24/2022]
|
18
|
Høyer H, Busk ØL, Holla ØL, Strand L, Russell MB, Skjelbred CF, Braathen GJ. Hereditary peripheral neuropathies diagnosed by next-generation sequencing. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2015; 135:1838-44. [PMID: 26534810 DOI: 10.4045/tidsskr.14.1002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) is a genetic technique used to determine the order of nucleotides in DNA. The technique has proved to be more efficient than the traditional method, Sanger sequencing, for sequencing multiple genes. NGS is now being used to diagnose disorders in which multiple genes are involved. This study has examined whether next-generation sequencing produces a greater number of positive diagnoses than its traditional counterpart in patients with suspected hereditary peripheral neuropathy. MATERIAL AND METHOD This study is a retrospective review of samples from 103 patients investigated for hereditary peripheral neuropathy, received by Telemark Hospital in the period 2012-14. After exclusion of duplication/deletion of PMP22, 96 samples were analysed by NGS with physical enrichment of 52 hereditary peripheral neuropathy genes. RESULTS A genetic cause was identified in 35 patients (34%) with peripheral neuropathy, of which 28 (27%) were point mutations identified by NGS. INTERPRETATION Of the pathogenic point mutations identified in this study, 12 were in genes that would previously have been analysed by Sanger sequencing in our department, whereas 16 were in genes that would not previously have been tested.
Collapse
Affiliation(s)
- Helle Høyer
- Seksjon for medisinsk genetikk Avdeling for laboratoriemedisin Sykehuset Telemark
| | - Øyvind L Busk
- Seksjon for medisinsk genetikk Avdeling for laboratoriemedisin Sykehuset Telemark
| | - Øystein L Holla
- Seksjon for medisinsk genetikk Avdeling for laboratoriemedisin Sykehuset Telemark
| | - Linda Strand
- Seksjon for medisinsk genetikk Avdeling for laboratoriemedisin Sykehuset Telemark
| | | | - Camilla F Skjelbred
- Seksjon for medisinsk genetikk Avdeling for laboratoriemedisin Sykehuset Telemark
| | - Geir J Braathen
- Seksjon for medisinsk genetikk Avdeling for laboratoriemedisin Sykehuset Telemark
| |
Collapse
|
19
|
Sevilla T, Lupo V, Martínez-Rubio D, Sancho P, Sivera R, Chumillas MJ, García-Romero M, Pascual-Pascual SI, Muelas N, Dopazo J, Vílchez JJ, Palau F, Espinós C. Mutations in the MORC2 gene cause axonal Charcot-Marie-Tooth disease. Brain 2015; 139:62-72. [PMID: 26497905 DOI: 10.1093/brain/awv311] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/08/2015] [Indexed: 11/13/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a complex disorder with wide genetic heterogeneity. Here we present a new axonal Charcot-Marie-Tooth disease form, associated with the gene microrchidia family CW-type zinc finger 2 (MORC2). Whole-exome sequencing in a family with autosomal dominant segregation identified the novel MORC2 p.R190W change in four patients. Further mutational screening in our axonal Charcot-Marie-Tooth disease clinical series detected two additional sporadic cases, one patient who also carried the same MORC2 p.R190W mutation and another patient that harboured a MORC2 p.S25L mutation. Genetic and in silico studies strongly supported the pathogenicity of these sequence variants. The phenotype was variable and included patients with congenital or infantile onset, as well as others whose symptoms started in the second decade. The patients with early onset developed a spinal muscular atrophy-like picture, whereas in the later onset cases, the initial symptoms were cramps, distal weakness and sensory impairment. Weakness and atrophy progressed in a random and asymmetric fashion and involved limb girdle muscles, leading to a severe incapacity in adulthood. Sensory loss was always prominent and proportional to disease severity. Electrophysiological studies were consistent with an asymmetric axonal motor and sensory neuropathy, while fasciculations and myokymia were recorded rather frequently by needle electromyography. Sural nerve biopsy revealed pronounced multifocal depletion of myelinated fibres with some regenerative clusters and occasional small onion bulbs. Morc2 is expressed in both axons and Schwann cells of mouse peripheral nerve. Different roles in biological processes have been described for MORC2. As the silencing of Charcot-Marie-Tooth disease genes have been associated with DNA damage response, it is tempting to speculate that a deregulation of this pathway may be linked to the axonal degeneration observed in MORC2 neuropathy, thus adding a new pathogenic mechanism to the long list of causes of Charcot-Marie-Tooth disease.
Collapse
Affiliation(s)
- Teresa Sevilla
- 1 Department of Neurology, Hospital Universitari i Politècnic La Fe, Avd. Fernando Abril Martorell no. 106, 46026 Valencia, Spain 2 Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Eduardo Primo Yúfera no. 13, 46012 Valencia, Spain 3 Department of Medicine, University of Valencia, Avd. Blasco Ibáñez no. 15, 46010 Valencia, Spain
| | - Vincenzo Lupo
- 2 Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Eduardo Primo Yúfera no. 13, 46012 Valencia, Spain 4 Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 13, 46012 Valencia, Spain
| | - Dolores Martínez-Rubio
- 2 Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Eduardo Primo Yúfera no. 13, 46012 Valencia, Spain 4 Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 13, 46012 Valencia, Spain
| | - Paula Sancho
- 2 Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Eduardo Primo Yúfera no. 13, 46012 Valencia, Spain 4 Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 13, 46012 Valencia, Spain
| | - Rafael Sivera
- 1 Department of Neurology, Hospital Universitari i Politècnic La Fe, Avd. Fernando Abril Martorell no. 106, 46026 Valencia, Spain
| | - María J Chumillas
- 2 Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Eduardo Primo Yúfera no. 13, 46012 Valencia, Spain 5 Department of Clinical Neurophysiology, Hospital Universitari i Politècnic La Fe, Avd. Fernando Abril Martorell no. 106, 46026 Valencia, Spain
| | - Mar García-Romero
- 6 Department of Neuropaediatrics, Hospital Universitario La Paz, P° de la Castellana no. 261, 08046 Madrid, Spain
| | - Samuel I Pascual-Pascual
- 6 Department of Neuropaediatrics, Hospital Universitario La Paz, P° de la Castellana no. 261, 08046 Madrid, Spain
| | - Nuria Muelas
- 1 Department of Neurology, Hospital Universitari i Politècnic La Fe, Avd. Fernando Abril Martorell no. 106, 46026 Valencia, Spain 2 Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Eduardo Primo Yúfera no. 13, 46012 Valencia, Spain
| | - Joaquín Dopazo
- 2 Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Eduardo Primo Yúfera no. 13, 46012 Valencia, Spain 7 Program on Computational Genomics, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 13, 46012 Valencia, Spain
| | - Juan J Vílchez
- 1 Department of Neurology, Hospital Universitari i Politècnic La Fe, Avd. Fernando Abril Martorell no. 106, 46026 Valencia, Spain 2 Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Eduardo Primo Yúfera no. 13, 46012 Valencia, Spain 3 Department of Medicine, University of Valencia, Avd. Blasco Ibáñez no. 15, 46010 Valencia, Spain
| | - Francesc Palau
- 2 Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Eduardo Primo Yúfera no. 13, 46012 Valencia, Spain 4 Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 13, 46012 Valencia, Spain 8 Department of Genetic and Molecular Medicine, and Pediatric Institute for Rare Diseases (IPER), Hospital Sant Joan de Déu, P° Sant Joan de Déu no. 2, 08950 Barcelona, Spain
| | - Carmen Espinós
- 2 Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Eduardo Primo Yúfera no. 13, 46012 Valencia, Spain 4 Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 13, 46012 Valencia, Spain
| |
Collapse
|
20
|
Vanoli F, Rinchetti P, Porro F, Parente V, Corti S. Clinical and molecular features and therapeutic perspectives of spinal muscular atrophy with respiratory distress type 1. J Cell Mol Med 2015; 19:2058-66. [PMID: 26095024 PMCID: PMC4568910 DOI: 10.1111/jcmm.12606] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 04/02/2015] [Indexed: 12/13/2022] Open
Abstract
Spinal muscular atrophy with respiratory distress (SMARD1) is an autosomal recessive neuromuscular disease caused by mutations in the IGHMBP2 gene, encoding the immunoglobulin μ-binding protein 2, leading to motor neuron degeneration. It is a rare and fatal disease with an early onset in infancy in the majority of the cases. The main clinical features are muscular atrophy and diaphragmatic palsy, which requires prompt and permanent supportive ventilation. The human disease is recapitulated in the neuromuscular degeneration (nmd) mouse. No effective treatment is available yet, but novel therapeutical approaches tested on the nmd mouse, such as the use of neurotrophic factors and stem cell therapy, have shown positive effects. Gene therapy demonstrated effectiveness in SMA, being now at the stage of clinical trial in patients and therefore representing a possible treatment for SMARD1 as well. The significant advancement in understanding of both SMARD1 clinical spectrum and molecular mechanisms makes ground for a rapid translation of pre-clinical therapeutic strategies in humans.
Collapse
Affiliation(s)
- Fiammetta Vanoli
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Rinchetti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Porro
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valeria Parente
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
21
|
Abstract
Heritable diseases of the peripheral nerves (Charcot-Marie-Tooth disease [CMT]) affect the motor units and sensory nerves, and they are among the most prevalent genetic conditions in the pediatric patient population. The typical clinical presentation includes distal muscle weakness and atrophy, but the severity and progression are largely variable. Improvements in supportive treatment have led to better preservation of patients' motor functions. More than 80 genes have been associated with CMT. These genetic discoveries, along with the developments of cellular and transgenic disease models, have allowed clinicians to better understand the disease mechanisms, which should lead to more specific treatments.
Collapse
Affiliation(s)
- Agnes Jani-Acsadi
- Department of Neurology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Sylvia Ounpuu
- Department of Orthopedic Surgery, Connecticut Children's Medical Center, Farmington, CT, USA
| | - Kristan Pierz
- Department of Orthopedic Surgery, Center of Motion Analysis, Connecticut Children's Medical Center, Farmington, CT, USA
| | - Gyula Acsadi
- Division of Neurology, Department of Neurology, Connecticut Children's Medical Center, University of Connecticut School of Medicine, 505 Farmington Avenue, Farmington, CT 06032, USA.
| |
Collapse
|
22
|
Pehlivan D, Akdemir ZC, Karaca E, Bayram Y, Jhangiani S, Yildiz E, Muzny D, Uluc K, Gibbs RA, Elcioglu N, Lupski JR, Harel T. Exome sequencing reveals homozygous TRIM2 mutation in a patient with early onset CMT and bilateral vocal cord paralysis. Hum Genet 2015; 134:671-3. [PMID: 25893792 PMCID: PMC4426057 DOI: 10.1007/s00439-015-1548-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/30/2015] [Indexed: 10/23/2022]
Abstract
Charcot-Marie-Tooth disease is a heterogeneous group of inherited distal symmetric polyneuropathies associated with mutations in genes encoding components essential for normal functioning of the Schwann cell and axon. TRIM2, encoding a ligase that ubiquitinates the neurofilament light chain, was recently associated with early-onset neuropathy in a single patient. We report a TRIM2 homozygous missense mutation (c.2000A>C; p.D667A) in a patient with peripheral neuropathy and bilateral vocal cord paralysis, allowing for further delineation of the associated phenotypic spectrum.
Collapse
Affiliation(s)
- Davut Pehlivan
- Section of Neurology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Yavuz Bayram
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Shalini Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Edibe Yildiz
- Section of Neurology, Department of Pediatrics, University of Istanbul, School of Medicine, Istanbul, Turkey
| | - Donna Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Kayihan Uluc
- Department of Pediatric Neurology, Marmara University School of Medicine, Istanbul, Turkey
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | | | - Nursel Elcioglu
- Department of Pediatric Genetics, Marmara University School of Medicine, Istanbul, Turkey
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Texas Children's Hospital, Houston, Texas
| | - Tamar Harel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
23
|
Cottenie E, Kochanski A, Jordanova A, Bansagi B, Zimon M, Horga A, Jaunmuktane Z, Saveri P, Rasic VM, Baets J, Bartsakoulia M, Ploski R, Teterycz P, Nikolic M, Quinlivan R, Laura M, Sweeney MG, Taroni F, Lunn MP, Moroni I, Gonzalez M, Hanna MG, Bettencourt C, Chabrol E, Franke A, von Au K, Schilhabel M, Kabzińska D, Hausmanowa-Petrusewicz I, Brandner S, Lim SC, Song H, Choi BO, Horvath R, Chung KW, Zuchner S, Pareyson D, Harms M, Reilly MM, Houlden H. Truncating and missense mutations in IGHMBP2 cause Charcot-Marie Tooth disease type 2. Am J Hum Genet 2014; 95:590-601. [PMID: 25439726 PMCID: PMC4225647 DOI: 10.1016/j.ajhg.2014.10.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/01/2014] [Indexed: 11/18/2022] Open
Abstract
Using a combination of exome sequencing and linkage analysis, we investigated an English family with two affected siblings in their 40s with recessive Charcot-Marie Tooth disease type 2 (CMT2). Compound heterozygous mutations in the immunoglobulin-helicase-μ-binding protein 2 (IGHMBP2) gene were identified. Further sequencing revealed a total of 11 CMT2 families with recessively inherited IGHMBP2 gene mutations. IGHMBP2 mutations usually lead to spinal muscular atrophy with respiratory distress type 1 (SMARD1), where most infants die before 1 year of age. The individuals with CMT2 described here, have slowly progressive weakness, wasting and sensory loss, with an axonal neuropathy typical of CMT2, but no significant respiratory compromise. Segregating IGHMBP2 mutations in CMT2 were mainly loss-of-function nonsense in the 5' region of the gene in combination with a truncating frameshift, missense, or homozygous frameshift mutations in the last exon. Mutations in CMT2 were predicted to be less aggressive as compared to those in SMARD1, and fibroblast and lymphoblast studies indicate that the IGHMBP2 protein levels are significantly higher in CMT2 than SMARD1, but lower than controls, suggesting that the clinical phenotype differences are related to the IGHMBP2 protein levels.
Collapse
Affiliation(s)
- Ellen Cottenie
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Andrzej Kochanski
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, Centre of Biostructure, Medical University of Warsaw, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Albena Jordanova
- VIB Department of Molecular Genetics, University of Antwerp, Antwerpen 2610, Belgium
| | - Boglarka Bansagi
- Institute of Genetic Medicine, MRC Centre for Neuromuscular Diseases, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Magdalena Zimon
- VIB Department of Molecular Genetics, University of Antwerp, Antwerpen 2610, Belgium
| | - Alejandro Horga
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Zane Jaunmuktane
- Division of Neuropathology and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Paola Saveri
- Clinic of Central and Peripheral Degenerative Neuropathies Unit, IRCCS Foundation, C. Besta Neurological Institute, Via Celoria 11, 20133 Milan, Italy
| | - Vedrana Milic Rasic
- Clinic for Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Jonathan Baets
- VIB Department of Molecular Genetics, University of Antwerp, Antwerpen 2610, Belgium; Laboratory of Neurogenetics, University of Antwerp, Antwerpen 2610, Belgium; Department of Neurology, Antwerp University Hospital, Antwerpen, Belgium
| | - Marina Bartsakoulia
- Institute of Genetic Medicine, MRC Centre for Neuromuscular Diseases, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Rafal Ploski
- Department of Medical Genetics, Centre of Biostructure, Medical University of Warsaw, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Pawel Teterycz
- Department of Medical Genetics, Centre of Biostructure, Medical University of Warsaw, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Milos Nikolic
- University of Belgrade, Faculty of Medicine, 11000 Belgrade, Serbia
| | - Ros Quinlivan
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Matilde Laura
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Mary G Sweeney
- Neurogenetics Laboratory, The National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Franco Taroni
- Unit of Genetics of Neurodegenerative and Metabolic Disease IRCCS Foundation, C. Besta Neurological Institute, Via Celoria 11, 20133 Milan, Italy
| | - Michael P Lunn
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Isabella Moroni
- Child Neurology Unit, IRCCS Foundation, C. Besta Neurological Institute, Via Celoria 11, 20133 Milan, Italy
| | - Michael Gonzalez
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, FL 33136, USA
| | - Michael G Hanna
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Conceicao Bettencourt
- Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Elodie Chabrol
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Andre Franke
- Christian-Albrechts-University, 24118 Kiel, Germany
| | - Katja von Au
- SPZ Pediatric Neurology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | | | - Dagmara Kabzińska
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, Centre of Biostructure, Medical University of Warsaw, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Irena Hausmanowa-Petrusewicz
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, Centre of Biostructure, Medical University of Warsaw, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Sebastian Brandner
- Division of Neuropathology and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Siew Choo Lim
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673
| | - Haiwei Song
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673; Life Sciences Institute, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Byung-Ok Choi
- Department of Neurology, Sungkyunkwan University School of Medicine, Seoul 137-710, Korea
| | - Rita Horvath
- Institute of Genetic Medicine, MRC Centre for Neuromuscular Diseases, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Ki-Wha Chung
- Department of Biological Science, Kongju National University, Chungnam 134-701, Korea
| | - Stephan Zuchner
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, FL 33136, USA
| | - Davide Pareyson
- Clinic of Central and Peripheral Degenerative Neuropathies Unit, IRCCS Foundation, C. Besta Neurological Institute, Via Celoria 11, 20133 Milan, Italy
| | - Matthew Harms
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Neurogenetics Laboratory, The National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
24
|
Jerath NU, Shy ME. Hereditary motor and sensory neuropathies: Understanding molecular pathogenesis could lead to future treatment strategies. Biochim Biophys Acta Mol Basis Dis 2014; 1852:667-78. [PMID: 25108281 DOI: 10.1016/j.bbadis.2014.07.031] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/02/2014] [Accepted: 07/30/2014] [Indexed: 10/24/2022]
Abstract
Inherited peripheral neuropathies, like many other degenerative disorders, have been challenging to treat. At this point, there is little specific therapy for the inherited neuropathies other than genetic counseling as well as symptomatic treatment and rehabilitation. In the past, ascorbic acid, progesterone antagonists, and subcutaneous neurotrophin-3 (NT3) injections have demonstrated improvement in animal models of CMT 1A, the most common inherited neuropathy, but have failed to translate any effect in humans. Given the difficulty in treatment, it is important to understand the molecular pathogenesis of hereditary neuropathies in order to strategize potential future therapies. The hereditary neuropathies are in an era of molecular insight and over the past 20 years, more than 78 subtypes of Charcot Marie Tooth disease (CMT) have been identified and extensively studied to understand the biological pathways in greater detail. Next generation molecular sequencing has also improved the diagnosis as well as the understanding of CMT. A greater understanding of the molecular pathways will help pave the way to future therapeutics of CMT. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.
Collapse
Affiliation(s)
- Nivedita U Jerath
- University of Iowa, Carver College of Medicine, Department of Neurology, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Michael E Shy
- University of Iowa, Carver College of Medicine, Department of Neurology, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| |
Collapse
|