1
|
Liang W, Wang L, Zheng W, Han S, Peng KA. Heterozygous MYH9 Mutations in 2 Children With Cochlear Nerve Canal Stenosis. EAR, NOSE & THROAT JOURNAL 2022:1455613221135644. [PMID: 36282680 DOI: 10.1177/01455613221135644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023] Open
Abstract
MYH9 is a gene that encodes for a subunit of the myosin heavy chain IIA protein. Mutations in MYH9 are associated with hematologic abnormalities, renal dysfunction, and hearing loss. Bony cochlear nerve canal stenosis (CNCS), which is diagnosed on computed tomography (CT) imaging, has been associated with congenital deafness, cochlear nerve aplasia/hypoplasia, and inner ear malformations. We report two cases of CNCS presenting with profound congenital hearing loss whom we diagnosed with mutations in MYH9 and discuss the genotype-phenotype association and implications for management.
Collapse
Affiliation(s)
- Wenqi Liang
- Department of Otorhinolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Line Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wenrui Zheng
- Department of Otorhinolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shuguang Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Kevin A Peng
- House Clinic and House Institute Foundation, Los Angeles, CA, USA
| |
Collapse
|
2
|
Characterization of Sensorineural Hearing Loss in Patients With MYH9-Related Disease. Otol Neurotol 2021; 43:e298-e308. [DOI: 10.1097/mao.0000000000003450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Pan C, Zhang Y, Yang S, Chen C, Wang J, Shi C, Yu Y. A novel MYH9 mutation related to non-syndromic delayed post-lingual sensorineural hearing loss. Eur Arch Otorhinolaryngol 2021; 279:2811-2817. [PMID: 34228168 DOI: 10.1007/s00405-021-06976-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Hearing loss (HL) is the most common sensory organ dysfunction disease. The cause is often complex, though genetics are the main factor. METHODS In this study, we investigated a Chinese family with non-syndromic delayed post-lingual deafness. Comprehensive data collection was performed on this family's members, including basic information, audiological examinations, blood system examinations and imaging examinations. A pedigree diagram was drawn and the genetic patterns were analyzed. RESULTS A new gene mutation, c.314A>T:p.Y105F in the MYH9 exon, was confirmed by next generation sequencing and Sanger sequencing. This mutation co-segregated with the phenotype in the pedigree. Patients in this family present bilateral symmetry and gradual and delayed high-frequency sensorineural hearing loss. The age of onset was approximately 30 years old. Except for hearing loss, no lesions were seen in other organs, especially the blood system. CONCLUSION The identification and detection of a novel MYH9 mutation may be of great significance to provide the basis for gene function research and genetic consultation.
Collapse
Affiliation(s)
- Chen Pan
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yunmei Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Siqi Yang
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chun Chen
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinxin Wang
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chen Shi
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yafeng Yu
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Genetic Inheritance of Late-Onset, Down-Sloping Hearing Loss and Its Implications for Auditory Rehabilitation. Ear Hear 2020; 41:114-124. [DOI: 10.1097/aud.0000000000000734] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Furlano M, Arlandis R, Venegas MDP, Novelli S, Crespi J, Bullich G, Ayasreh N, Remacha Á, Ruiz P, Lorente L, Ballarín J, Matamala A, Ars E, Torra R. Nefropatía asociada a mutación del gen MYH9. Nefrologia 2019; 39:133-140. [DOI: 10.1016/j.nefro.2018.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/27/2018] [Accepted: 08/25/2018] [Indexed: 12/24/2022] Open
|
6
|
Pecci A, Ma X, Savoia A, Adelstein RS. MYH9: Structure, functions and role of non-muscle myosin IIA in human disease. Gene 2018; 664:152-167. [PMID: 29679756 PMCID: PMC5970098 DOI: 10.1016/j.gene.2018.04.048] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/16/2022]
Abstract
The MYH9 gene encodes the heavy chain of non-muscle myosin IIA, a widely expressed cytoplasmic myosin that participates in a variety of processes requiring the generation of intracellular chemomechanical force and translocation of the actin cytoskeleton. Non-muscle myosin IIA functions are regulated by phosphorylation of its 20 kDa light chain, of the heavy chain, and by interactions with other proteins. Variants of MYH9 cause an autosomal-dominant disorder, termed MYH9-related disease, and may be involved in other conditions, such as chronic kidney disease, non-syndromic deafness, and cancer. This review discusses the structure of the MYH9 gene and its protein, as well as the regulation and physiologic functions of non-muscle myosin IIA with particular reference to embryonic development. Moreover, the review focuses on current knowledge about the role of MYH9 variants in human disease.
Collapse
Affiliation(s)
- Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation, University of Pavia, Piazzale Golgi, 27100 Pavia, Italy.
| | - Xuefei Ma
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10 Room 6C-103B, 10 Center Drive, Bethesda, MD 20892-1583, USA.
| | - Anna Savoia
- Department of Medical Sciences, University of Trieste, via Dell'Istria, 65/1, I-34137 Trieste, Italy; IRCCS Burlo Garofolo, via Dell'Istria, 65/1, I-34137 Trieste, Italy.
| | - Robert S Adelstein
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10 Room 6C-103B, 10 Center Drive, Bethesda, MD 20892-1583, USA.
| |
Collapse
|
7
|
Affiliation(s)
- Anna Savoia
- a Institute for Maternal and Child Health - IRCCS Burlo Garofolo , Trieste , Italy.,b Department of Medical Sciences , University of Trieste , Trieste , Italy
| | - Daniela De Rocco
- a Institute for Maternal and Child Health - IRCCS Burlo Garofolo , Trieste , Italy
| | - Alessandro Pecci
- c Department of Internal Medicine , IRCCS Policlinico San Matteo Foundation and University of Pavia , Pavia , Italy
| |
Collapse
|
8
|
Li T, Giagtzoglou N, Eberl DF, Jaiswal SN, Cai T, Godt D, Groves AK, Bellen HJ. The E3 ligase Ubr3 regulates Usher syndrome and MYH9 disorder proteins in the auditory organs of Drosophila and mammals. eLife 2016; 5. [PMID: 27331610 PMCID: PMC4978524 DOI: 10.7554/elife.15258] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/21/2016] [Indexed: 01/08/2023] Open
Abstract
Myosins play essential roles in the development and function of auditory organs and multiple myosin genes are associated with hereditary forms of deafness. Using a forward genetic screen in Drosophila, we identified an E3 ligase, Ubr3, as an essential gene for auditory organ development. Ubr3 negatively regulates the mono-ubiquitination of non-muscle Myosin II, a protein associated with hearing loss in humans. The mono-ubiquitination of Myosin II promotes its physical interaction with Myosin VIIa, a protein responsible for Usher syndrome type IB. We show that ubr3 mutants phenocopy pathogenic variants of Myosin II and that Ubr3 interacts genetically and physically with three Usher syndrome proteins. The interactions between Myosin VIIa and Myosin IIa are conserved in the mammalian cochlea and in human retinal pigment epithelium cells. Our work reveals a novel mechanism that regulates protein complexes affected in two forms of syndromic deafness and suggests a molecular function for Myosin IIa in auditory organs.
Collapse
Affiliation(s)
- Tongchao Li
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| | - Nikolaos Giagtzoglou
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Department of Neurology, Baylor College of Medicine, Houston, United States
| | - Daniel F Eberl
- Department of Biology, University of Iowa, Iowa City, United States
| | - Sonal Nagarkar Jaiswal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| | - Tiantian Cai
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Dorothea Godt
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Andrew K Groves
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Hugo J Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States
| |
Collapse
|
9
|
Wasano K, Matsunaga T, Ogawa K, Kunishima S. Late onset and high-frequency dominant hearing loss in a family with MYH9 disorder. Eur Arch Otorhinolaryngol 2016; 273:3547-3552. [PMID: 26942920 DOI: 10.1007/s00405-016-3954-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/24/2016] [Indexed: 11/29/2022]
Abstract
MYH9 disorder is a rare autosomal-dominant disorder. We previously reported that it is caused by mutations in the gene for nonmuscle myosin heavy chain IIA (NMMHC-IIA). MYH9 disorder causes congenital macrothrombocytopenia accompanied by progressive sensorineural hearing loss, nephropathy, and cataract. However, there are few reports that describe the audiological features of MYH9 disorder. The objective of this study was to characterize auditory and other phenotypes of patients with MYH9 disorder. We examined nine subjects from one Japanese family. Audiological, ophthalmological, hematological, and imaging examinations were used to assess clinical features. We carried out genetic analysis of the causative gene, MYH9. Five subjects exhibited macrothrombocytopenia and neutrophil cytoplasmic inclusion bodies. Immunofluorescence analysis of neutrophil NMMHC-IIA revealed abnormal type II localization. Two subjects had high-frequency dominant hearing loss, which was adult onset and progressive. Only one subject had cataract. MYH9 sequencing analysis of all thrombocytopenic subjects revealed a heterozygous c.4270G>A mutation in exon 30 (p.D1424N). We identified five patients with MYH9 disorder from the family. The hearing impairment associated with MYH9 disorder in this family was characterized as adult onset, progressive, and high-frequency dominant. Hematological manifestations of MYH9 disorder show complete penetrance, whereas extra-hematological manifestations show incomplete penetrance and variable expressivity in this family.
Collapse
Affiliation(s)
- Koichiro Wasano
- Department of Otolaryngology, Japanese Red Cross Shizuoka Hospital, 8-2 Outemachi, Aoi-ku, Shizuoka, 420-0853, Japan. .,Laboratory of Auditory Disorders, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo, 152-8902, Japan. .,Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.
| | - Tatsuo Matsunaga
- Laboratory of Auditory Disorders, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo, 152-8902, Japan.,Medical Genetics Center, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo, 152-8902, Japan
| | - Kaoru Ogawa
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Shinji Kunishima
- Department of Advanced Diagnosis, Clinical Research Center, National Hospital Organization, Nagoya Medical Center, 4-1-1 Sannomaru, Naka-ku, Nagoya, Aichi, 460-0001, Japan
| |
Collapse
|
10
|
Savoia A. Molecular basis of inherited thrombocytopenias. Clin Genet 2015; 89:154-62. [DOI: 10.1111/cge.12607] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 02/01/2023]
Affiliation(s)
- A. Savoia
- Department of Medical SciencesUniversity of Trieste Trieste Italy
- Institute for Maternal and Child HealthIRCCS Burlo Garofolo Trieste Italy
| |
Collapse
|
11
|
Pecci A, Verver EJJ, Schlegel N, Canzi P, Boccio CM, Platokouki H, Krause E, Benazzo M, Topsakal V, Greinacher A. Cochlear implantation is safe and effective in patients with MYH9-related disease. Orphanet J Rare Dis 2014; 9:100. [PMID: 24980457 PMCID: PMC4105151 DOI: 10.1186/1750-1172-9-100] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/19/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND MYH9-related disease (MYH9-RD) is a rare syndromic disorder deriving from mutations in MYH9, the gene for the heavy chain of non-muscle myosin IIA. Patients present with congenital thrombocytopenia and giant platelets and have a variable risk of developing sensorineural deafness, kidney damage, presenile cataract, and liver abnormalities. Almost all MYH9-RD patients develop the hearing defect, which, in many individuals, progresses to severe to profound deafness with high impact on quality of life. These patients are potential candidates for cochlear implantation (CI), however, no consistent data are available about the risk to benefit ratio of CI in MYH9-RD. The only reported patient who received CI experienced perisurgery complications that have been attributed to concurrent platelet defects and/or MYH9 protein dysfunction. METHODS By international co-operative study, we report the clinical outcome of 10 patients with MYH9-RD and severe to profound deafness who received a CI at 8 institutions. RESULTS Nine patients benefited from CI: in particular, eight of them obtained excellent performances with restoration of a practically normal hearing function and verbal communication abilities. One patient had a slightly worse performance that could be explained by the very long duration of severe deafness before CI. Finally, one patient did not significantly benefit from CI. No adverse events attributable to MYH9-RD syndrome were observed, in particular no perisurgery bleeding complications due to the platelet defects were seen. Patients' perioperative management is described and discussed. CONCLUSIONS CI is safe and effective in most patients with MYH9-RD and severe to profound deafness and should be offered to these subjects, possibly as soon as they develop the criteria for candidacy.
Collapse
Affiliation(s)
- Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Piazzale Golgi, 27100 Pavia, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|