1
|
Jolfayi AG, Kohansal E, Ghasemi S, Naderi N, Hesami M, MozafaryBazargany M, Moghadam MH, Fazelifar AF, Maleki M, Kalayinia S. Exploring TTN variants as genetic insights into cardiomyopathy pathogenesis and potential emerging clues to molecular mechanisms in cardiomyopathies. Sci Rep 2024; 14:5313. [PMID: 38438525 PMCID: PMC10912352 DOI: 10.1038/s41598-024-56154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/01/2024] [Indexed: 03/06/2024] Open
Abstract
The giant protein titin (TTN) is a sarcomeric protein that forms the myofibrillar backbone for the components of the contractile machinery which plays a crucial role in muscle disorders and cardiomyopathies. Diagnosing TTN pathogenic variants has important implications for patient management and genetic counseling. Genetic testing for TTN variants can help identify individuals at risk for developing cardiomyopathies, allowing for early intervention and personalized treatment strategies. Furthermore, identifying TTN variants can inform prognosis and guide therapeutic decisions. Deciphering the intricate genotype-phenotype correlations between TTN variants and their pathologic traits in cardiomyopathies is imperative for gene-based diagnosis, risk assessment, and personalized clinical management. With the increasing use of next-generation sequencing (NGS), a high number of variants in the TTN gene have been detected in patients with cardiomyopathies. However, not all TTN variants detected in cardiomyopathy cohorts can be assumed to be disease-causing. The interpretation of TTN variants remains challenging due to high background population variation. This narrative review aimed to comprehensively summarize current evidence on TTN variants identified in published cardiomyopathy studies and determine which specific variants are likely pathogenic contributors to cardiomyopathy development.
Collapse
Affiliation(s)
- Amir Ghaffari Jolfayi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Erfan Kohansal
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Serwa Ghasemi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Naderi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Hesami
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Hosseini Moghadam
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Farjam Fazelifar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Tsui H, van Kampen SJ, Han SJ, Meraviglia V, van Ham WB, Casini S, van der Kraak P, Vink A, Yin X, Mayr M, Bossu A, Marchal GA, Monshouwer-Kloots J, Eding J, Versteeg D, de Ruiter H, Bezstarosti K, Groeneweg J, Klaasen SJ, van Laake LW, Demmers JAA, Kops GJPL, Mummery CL, van Veen TAB, Remme CA, Bellin M, van Rooij E. Desmosomal protein degradation as an underlying cause of arrhythmogenic cardiomyopathy. Sci Transl Med 2023; 15:eadd4248. [PMID: 36947592 DOI: 10.1126/scitranslmed.add4248] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/01/2023] [Indexed: 03/24/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited progressive cardiac disease. Many patients with ACM harbor mutations in desmosomal genes, predominantly in plakophilin-2 (PKP2). Although the genetic basis of ACM is well characterized, the underlying disease-driving mechanisms remain unresolved. Explanted hearts from patients with ACM had less PKP2 compared with healthy hearts, which correlated with reduced expression of desmosomal and adherens junction (AJ) proteins. These proteins were also disorganized in areas of fibrotic remodeling. In vitro data from human-induced pluripotent stem cell-derived cardiomyocytes and microtissues carrying the heterozygous PKP2 c.2013delC pathogenic mutation also displayed impaired contractility. Knockin mice carrying the equivalent heterozygous Pkp2 c.1755delA mutation recapitulated changes in desmosomal and AJ proteins and displayed cardiac dysfunction and fibrosis with age. Global proteomics analysis of 4-month-old heterozygous Pkp2 c.1755delA hearts indicated involvement of the ubiquitin-proteasome system (UPS) in ACM pathogenesis. Inhibition of the UPS in mutant mice increased area composita proteins and improved calcium dynamics in isolated cardiomyocytes. Additional proteomics analyses identified lysine ubiquitination sites on the desmosomal proteins, which were more ubiquitinated in mutant mice. In summary, we show that a plakophilin-2 mutation can lead to decreased desmosomal and AJ protein expression through a UPS-dependent mechanism, which preceded cardiac remodeling. These findings suggest that targeting protein degradation and improving desmosomal protein stability may be a potential therapeutic strategy for the treatment of ACM.
Collapse
Affiliation(s)
- Hoyee Tsui
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Sebastiaan Johannes van Kampen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Su Ji Han
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Viviana Meraviglia
- Department of Anatomy and Embryology, University Medical Center, Leiden, 2333 ZA, Netherlands
| | - Willem B van Ham
- Department of Medical Physiology, University Medical Center Utrecht, 3584 CM, Netherlands
| | - Simona Casini
- Department of Clinical and Experimental Cardiology, University Medical Center Amsterdam, 1105 AZ, Netherlands
| | - Petra van der Kraak
- Department of Pathology, University Medical Center Utrecht, 3584 CX, Netherlands
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, 3584 CX, Netherlands
| | - Xiaoke Yin
- James Black Centre, King's College, University of London, WC2R 2LS London, UK
| | - Manuel Mayr
- James Black Centre, King's College, University of London, WC2R 2LS London, UK
| | - Alexandre Bossu
- Department of Medical Physiology, University Medical Center Utrecht, 3584 CM, Netherlands
| | - Gerard A Marchal
- Department of Clinical and Experimental Cardiology, University Medical Center Amsterdam, 1105 AZ, Netherlands
| | - Jantine Monshouwer-Kloots
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Joep Eding
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Danielle Versteeg
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Hesther de Ruiter
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus Medical Center Rotterdam, 3015 CN, Netherlands
| | - Judith Groeneweg
- Department of Cardiology, University Medical Center Utrecht, 3584 CX, Netherlands
| | - Sjoerd J Klaasen
- Oncode Institute, Hubrecht Institute, Royal Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Linda W van Laake
- Department of Cardiology, University Medical Center Utrecht, 3584 CX, Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus Medical Center Rotterdam, 3015 CN, Netherlands
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute, Royal Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, University Medical Center, Leiden, 2333 ZA, Netherlands
| | - Toon A B van Veen
- Department of Medical Physiology, University Medical Center Utrecht, 3584 CM, Netherlands
| | - Carol Ann Remme
- Department of Clinical and Experimental Cardiology, University Medical Center Amsterdam, 1105 AZ, Netherlands
| | - Milena Bellin
- Department of Anatomy and Embryology, University Medical Center, Leiden, 2333 ZA, Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
- Department of Cardiology, University Medical Center Utrecht, 3584 CX, Netherlands
| |
Collapse
|
3
|
Aohara K, Kimura H, Takeda A, Izumiya Y, Nishino I, Itoh Y. [Sibling cases of four and a half LIM domains 1 (FHL1) myopathy who developed respiratory failure without apparent limb weakness]. Rinsho Shinkeigaku 2022; 62:726-731. [PMID: 36031379 DOI: 10.5692/clinicalneurol.cn-001761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A 60-year-old man developed dyspnea without apparent limb weakness. He had cardiomyopathy in his 30s and was treated for chronic heart failure since 42. He was diagnosed as having four and a half LIM domains 1 (FHL1) mutation at 53 following the same diagnosis of his younger brother. He was first admitted to the cardiology department for possible worsening of chronic cardiac failure. Blood gas analysis showing respiratory acidosis prompted his treatment with a respirator. Neurological examination revealed that he had mild weakness limited to the shoulder girdle muscles and contracture at jaw, spine, elbows and ankles. Skeletal muscle CT showed truncal atrophy. He, as well as his younger brother, was diagnosed with FHL1 myopathy resulting in ventilation failure and was discharged after successful weaning from the respirator in the daytime. The present sibling cases are the first with FHL1 mutation to develop respiratory failure without limb weakness and suggest that FHL1 myopathy as a differentially diagnosis of hereditary myopathies with early respiratory failure.
Collapse
Affiliation(s)
- Kenta Aohara
- Department of Neurology, Osaka City University Graduate School of Medicine
| | - Hiroko Kimura
- Department of Neurology, Osaka City University Graduate School of Medicine
| | - Akitoshi Takeda
- Department of Neurology, Osaka City University Graduate School of Medicine
| | - Yasuhiro Izumiya
- Department of Cardiology, Osaka City University Graduate School of Medicine
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Center of Neurology and Psychiatry
| | - Yoshiaki Itoh
- Department of Neurology, Osaka City University Graduate School of Medicine
| |
Collapse
|
4
|
Borch JDS, Krag T, Holm-Yildiz SD, Cetin H, Solheim TA, Fornander F, Straub V, Duno M, Vissing J. Three novel FHL1 Variants cause a mild Phenotype of Emery-Dreifuss Muscular Dystrophy. Hum Mutat 2022; 43:1234-1238. [PMID: 35607917 PMCID: PMC9545859 DOI: 10.1002/humu.24415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/14/2022] [Accepted: 05/22/2022] [Indexed: 11/11/2022]
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is a hereditary muscle disease, characterized by the clinical triade of early-onset joint contractures, progressive muscle weakness and cardiac involvement. Pathogenic variants in FHL1 can cause a rare X-linked recessive form of EDMD, type 6. We report three men with novel variants in FHL1 leading to EDMD6. Onset of muscle symptoms was in late adulthood and muscle weakness was not prominent in either of the patients. All patients had hypertrophic cardiomyopathy and one of them also had cardiac arrhythmias. Western blot performed on muscle biopsies from two of the patients showed no FHL1 protein expression. We predict that the variant in the third patient also leads to absence of FHL1 protein. Complete loss of all FHL1 isoforms combined with mild muscle involvement supports the hypothesis that loss of all FHL1 isoforms is more benign than the cytotoxic effects of expressed FHL1 protein with pathogenic missense variants. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Josefine D S Borch
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Thomas Krag
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Sonja D Holm-Yildiz
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Hakan Cetin
- Department of Neurology, Medical University of Vienna, Austria
| | - Tuva A Solheim
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Freja Fornander
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Morten Duno
- Department of Clinical Genetics, section 4062, Rigshospitalet, University of Copenhagen, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| |
Collapse
|
5
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
6
|
Cardiac Complications of Neuromuscular Disorders. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
MicroRNAs: From Junk RNA to Life Regulators and Their Role in Cardiovascular Disease. CARDIOGENETICS 2021. [DOI: 10.3390/cardiogenetics11040023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs (miRNAs) are single-stranded small non-coding RNA (18–25 nucleotides) that until a few years ago were considered junk RNA. In the last twenty years, they have acquired more importance thanks to the understanding of their influence on gene expression and their role as negative regulators at post-transcriptional level, influencing the stability of messenger RNA (mRNA). Approximately 5% of the genome encodes miRNAs which are responsible for regulating numerous signaling pathways, cellular processes and cell-to-cell communication. In the cardiovascular system, miRNAs control the functions of various cells, such as cardiomyocytes, endothelial cells, smooth muscle cells and fibroblasts, playing a role in physiological and pathological processes and seeming also related to variations in contractility and hereditary cardiomyopathies. They provide a new perspective on the pathophysiology of disorders such as hypertrophy, fibrosis, arrhythmia, inflammation and atherosclerosis. MiRNAs are differentially expressed in diseased tissue and can be released into the circulation and then detected. MiRNAs have become interesting for the development of new diagnostic and therapeutic tools for various diseases, including heart disease. In this review, the concept of miRNAs and their role in cardiomyopathies will be introduced, focusing on their potential as therapeutic and diagnostic targets (as biomarkers).
Collapse
|
8
|
Giucă A, Mitu C, Popescu BO, Bastian AE, Capşa R, Mursă A, Rădoi V, Popescu BA, Jurcuţ R. Novel FHL1 mutation variant identified in a patient with nonobstructive hypertrophic cardiomyopathy and myopathy - a case report. BMC MEDICAL GENETICS 2020; 21:188. [PMID: 32993534 PMCID: PMC7525989 DOI: 10.1186/s12881-020-01131-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/22/2020] [Indexed: 12/23/2022]
Abstract
Background Hypertrophic cardiomyopathy (HCM) is a genetic disorder mostly caused by sarcomeric gene mutations, but almost 10% of cases are attributed to inherited metabolic and neuromuscular disorders. First described in 2008 in an American-Italian family with scapuloperoneal myopathy, FHL1 gene encodes four-and-a-half LIM domains 1 proteins which are involved in sarcomere formation, assembly and biomechanical stress sensing both in cardiac and skeletal muscle, and its mutations are responsible for a large spectrum of neuromuscular disorders (mostly myopathies) and cardiac disease, represented by HCM, either isolated, or in conjunction with neurologic and skeletal muscle impairment. We thereby report a novel mutation variant in FHL1 structure, associated with HCM and type 6 Emery-Dreifuss muscular dystrophy (EDMD). Case presentation We describe the case of a 40 year old male patient, who was referred to our department for evaluation in the setting of NYHA II heart failure symptoms and was found to have HCM. The elevated muscular enzymes raised the suspicion of a neuromuscular disease. Rigid low spine and wasting of deltoidus, supraspinatus, infraspinatus and calf muscles were described by the neurological examination. Electromyography and muscle biopsy found evidence of chronic myopathy. Diagnosis work-up was completed by next-generation sequencing genetic testing which found a likely pathogenic mutation in the FHL1 gene (c.157-1G > A, hemizygous) involved in the development of X-linked EDMD type 6. Conclusion This case report highlights the importance of multimodality diagnostic approach in a patient with a neuromuscular disorder and associated hypertrophic cardiomyopathy by identifying a novel mutation variant in FHL1 gene. Raising awareness of non-sarcomeric gene mutations which can lead to HCM is fundamental, because of diagnostic and clinical risk stratification challenges.
Collapse
Affiliation(s)
- Adrian Giucă
- Expert Center for Rare Cardiovascular Genetic Diseases, "Prof. Dr. C.C. Iliescu" Emergency Institute for Cardiovascular Diseases, Street no.258, postal code:022328, Bucharest, Romania
| | - Cristina Mitu
- Neurology Department, Colentina Clinical Hospital, Bucharest, Romania
| | - Bogdan Ovidiu Popescu
- Neurology Department, Colentina Clinical Hospital, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Euroecolab, Bucharest, Romania
| | | | - Răzvan Capşa
- "Carol Davila" University of Medicine and Pharmacy, Euroecolab, Bucharest, Romania.,Fundeni Clinical Institute, Bucharest, Romania
| | - Adriana Mursă
- Expert Center for Rare Cardiovascular Genetic Diseases, "Prof. Dr. C.C. Iliescu" Emergency Institute for Cardiovascular Diseases, Street no.258, postal code:022328, Bucharest, Romania
| | - Viorica Rădoi
- Expert Center for Rare Cardiovascular Genetic Diseases, "Prof. Dr. C.C. Iliescu" Emergency Institute for Cardiovascular Diseases, Street no.258, postal code:022328, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Euroecolab, Bucharest, Romania
| | - Bogdan Alexandru Popescu
- Expert Center for Rare Cardiovascular Genetic Diseases, "Prof. Dr. C.C. Iliescu" Emergency Institute for Cardiovascular Diseases, Street no.258, postal code:022328, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Euroecolab, Bucharest, Romania
| | - Ruxandra Jurcuţ
- Expert Center for Rare Cardiovascular Genetic Diseases, "Prof. Dr. C.C. Iliescu" Emergency Institute for Cardiovascular Diseases, Street no.258, postal code:022328, Bucharest, Romania. .,"Carol Davila" University of Medicine and Pharmacy, Euroecolab, Bucharest, Romania.
| |
Collapse
|
9
|
Binder MS, Brown E, Aversano T, Wagner KR, Calkins H, Barth AS. Novel FHL1 Mutation Associated With Hypertrophic Cardiomyopathy, Sudden Cardiac Death, and Myopathy. JACC Case Rep 2020; 2:372-377. [PMID: 34317245 PMCID: PMC8311586 DOI: 10.1016/j.jaccas.2019.11.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 11/23/2022]
Abstract
A 24-year-old man with muscle cramps and a family history of sudden death presented with palpitations. Electrocardiography showed signs of left ventricular hypertrophy and nonsustained ventricular tachycardia, and imaging studies confirmed hypertrophic cardiomyopathy. Genetic testing revealed a novel FHL1 mutation associated with Emery-Dreifuss muscular dystrophy. An implantable cardioverter-defibrillator was placed. (Level of Difficulty: Advanced.)
Collapse
|
10
|
Arbustini E, Di Toro A, Giuliani L, Favalli V, Narula N, Grasso M. Cardiac Phenotypes in Hereditary Muscle Disorders: JACC State-of-the-Art Review. J Am Coll Cardiol 2019; 72:2485-2506. [PMID: 30442292 DOI: 10.1016/j.jacc.2018.08.2182] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/20/2018] [Accepted: 08/10/2018] [Indexed: 01/05/2023]
Abstract
Hereditary muscular diseases commonly involve the heart. Cardiac manifestations encompass a spectrum of phenotypes, including both cardiomyopathies and rhythm disorders. Common biomarkers suggesting cardiomuscular diseases include increased circulating creatine kinase and/or lactic acid levels or disease-specific metabolic indicators. Cardiac and extra-cardiac traits, imaging tests, family studies, and genetic testing provide precise diagnoses. Cardiac phenotypes are mainly dilated and hypokinetic in dystrophinopathies, Emery-Dreifuss muscular dystrophies, and limb girdle muscular dystrophies; hypertrophic in Friedreich ataxia, mitochondrial diseases, glycogen storage diseases, and fatty acid oxidation disorders; and restrictive in myofibrillar myopathies. Left ventricular noncompaction is variably associated with the different myopathies. Conduction defects and arrhythmias constitute a major phenotype in myotonic dystrophies and skeletal muscle channelopathies. Although the actual cardiac management is rarely based on the cause, the cardiac phenotypes need precise characterization because they are often the only or the predominant manifestations and the prognostic determinants of many hereditary muscle disorders.
Collapse
Affiliation(s)
- Eloisa Arbustini
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy.
| | - Alessandro Di Toro
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| | - Lorenzo Giuliani
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| | | | - Nupoor Narula
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy; Division of Cardiology, Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York
| | - Maurizia Grasso
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
11
|
Kubota A, Juanola-Falgarona M, Emmanuele V, Sanchez-Quintero MJ, Kariya S, Sera F, Homma S, Tanji K, Quinzii CM, Hirano M. Cardiomyopathy and altered integrin-actin signaling in Fhl1 mutant female mice. Hum Mol Genet 2019; 28:209-219. [PMID: 30260394 DOI: 10.1093/hmg/ddy299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/14/2018] [Indexed: 12/20/2022] Open
Abstract
X-linked scapuloperoneal myopathy (X-SM), one of Four-and-a-half LIM 1 (FHL1) related diseases, is an adult-onset slowly progressive myopathy, often associated with cardiomyopathy. We previously generated a knock-in mouse model that has the same mutation (c.365 G > C, p.W122S) as human X-SM patients. The mutant male mouse developed late-onset slowly progressive myopathy without cardiomyopathy. In this study, we observed that heterozygous (Het) and homozygous (Homo) female mice did not show alterations of skeletal muscle function or histology. In contrast, 20-month-old mutant female mice showed signs of cardiomyopathy on echocardiograms with increased systolic diameter [wild-type (WT): 2.74 ± 0.22 mm, mean ± standard deviation (SD); Het: 3.13 ± 0.11 mm, P < 0.01; Homo: 3.08 ± 0.37 mm, P < 0.05) and lower fractional shortening (WT: 31.1 ± 4.4%, mean ± SD; Het: 22.7 ± 2.5%, P < 0.01; Homo: 22.4 ± 6.9%, P < 0.01]. Histological analysis of cardiac muscle revealed frequent extraordinarily large rectangular nuclei in mutant female mice that were also observed in human cardiac muscle from X-SM patients. Western blot demonstrated decreased Fhl1 protein levels in cardiac muscle, but not in skeletal muscle, of Homo mutant female mice. Proteomic analysis of cardiac muscle from 20-month-old Homo mutant female mice indicated abnormalities of the integrin signaling pathway (ISP) in association with cardiac dysfunction. The ISP dysregulation was further supported by altered levels of a subunit of the ISP downstream effectors Arpc1a in Fhl1 mutant mice and ARPC1A in X-SM patient muscles. This study reveals the first mouse model of FHL1-related cardiomyopathy and implicates ISP dysregulation in the pathogenesis of FHL1 myopathy.
Collapse
Affiliation(s)
| | | | | | | | - Shingo Kariya
- Department of Neurology, Columbia University Medical Center
| | - Fusako Sera
- Department of Cardiology, Columbia University Medical Center
| | - Shunichi Homma
- Department of Cardiology, Columbia University Medical Center
| | - Kurenai Tanji
- Department of Neurology, Columbia University Medical Center.,Department of Pathology and Cell Biology, Columbia University Medical Center
| | | | - Michio Hirano
- Department of Neurology, Columbia University Medical Center
| |
Collapse
|
12
|
Four and a half LIM domain protein signaling and cardiomyopathy. Biophys Rev 2018; 10:1073-1085. [PMID: 29926425 DOI: 10.1007/s12551-018-0434-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/06/2018] [Indexed: 01/10/2023] Open
Abstract
Four and a half LIM domain (FHL) protein family members, FHL1 and FHL2, are multifunctional proteins that are enriched in cardiac muscle. Although they both localize within the cardiomyocyte sarcomere (titin N2B), they have been shown to have important yet unique functions within the context of cardiac hypertrophy and disease. Studies in FHL1-deficient mice have primarily uncovered mitogen-activated protein kinase (MAPK) scaffolding functions for FHL1 as part of a novel biomechanical stretch sensor within the cardiomyocyte sarcomere, which acts as a positive regulator of pressure overload-mediated cardiac hypertrophy. New data have highlighted a novel role for the serine/threonine protein phosphatase (PP5) as a deactivator of the FHL1-based biomechanical stretch sensor, which has implications in not only cardiac hypertrophy but also heart failure. In contrast, studies in FHL2-deficient mice have primarily uncovered an opposing role for FHL2 as a negative regulator of adrenergic-mediated signaling and cardiac hypertrophy, further suggesting unique functions targeted by FHL proteins in the "stressed" cardiomyocyte. In this review, we provide current knowledge of the role of FHL1 and FHL2 in cardiac muscle as it relates to their actions in cardiac hypertrophy and cardiomyopathy. A specific focus will be to dissect the pathways and protein-protein interactions that underlie FHLs' signaling role in cardiac hypertrophy as well as provide a comprehensive list of FHL mutations linked to cardiac disease, using evidence gained from genetic mouse models and human genetic studies.
Collapse
|
13
|
Sabater-Molina M, Pérez-Sánchez I, Hernández del Rincón J, Gimeno J. Genetics of hypertrophic cardiomyopathy: A review of current state. Clin Genet 2017; 93:3-14. [DOI: 10.1111/cge.13027] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/13/2017] [Accepted: 03/21/2017] [Indexed: 12/18/2022]
Affiliation(s)
- M. Sabater-Molina
- Inherited Cardiac Disease Unit; University Hospital Virgen Arrixaca; Murcia Spain
- Internal Medicine Department, University of Murcia; Murcia Spain
| | - I. Pérez-Sánchez
- Inherited Cardiac Disease Unit; University Hospital Virgen Arrixaca; Murcia Spain
| | - J.P. Hernández del Rincón
- Internal Medicine Department, University of Murcia; Murcia Spain
- Pathology Department; Institute of Legal Medicine; Murcia Spain
| | - J.R. Gimeno
- Inherited Cardiac Disease Unit; University Hospital Virgen Arrixaca; Murcia Spain
- Internal Medicine Department, University of Murcia; Murcia Spain
| |
Collapse
|
14
|
Pillar N, Pleniceanu O, Fang M, Ziv L, Lahav E, Botchan S, Cheng L, Dekel B, Shomron N. A rare variant in the FHL1 gene associated with X-linked recessive hypoparathyroidism. Hum Genet 2017; 136:835-845. [PMID: 28444561 PMCID: PMC5487855 DOI: 10.1007/s00439-017-1804-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/17/2017] [Indexed: 12/12/2022]
Abstract
Isolated familial hypoparathyroidism is an extremely rare disorder, which to date has been linked to several loci including mutations in CASR, GCM2, and PTH, as well as a rare condition defined as X-linked recessive hypoparathyroidism, previously associated with a 1.5 Mb region on Xq26-q27. Here, we report a patient with hypocalcemia-induced seizures leading to the diagnosis of primary hypoparathyroidism. Mutations in CASR, GCM2, and PTH were ruled out, while whole exome sequencing of the family suggested FHL1, located on chromosome Xq26, as the most likely causative gene variant (FHL1, exon 4, c.C283T, p.R95W). Since FHL1 has not been linked to calcium regulation before, we provide evidence for its functional role in hypoparathyroidism by: (i) bioinformatics analysis coupling its action to known modulators of PTH function; (ii) observing strong expression of fhl1b in Corpuscles of Stannius, gland-like aggregates in zebrafish that function in calcium regulation similar to mammalian PTH; and (iii) implicating fhl1b and FHL1 as regulators of calcium homeostasis in zebrafish and human cells, respectively. Altogether, our data suggest that FHL1 is a novel regulator of calcium homeostasis and implicate it as the causative gene for X-linked recessive hypoparathyroidism.
Collapse
Affiliation(s)
- Nir Pillar
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oren Pleniceanu
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Stem Cell Research Institute & Division of Pediatric Nephrology, Edmond & Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | | | - Limor Ziv
- Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Einat Lahav
- Pediatric Stem Cell Research Institute & Division of Pediatric Nephrology, Edmond & Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Shay Botchan
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Benjamin Dekel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Pediatric Stem Cell Research Institute & Division of Pediatric Nephrology, Edmond & Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel.
| | - Noam Shomron
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
15
|
Electrocardiographic analysis in unclassifiable arrhythmic cardiomyopathy associated with Emery–Dreifuss caused by a mutation in FHL1. Int J Cardiol 2016; 214:136. [DOI: 10.1016/j.ijcard.2016.03.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 03/19/2016] [Indexed: 11/23/2022]
|