1
|
Placidi G, D'Agostino E, Maltese PE, Savastano MC, Gambini G, Rizzo S, Bonetti G, Bertelli M, Chiurazzi P, Falsini B. A novel homozygous splice site variant in ARL2BP causes a syndromic autosomal recessive rod-cone dystrophy with situs inversus, asthenozoospermia, unilateral renal agenesis and microcysts. BMC Med Genomics 2024; 17:100. [PMID: 38649918 PMCID: PMC11036775 DOI: 10.1186/s12920-024-01868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND This report presents a clinical case of syndromic rod-cone dystrophy due to a splice site variant in the ARL2BP gene causing situs inversus, asthenozoospermia, unilateral renal agenesis and microcysts. The presence of renal agenesis and cryptorchidism expands the clinical manifestations due to ARL2BP variants. The detailed, long-term follow-up contributes valuable insights into disease progression, aiding clinical diagnosis and patient management. CASE PRESENTATION The male patient complained of photophobia as the first symptom when he was 20 years old followed by nyctalopia, loss of central visual acuity and peripheral visual field ten years later. Genetic analysis identified a likely pathogenic homozygous variant (c.294-1G > C) involving the splicing acceptor site of intron 4. Reported symptoms together with full-field stimulus threshold testing, electroretinogram and advanced multimodal imaging allowed us to recognize the typical characteristics of a mixed retinal dystrophy. Despite the end-stage retinal disease, this patient still retained a useful residual vision at 63 years and had a slow disease progression during the last 5 years of evaluation. DISCUSSION AND CONCLUSIONS Our findings underscore the variable clinical presentation of ARL2BP variants, emphasizing the importance of a nuanced approach in diagnosing and managing patients. The presence of renal cysts warrants consideration of a differential diagnosis, particularly with Senior-Loken (SLS), Bardet-Biedl (BBS) and Joubert syndromes (JS) but also with Short Rib Thoracic Dysplasia 9, highlighting the need for careful phenotypic evaluation in these cases.
Collapse
Affiliation(s)
- Giorgio Placidi
- UOC Oculistica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Gemelli 8, 00168, Rome, Italy
| | - Elena D'Agostino
- UOC Oculistica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Gemelli 8, 00168, Rome, Italy
| | | | - Maria Cristina Savastano
- UOC Oculistica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Gemelli 8, 00168, Rome, Italy
- Istituto di Oftalmologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Gloria Gambini
- UOC Oculistica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Gemelli 8, 00168, Rome, Italy
- Istituto di Oftalmologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Stanislao Rizzo
- UOC Oculistica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Gemelli 8, 00168, Rome, Italy
- Istituto di Oftalmologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
- Istituto di Neuroscienze, Consiglio Nazionale Delle Ricerche, Pisa, Italy
| | - Gabriele Bonetti
- MAGI'S LAB, 38068, Rovereto, Italy
- MAGI EUREGIO, 39100, Bolzano, Italy
| | - Matteo Bertelli
- MAGI'S LAB, 38068, Rovereto, Italy
- MAGI EUREGIO, 39100, Bolzano, Italy
- MAGISNAT, Atlanta Tech Park, 107 Technology Parkway, 30092, Peachtree Corners, GA, USA
| | - Pietro Chiurazzi
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
- UOC Genetica Medica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Gemelli 8, 00168, Rome, Italy
| | - Benedetto Falsini
- UOC Oculistica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Gemelli 8, 00168, Rome, Italy
- Istituto di Oftalmologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
| |
Collapse
|
2
|
Kocaaga A, Aköz İÖ, Demir NU, Paksoy B. Identification of novel variants in retinitis pigmentosa genes by whole-exome sequencing. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2023; 69:e20221073. [PMID: 37222315 DOI: 10.1590/1806-9282.20221073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/23/2023] [Indexed: 05/25/2023]
Abstract
OBJECTIVE Retinitis pigmentosa is an inherited degenerative disorder causing severe retinal dystrophy and visual impairment, mainly with onset in the first or second decades. The next-generation sequencing has become an efficient tool to identify disease-causing mutations in retinitis pigmentosa. The aim of this retrospective study was to investigate novel gene variants and evaluate the utility of whole-exome sequencing in patients with retinitis pigmentosa. METHODS The medical records of 20 patients with retinitis pigmentosa at Eskişehir City Hospital between September 2019 and February 2022 were analyzed retrospectively. Peripheral venous blood was obtained, followed by the extraction of genomic DNAs. The medical and ophthalmic histories were collected, and ophthalmological examinations were performed. Whole-exome sequencing was performed to determine the genetic etiology of the patients. RESULTS The proportion of genetically solved cases was 75% (15/20) in the patients with retinitis pigmentosa. Molecular genetic testing identified 13 biallelic and 4 monoallelic mutations in known retinitis pigmentosa genes, including 11 novel variants. According to in silico prediction tools, nine variants were predicted as pathogenic or possibly pathogenic. We identified six previously reported mutations to be associated with retinitis pigmentosa. The age of onset of the patients ranged from 3 to 19, with a mean age of onset of 11.6. All patients had a loss of central vision. CONCLUSION As the first study of the application of whole-exome sequencing among patients with retinitis pigmentosa in a Turkish cohort, our results may contribute to the characterization of the spectrum of variants related to retinitis pigmentosa in the Turkish population. Future population-based studies will enable us to reveal the detailed genetic epidemiology of retinitis pigmentosa.
Collapse
Affiliation(s)
- Ayca Kocaaga
- Eskişehir City Hospital, Department of Medical Genetics - Eskişehir, Turkey
| | - İrem Öztürk Aköz
- Eskişehir City Hospital, Department of Ophthalmology - Eskişehir, Turkey
| | - Nihal Ulus Demir
- Eskişehir City Hospital, Department of Ophthalmology - Eskişehir, Turkey
| | - Bariş Paksoy
- Antalya Eğitim ve Araştırma Hastanesi, Department of Medical Genetics - Antalya, Turkey
| |
Collapse
|
3
|
Zhu T, Li H, Wei X, Li W, Sun Z, Sui R. Novel homozygous variant in ARL2BP associated with retinitis pigmentosa, situs inversus, and male infertility in a Chinese patient. Clin Genet 2023; 103:472-477. [PMID: 36507858 DOI: 10.1111/cge.14278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
ARL2BP is a ciliary gene associated with multiple ciliopathy phenotypes. On comprehensive clinical examinations using molecular methods, we identified a Chinese patient from a consanguineous family carrying a novel homozygous variant c.22_23delAG (p.S8Lfs*10) in ARL2BP, presenting with retinitis pigmentosa (RP), situs inversus totalis, and oligozoospermia. Situs inversus and male infertility have never been reported in the same patient with ARL2BP variants; therefore, this a novel ARL2BP-associated phenotypic triad of RP, situs inversus, and male infertility. Moreover, this patient likely had olfactory dysfunction susceptibility and presented with anosmia. We found reduced patient-derived fibroblast proliferation and ciliary length. Our findings expand the genotypic spectrum and reveal abnormal cell proliferation and ciliogenesis in ARL2BP-associated patients.
Collapse
Affiliation(s)
- Tian Zhu
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Li
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xing Wei
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wuyi Li
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zixi Sun
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruifang Sui
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Jaffal L, Joumaa H, Mrad Z, Zeitz C, Audo I, El Shamieh S. The genetics of rod-cone dystrophy in Arab countries: a systematic review. Eur J Hum Genet 2021; 29:897-910. [PMID: 33188265 PMCID: PMC8187393 DOI: 10.1038/s41431-020-00754-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/02/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Since a substantial difference in the prevalence of genetic causes of rod-cone dystrophy (RCD) was found among different populations, we conducted a systematic review of the genetic findings associated with RCD in Arab countries. Of the 816 articles retrieved from PubMed, 31 studies conducted on 407 participants from 11 countries were reviewed. Next-generation sequencing (NGS) was the most commonly used technique (68%). Autosomal recessive pattern was the most common pattern of inheritance (97%) and half of the known genes associated with RCD (32/63) were identified. In the Kingdom of Saudi Arabia, in addition to RP1 (20%) and TULP1 (20%), gene defects in EYS (8%) and CRB1 (7%) were also prevalently mutated. In North Africa, the main gene defects were in MERTK (18%) and RLBP1 (18%). Considering all countries, RP1 and TULP1 remained the most prevalently mutated. Variants in TULP1, RP1, EYS, MERTK, and RLBP1 were the most prevalent, possibly because of founder effects. On the other hand, only ten Individuals were found to have dominant or X-linked RCD. This is the first time a catalog of RCD genetic variations has been established in subjects from the Arabi countries. Although the last decade has seen significant interest, expertise, and an increase in RCD scientific publication, much work needs to be conducted.
Collapse
Affiliation(s)
- Lama Jaffal
- Department of Biological and Environmental Sciences, Faculty of Science, Beirut Arab University, Debbieh, 1107 2809, Lebanon
- Rammal Hassan Rammal Research Laboratory, Physiotoxicity (PhyTox), Faculty of Sciences, Lebanese University, Nabatieh, 1700, Lebanon
| | - Hawraa Joumaa
- Rammal Hassan Rammal Research Laboratory, Physiotoxicity (PhyTox), Faculty of Sciences, Lebanese University, Nabatieh, 1700, Lebanon
| | - Zamzam Mrad
- Rammal Hassan Rammal Research Laboratory, Physiotoxicity (PhyTox), Faculty of Sciences, Lebanese University, Nabatieh, 1700, Lebanon
| | - Christina Zeitz
- Sorbonne Universités, INSERM, CNRS, Institut de la Vision, Paris, 75012, France
| | - Isabelle Audo
- Sorbonne Universités, INSERM, CNRS, Institut de la Vision, Paris, 75012, France
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC1423, 28 rue de Charenton, F-75012, Paris, France
- University College London Institute of Ophthalmology, London, EC1V 9EL, UK
| | - Said El Shamieh
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, 1107 2809, Lebanon.
| |
Collapse
|
5
|
Tatour Y, Ben-Yosef T. Syndromic Inherited Retinal Diseases: Genetic, Clinical and Diagnostic Aspects. Diagnostics (Basel) 2020; 10:diagnostics10100779. [PMID: 33023209 PMCID: PMC7600643 DOI: 10.3390/diagnostics10100779] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
Inherited retinal diseases (IRDs), which are among the most common genetic diseases in humans, define a clinically and genetically heterogeneous group of disorders. Over 80 forms of syndromic IRDs have been described. Approximately 200 genes are associated with these syndromes. The majority of syndromic IRDs are recessively inherited and rare. Many, although not all, syndromic IRDs can be classified into one of two major disease groups: inborn errors of metabolism and ciliopathies. Besides the retina, the systems and organs most commonly involved in syndromic IRDs are the central nervous system, ophthalmic extra-retinal tissues, ear, skeleton, kidney and the cardiovascular system. Due to the high degree of phenotypic variability and phenotypic overlap found in syndromic IRDs, correct diagnosis based on phenotypic features alone may be challenging and sometimes misleading. Therefore, genetic testing has become the benchmark for the diagnosis and management of patients with these conditions, as it complements the clinical findings and facilitates an accurate clinical diagnosis and treatment.
Collapse
|
6
|
Moye AR, Bedoni N, Cunningham JG, Sanzhaeva U, Tucker ES, Mathers P, Peter VG, Quinodoz M, Paris LP, Coutinho-Santos L, Camacho P, Purcell MG, Winkelmann AC, Foster JA, Pugacheva EN, Rivolta C, Ramamurthy V. Mutations in ARL2BP, a protein required for ciliary microtubule structure, cause syndromic male infertility in humans and mice. PLoS Genet 2019; 15:e1008315. [PMID: 31425546 PMCID: PMC6715254 DOI: 10.1371/journal.pgen.1008315] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/29/2019] [Accepted: 07/17/2019] [Indexed: 12/30/2022] Open
Abstract
Cilia are evolutionarily conserved hair-like structures with a wide spectrum of key biological roles, and their dysfunction has been linked to a growing class of genetic disorders, known collectively as ciliopathies. Many strides have been made towards deciphering the molecular causes for these diseases, which have in turn expanded the understanding of cilia and their functional roles. One recently-identified ciliary gene is ARL2BP, encoding the ADP-Ribosylation Factor Like 2 Binding Protein. In this study, we have identified multiple ciliopathy phenotypes associated with mutations in ARL2BP in human patients and in a mouse knockout model. Our research demonstrates that spermiogenesis is impaired, resulting in abnormally shaped heads, shortened and mis-assembled sperm tails, as well as in loss of axonemal doublets. Additional phenotypes in the mouse included enlarged ventricles of the brain and situs inversus. Mouse embryonic fibroblasts derived from knockout animals revealed delayed depolymerization of primary cilia. Our results suggest that ARL2BP is required for the structural maintenance of cilia as well as of the sperm flagellum, and that its deficiency leads to syndromic ciliopathy. The flagellated tails of sperm cells require a stringent developmental process that is essential for motility and fertility. The components that comprise the sperm tail assemble in regulated steps with protein processing, transport, and structural assembly dependent on each other for sperm tail maturity. In this work, we have identified ARL2BP, a previously retinal-associated protein, to be essential for sperm tail development and assembly. We show that without functional ARL2BP in humans or mice, sperm tails fail to develop, starting with the assembly of the core microtubular structure within the tail. Loss of ARL2BP also effects other ciliated cells, indicating a unique role for ARL2BP in ciliary microtubule formation. This research on ARL2BP provides further understanding on the links between vision and fertility. This work also demonstrates how genomic studies for human patients and murine models can coincide to provide greater insight into disease.
Collapse
Affiliation(s)
- Abigail R. Moye
- Department of Ophthalmology, West Virginia University, Morgantown, United States of America
- Department of Biochemistry, West Virginia University, Morgantown, United States of America
| | - Nicola Bedoni
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Jessica G. Cunningham
- Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV, United States of America
| | - Urikhan Sanzhaeva
- Department of Biochemistry, West Virginia University, Morgantown, United States of America
| | - Eric S. Tucker
- Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV, United States of America
| | - Peter Mathers
- Department of Ophthalmology, West Virginia University, Morgantown, United States of America
- Department of Biochemistry, West Virginia University, Morgantown, United States of America
- Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV, United States of America
| | - Virginie G. Peter
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Mathieu Quinodoz
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Liliana P. Paris
- Department of Ophthalmology, Instituto de Oftalmologia Dr Gama Pinto, Lisbon, Portugal
| | - Luísa Coutinho-Santos
- Department of Ophthalmology, Instituto de Oftalmologia Dr Gama Pinto, Lisbon, Portugal
| | - Pedro Camacho
- Department of Ophthalmology, Instituto de Oftalmologia Dr Gama Pinto, Lisbon, Portugal
| | - Madeleine G. Purcell
- Department of Biology, Randolph-Macon College, Ashland, VA, United States of America
| | - Abbie C. Winkelmann
- Department of Biology, Randolph-Macon College, Ashland, VA, United States of America
| | - James A. Foster
- Department of Biology, Randolph-Macon College, Ashland, VA, United States of America
| | - Elena N. Pugacheva
- Department of Biochemistry, West Virginia University, Morgantown, United States of America
| | - Carlo Rivolta
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Clinical Research Center, Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University Hospital Basel, Switzerland
- * E-mail: (CR); (VR)
| | - Visvanathan Ramamurthy
- Department of Ophthalmology, West Virginia University, Morgantown, United States of America
- Department of Biochemistry, West Virginia University, Morgantown, United States of America
- Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV, United States of America
- * E-mail: (CR); (VR)
| |
Collapse
|