1
|
Zhu Y, Su SA, Shen J, Ma H, Le J, Xie Y, Xiang M. Recent advances of the Ephrin and Eph family in cardiovascular development and pathologies. iScience 2024; 27:110556. [PMID: 39188984 PMCID: PMC11345580 DOI: 10.1016/j.isci.2024.110556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Erythropoietin-producing hepatoma (Eph) receptors, comprising the largest family of receptor tyrosine kinases (RTKs), exert profound influence on diverse biological processes and pathological conditions such as cancer. Interacting with their corresponding ligands, erythropoietin-producing hepatoma receptor interacting proteins (Ephrins), Eph receptors regulate crucial events like embryonic development, tissue boundary formation, and tumor cell survival. In addition to their well-established roles in embryonic development and cancers, emerging evidence highlights the pivotal contribution of the Ephrin/Eph family to cardiovascular physiology and pathology. Studies have elucidated their involvement in cardiovascular development, atherosclerosis, postnatal angiogenesis, and, more recently, cardiac fibrosis and calcification, suggesting a promising avenue for therapeutic interventions in cardiovascular diseases. There remains a need for a comprehensive synthesis of their collective impact in the cardiovascular context. By exploring the intricate interactions between Eph receptors, ephrins, and cardiovascular system, this review aims to provide a holistic understanding of their roles and therapeutic potential in cardiovascular health and diseases.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Sheng-an Su
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Jian Shen
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Hong Ma
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Jixie Le
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Yao Xie
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Meixiang Xiang
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| |
Collapse
|
2
|
Zhang Q, Li J, Liu F, Hu J, Liu F, Zou J, Wang X. Ephrin B2 (EFNB2) potentially protects against intervertebral disc degeneration through inhibiting nucleus pulposus cell apoptosis. Arch Biochem Biophys 2024; 756:109990. [PMID: 38636690 DOI: 10.1016/j.abb.2024.109990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/20/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Nucleus pulposus (NP) cell apoptosis is a significant indication of accelerated intervertebral disc degeneration; however, the precise mechanism is unelucidated as of yet. Ephrin B2 (EFNB2), the only gene down-regulated in the three degraded intervertebral disc tissue microarray groups (GSE70362, GSE147383 and GSE56081), was screened for examination in this study. Subsequently, EFNB2 was verified to be down-regulated in degraded NP tissue samples. Interleukin-1 (IL-1β) treatment of NP cells to simulate the IDD environment indicated that IL-1β treatment decreased EFNB2 expression. In degenerative NP cells stimulated by IL-1β, EFNB2 knockdown significantly increased the rate of apoptosis as well as the apoptosis-related molecules cleaved-caspase-3 and the Bax to Bcl-2 ratio. EFNB2 was found to promote AKT, PI3K, and mTOR phosphorylation; the PI3K/AKT signaling role was investigated using the PI3K inhibitor LY294002. EFNB2 overexpression significantly increased PI3K/AKT pathway activity in IL-1β-stimulated NP cells than the normal control. Moreover, EFNB2 partially alleviated NP cell apoptosis induced by IL-1β, reduced the cleaved-cas3 level, and decreased the Bax/Bcl-2 ratio after the addition of the inhibitor LY294002. Additionally, EFNB2 overexpression inhibited the ERK1/2 phosphorylation; the effects of EFNB2 overexpression on ERK1/2 phosphorylation, degenerative NP cell viability, and cell apoptosis were partially reversed by ERK signaling activator Ceramide C6. EFNB2 comprehensively inhibited the apoptosis of NP cells by activating the PI3K/AKT signaling and inhibiting the ERK signaling, obviating the exacerbation of IDD. EFNB2 could be a potential target to protect against degenerative disc changes.
Collapse
Affiliation(s)
- Qianshi Zhang
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Fubing Liu
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jiarui Hu
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Fusheng Liu
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jianfei Zou
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiaobin Wang
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
3
|
Yao F, Huang S, Liu J, Tan C, Xu M, Wang D, Huang M, Zhu Y, Huang X, He S. Deletion of ARGLU1 causes global defects in alternative splicing in vivo and mouse cortical malformations primarily via apoptosis. Cell Death Dis 2023; 14:543. [PMID: 37612280 PMCID: PMC10447433 DOI: 10.1038/s41419-023-06071-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
Haploinsufficient mutation in arginine and glutamine-rich protein 1 (Arglu1), a newly identified pre-mRNA splicing regulator, may be linked to neural developmental disorders associated with mental retardation and epilepsy in human patients, but the underlying causes remain elusive. Here we show that ablation of Arglu1 promotes radial glial cell (RG) detachment from the ventricular zone (VZ), leading to ectopic localized RGs in the mouse embryonic cortex. Although they remain proliferative, ectopic progenitors, as well as progenitors in the VZ, exhibit prolonged mitosis, p53 upregulation and cell apoptosis, leading to reduced neuron production, neuronal loss and microcephaly. RNA seq analysis reveals widespread changes in alternative splicing in the mutant mouse embryonic cortex, preferentially affecting genes involved in neuronal functions. Mdm2 and Mdm4 are found to be alternatively spliced at the exon 3 and exon 5 respectively, leading to absence of the p53-binding domain and nonsense-mediated mRNA decay (NMD) and thus relieve inhibition of p53. Removal of p53 largely rescues the microcephaly caused by deletion of Arglu1. Our findings provide mechanistic insights into cortical malformations of human patients with Arglu1 haploinsufficient mutation.
Collapse
Affiliation(s)
- Fenyong Yao
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, 201210, Shanghai, China
| | - Shisheng Huang
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, 201210, Shanghai, China
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiahui Liu
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, 201210, Shanghai, China
| | - Chunhua Tan
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, 201210, Shanghai, China
| | - Mengqi Xu
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, 201210, Shanghai, China
| | - Dengkui Wang
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, 201210, Shanghai, China
| | - Maoqing Huang
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, 201210, Shanghai, China
| | - Yiyao Zhu
- School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, 201210, Shanghai, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, 201210, Shanghai, China.
| | - Shuijin He
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, 201210, Shanghai, China.
- Shanghai Clinical Research and Trial Center, 201210, Shanghai, China.
| |
Collapse
|
4
|
Zong YJ, Liu XZ, Tu L, Sun Y. Cytomembrane Trafficking Pathways of Connexin 26, 30, and 43. Int J Mol Sci 2023; 24:10349. [PMID: 37373495 DOI: 10.3390/ijms241210349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The connexin gene family is the most prevalent gene that contributes to hearing loss. Connexins 26 and 30, encoded by GJB2 and GJB6, respectively, are the most abundantly expressed connexins in the inner ear. Connexin 43, which is encoded by GJA1, appears to be widely expressed in various organs, including the heart, skin, the brain, and the inner ear. The mutations that arise in GJB2, GJB6, and GJA1 can all result in comprehensive or non-comprehensive genetic deafness in newborns. As it is predicted that connexins include at least 20 isoforms in humans, the biosynthesis, structural composition, and degradation of connexins must be precisely regulated so that the gap junctions can properly operate. Certain mutations result in connexins possessing a faulty subcellular localization, failing to transport to the cell membrane and preventing gap junction formation, ultimately leading to connexin dysfunction and hearing loss. In this review, we provide a discussion of the transport models for connexin 43, connexins 30 and 26, mutations affecting trafficking pathways of these connexins, the existing controversies in the trafficking pathways of connexins, and the molecules involved in connexin trafficking and their functions. This review can contribute to a new way of understanding the etiological principles of connexin mutations and finding therapeutic strategies for hereditary deafness.
Collapse
Affiliation(s)
- Yan-Jun Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao-Zhou Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Tu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
5
|
Defourny J, Thiry M. Recent insights into gap junction biogenesis in the cochlea. Dev Dyn 2023; 252:239-246. [PMID: 36106826 DOI: 10.1002/dvdy.538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/06/2022] Open
Abstract
In the cochlea, connexin 26 (Cx26) and connexin 30 (Cx30) co-assemble into two types of homomeric and heteromeric gap junctions between adjacent non-sensory epithelial cells. These channels provide a mechanical coupling between connected cells, and their activity is critical to maintain cochlear homeostasis. Many of the mutations in GJB2 or GJB6, which encode Cx26 and Cx30 in humans, impair the formation of membrane channels and cause autosomal syndromic and non-syndromic hearing loss. Thus, deciphering the connexin trafficking pathways in situ should represent a major step forward in understanding the pathogenic significance of many of these mutations. A growing body of evidence now suggests that Cx26/Cx30 heteromeric and Cx30 homomeric channels display distinct assembly mechanisms. Here, we review the most recent advances that have been made toward unraveling the biogenesis and stability of these gap junctions in the cochlea.
Collapse
Affiliation(s)
- Jean Defourny
- GIGA-Neurosciences, Unit of Cell and Tissue Biology, University of Liège, Liège, Belgium
| | - Marc Thiry
- GIGA-Neurosciences, Unit of Cell and Tissue Biology, University of Liège, Liège, Belgium
| |
Collapse
|
6
|
Raus AM, Fuller TD, Nelson NE, Valientes DA, Bayat A, Ivy AS. Early-life exercise primes the murine neural epigenome to facilitate gene expression and hippocampal memory consolidation. Commun Biol 2023; 6:18. [PMID: 36611093 PMCID: PMC9825372 DOI: 10.1038/s42003-022-04393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023] Open
Abstract
Aerobic exercise is well known to promote neuroplasticity and hippocampal memory. In the developing brain, early-life exercise (ELE) can lead to persistent improvements in hippocampal function, yet molecular mechanisms underlying this phenomenon have not been fully explored. In this study, transgenic mice harboring the "NuTRAP" (Nuclear tagging and Translating Ribosome Affinity Purification) cassette in Emx1 expressing neurons ("Emx1-NuTRAP" mice) undergo ELE during adolescence. We then simultaneously isolate and sequence translating mRNA and nuclear chromatin from single hippocampal homogenates containing Emx1-expressing neurons. This approach allowed us to couple translatomic with epigenomic sequencing data to evaluate the influence of histone modifications H4K8ac and H3K27me3 on translating mRNA after ELE. A subset of ELE mice underwent a hippocampal learning task to determine the gene expression and epigenetic underpinnings of ELE's contribution to improved hippocampal memory performance. From this experiment, we discover gene expression - histone modification relationships that may play a critical role in facilitated memory after ELE. Our data reveal candidate gene-histone modification interactions and implicate gene regulatory pathways involved in ELE's impact on hippocampal memory.
Collapse
Affiliation(s)
- Anthony M Raus
- Physiology/Biophysics, Anatomy/Neurobiology, University of California- Irvine School of Medicine, Irvine, CA, USA
| | - Tyson D Fuller
- Pediatrics, University of California- Irvine School of Medicine, Irvine, CA, USA
| | - Nellie E Nelson
- Physiology/Biophysics, Anatomy/Neurobiology, University of California- Irvine School of Medicine, Irvine, CA, USA
| | - David A Valientes
- Pediatrics, University of California- Irvine School of Medicine, Irvine, CA, USA
| | - Anita Bayat
- Pediatrics, University of California- Irvine School of Medicine, Irvine, CA, USA
| | - Autumn S Ivy
- Physiology/Biophysics, Anatomy/Neurobiology, University of California- Irvine School of Medicine, Irvine, CA, USA.
- Pediatrics, University of California- Irvine School of Medicine, Irvine, CA, USA.
- Neurobiology/Behavior, University of California- Irvine School of Biological Sciences, Irvine, CA, USA.
- Anatomy/Neurobiology, University of California- Irvine School of Medicine, Irvine, CA, USA.
- Division of Neurology, Children's Hospital Orange County, Orange, CA, USA.
| |
Collapse
|
7
|
Prenatal diagnosis of distal 13q deletion syndrome in a fetus with esophageal atresia: a case report and review of the literature. J Med Case Rep 2022; 16:481. [PMID: 36572904 PMCID: PMC9793530 DOI: 10.1186/s13256-022-03713-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Chromosome 13q deletion syndrome shows variable clinical features related to the different potential breakpoints in chromosome 13q. The severely malformed phenotype is known to be associated with the deletion of a critical region in 13q32. However, esophageal atresia is a rare symptom and the relevant region is unknown. Thus, determining the association between accurate breakpoints and new clinical features is essential. CASE PRESENTATION A 28-year-old Japanese primigravid woman was referred for fetal growth restriction, absence of a gastric bubble, cerebellar hypoplasia, overlapping fingers, and polyhydramnios at 31 weeks gestation. At 38 + 0 weeks, she delivered a 1774 g female infant. The infant presented with isolated esophageal atresia (Gross type A), Dandy-Walker malformation, right microphthalmia, left coloboma, overlapping fingers, pleurocentrum in the thoracic vertebrae, reduced anogenital distance, and hearing loss. Her karyotype was diagnosed as 46,XX,del(13)(q32.1-qter) by amniocentesis, but array comparative genomic hybridization after birth revealed the deletion of 13q31.3-qter. At 48 days after birth, the infant underwent surgery for esophageal atresia and was later discharged from the hospital at 7 months of age. CONCLUSION This case report and the literature reviews supports the previous findings on the pathological roles of haploinsufficiency of the ZIC2/ZIC5 in Dandy-Walker malformation and the EFBN2 haploinsufficiency in eye malformation and hearing loss. Furthermore, the possible involvement of IRS2, COLA1, and COLA2 in eye malformation were identified. This is the first case of 13q deletion syndrome with esophageal atresia (Gross A), but it may be a symptom of VATER/VACTER association (vertebral defects, anorectal malformations, cardiac defects, tracheoesophageal fistula with or without esophageal atresia, renal malformations, and limb defects), as in the previous cases. These symptoms might also be associated with EFBN2 haploinsufficiency, although further research is required.
Collapse
|
8
|
Addo S, Jung L. An insight into the runs of homozygosity distribution and breed differentiation in Mangalitsa pigs. Front Genet 2022; 13:909986. [DOI: 10.3389/fgene.2022.909986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Mangalitsa pigs exhibit three distinct coat color patterns based on which they are described as Red, Blond, and Swallow-bellied. The current study investigated genome-wide diversity and selection signatures in the three breeds using fixation index, runs of homozygosity and population structure analyses. The analyses were originally based on quality-controlled data on 77 Mangalitsa animals from Germany, including 23 Blond, 30 Swallow-bellied and 24 Red Mangalitsa genotyped with a customized version of the ProcineSNP60 v2 Genotyping Bead Chip. Also, 20 Hungarian Mangalitsa genotypes were included as outgroup data for comparison. Estimates of observed heterozygosity were 0.27, 0.28, and 0.29, and inbreeding coefficients estimated based on runs of homozygosity were 24.11%, 20.82%, and 16.34% for Blond, Swallow-bellied and Red Mangalitsa, respectively. ROH islands were detected in all breeds, however, none of these were shared amongst them. The KIF16B gene previously reported to play a role in synaptic signaling was found in a ROH island (SSC17: 16–26) in Swallow-bellied Mangalitsa. The same gene was found to harbor a significantly differentiated SNP (MARC0032380) while contrasting either Blond or Red to Swallow-belied Mangalitsa. In the Red Mangalitsa, some ROH islands were associated with genes that play a role in meat quality traits, i.e., ABCA12, VIL1, PLSCR5, and USP37. Our population structure analysis highlighted a separation of the three breeds, but also showed the closest relatedness between Red and Blond Mangalitsa pigs. Findings of this study improve our understanding of the diversity in the three breeds of Mangalitsa pigs.
Collapse
|
9
|
Wang K, Wu P, Chen D, Zhou J, Yang X, Jiang A, Xiao W, Qiu X, Zeng Y, Xu X, Tang G. Detecting the selection signatures in Chinese Duroc,Landrace, Yorkshire, Liangshan, and Qingyu pigs. Funct Integr Genomics 2021; 21:655-664. [PMID: 34606016 DOI: 10.1007/s10142-021-00809-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/23/2020] [Accepted: 09/18/2021] [Indexed: 10/20/2022]
Abstract
Here we used two kinds of chips data from 5 pig breeds, Chinese Duroc (DD), Landrace (LL), Yorkshire (YY), Liangshan (LS), and Qingyu pigs (QY) in China to identify genes which show evidence of selection during domestication. Four breed pairs, LS-YY, QY-YY, DD-YY, and LL-YY pair, were performed to detect selection signatures using the Fst method. Then we identified a list of genes that played key roles in domestication and artificial selection. For example, the PTPRM gene was shared in LS-YY, QY-YY, and DD-YY pairs and it regulates a variety of cellular processes including cell growth, differentiation as signaling molecules. The HACD3 gene was shared in QY-YY and DD-YY pairs, and the HACD3 protein is involved in the production of very long-chain fatty acids of different chain lengths. Besides, the MYH11 gene that related to muscle contraction was found in LS-YY and LL-YY pair. These results suggested that genes related to immunity, disease resistance, and metabolism were subjected to strong selection pressure in Chinese domestic pigs in the progress of domestication and evolution; however, genes related to appearance, production performance, and reproduction were undergone strong artificial selection in commercial pig breeds.
Collapse
Affiliation(s)
- Kai Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Pingxian Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dejuan Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jie Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xidi Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Anan Jiang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Weihang Xiao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaotian Qiu
- National Animal Husbandry Service, BeijingBeijing, 100125, China
| | - Yangshuang Zeng
- Sichuan Animal Husbandry Station, Chengdu, 610041, Sichuan, China
| | - Xu Xu
- Sichuan Animal Husbandry Station, Chengdu, 610041, Sichuan, China
| | - Guoqing Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Sherwani Y, Jenkins S, Adelanwa A, Burch DM, Chaudhuri NR, Zinn Z. A case of capillary malformation-arteriovenous malformation and Ebstein's anomaly in a child with EphB4 mutation. Pediatr Dermatol 2021; 38:1305-1307. [PMID: 34339071 DOI: 10.1111/pde.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Capillary malformation-arteriovenous malformation (CM-AVM) is a rare condition characterized by multiple cutaneous capillary malformations with potential associated arteriovenous malformations. RAS p21 protein activator 1 (RASA1) and ephrin type-B receptor 4 (EPHB4) genes are implicated. We present a child with CM-AVM, due to EPHB4 mutation, and Ebstein's anomaly. Although EPHB4 is a known effector of vascular remodeling, its contribution to cardiogenesis is still being explored. Further research is needed to determine causality of Ebstein's anomaly in the setting of CM-AVM due to EPHB4 mutation.
Collapse
Affiliation(s)
- Yousuf Sherwani
- West Virginia University School of Medicine, Morgantown, WV, USA
| | - Samantha Jenkins
- West Virginia University School of Medicine Department of Dermatology, Morgantown, WV, USA
| | - Ayodele Adelanwa
- West Virginia School of Medicine Department of Pathology, Morgantown, WV, USA
| | | | - Nita Ray Chaudhuri
- West Virginia University School of Medicine Department of Pediatrics, Morgantown, WV, USA
| | - Zachary Zinn
- West Virginia University School of Medicine Department of Dermatology, Morgantown, WV, USA
| |
Collapse
|
11
|
Lévy J, Schell B, Nasser H, Rachid M, Ruaud L, Couque N, Callier P, Faivre L, Marle N, Engwerda A, van Ravenswaaij-Arts CMA, Plutino M, Karmous-Benailly H, Benech C, Redon S, Boute O, Boudry Labis E, Rama M, Kuentz P, Assoumani J, Maldergem LV, Dupont C, Verloes A, Tabet AC. EPHA7 haploinsufficiency is associated with a neurodevelopmental disorder. Clin Genet 2021; 100:396-404. [PMID: 34176129 DOI: 10.1111/cge.14017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/26/2022]
Abstract
Ephrin receptor and their ligands, the ephrins, are widely expressed in the developing brain. They are implicated in several developmental processes that are crucial for brain development. Deletions in genes encoding for members of the Eph/ephrin receptor family were reported in several neurodevelopmental disorders. The ephrin receptor A7 gene (EPHA7) encodes a member of ephrin receptor subfamily of the protein-tyrosine kinase family. EPHA7 plays a role in corticogenesis processes, determines brain size and shape, and is involved in development of the central nervous system. One patient only was reported so far with a de novo deletion encompassing EPHA7 in 6q16.1. We report 12 additional patients from nine unrelated pedigrees with similar deletions. The deletions were inherited in nine out of 12 patients, suggesting variable expressivity and incomplete penetrance. Four patients had tiny deletions involving only EPHA7, suggesting a critical role of EPHA7 in a neurodevelopmental disability phenotype. We provide further evidence for EPHA7 deletion as a risk factor for neurodevelopmental disorder and delineate its clinical phenotype.
Collapse
Affiliation(s)
- Jonathan Lévy
- Genetics Department, APHP, Robert-Debré University Hospital, Paris, France
| | - Bérénice Schell
- Genetics Department, APHP, Robert-Debré University Hospital, Paris, France
| | - Hala Nasser
- Genetics Department, APHP, Robert-Debré University Hospital, Paris, France
| | - Myriam Rachid
- Genetics Department, APHP, Robert-Debré University Hospital, Paris, France
| | - Lyse Ruaud
- Genetics Department, APHP, Robert-Debré University Hospital, Paris, France.,Université de Paris Medical School, Paris, France.,INSERM UMR1141, Paris University, APHP, Robert-Debré Hospital, Paris, France
| | - Nathalie Couque
- Genetics Department, APHP, Robert-Debré University Hospital, Paris, France
| | - Patrick Callier
- Centre de Génétique et Centre de référence "Anomalies du Développement et Syndromes Malformatifs", Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon, France.,Laboratoire de Génétique Chromosomique et Moléculaire, Plateau Technique de Biologie, Centre Hospitalier Universitaire de Dijon, Dijon, France.,UMR-Inserm 1231 GAD Team, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, Dijon, France
| | - Laurence Faivre
- Centre de Génétique et Centre de référence "Anomalies du Développement et Syndromes Malformatifs", Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon, France.,UMR-Inserm 1231 GAD Team, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, Dijon, France
| | - Nathalie Marle
- Laboratoire de Génétique Chromosomique et Moléculaire, Plateau Technique de Biologie, Centre Hospitalier Universitaire de Dijon, Dijon, France.,UMR-Inserm 1231 GAD Team, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, Dijon, France
| | - Aafke Engwerda
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | | | - Morgane Plutino
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nice, Nice, France
| | | | | | - Sylvia Redon
- Laboratoire de Génétique Moléculaire et Histocompatibilité, Service de Génétique Médicale, CHRU, Brest, France
| | - Odile Boute
- CHU Lille, Clinique de Génétique "Guy Fontaine", Lille, France
| | | | - Mélanie Rama
- CHU Lille, Institut de Génétique Médicale, Lille, France
| | - Paul Kuentz
- UMR-Inserm 1231 GAD Team, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, Dijon, France.,Génétique Biologique, PCBio, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | | | - Lionel Van Maldergem
- Clinical Investigation Center 1431, INSERM, Besançon, France.,Center of Human Genetics, University of Franche-Comté, Besançon, France
| | - Céline Dupont
- Genetics Department, APHP, Robert-Debré University Hospital, Paris, France
| | - Alain Verloes
- Genetics Department, APHP, Robert-Debré University Hospital, Paris, France.,Université de Paris Medical School, Paris, France.,INSERM UMR1141, Paris University, APHP, Robert-Debré Hospital, Paris, France
| | - Anne-Claude Tabet
- Genetics Department, APHP, Robert-Debré University Hospital, Paris, France.,Neuroscience Department, Human Genetics and Cognitive Function Unit, Pasteur Institute, Paris, France
| |
Collapse
|
12
|
Defourny J, Audouard C, Davy A, Thiry M. Efnb2 haploinsufficiency induces early gap junction plaque disassembly and endocytosis in the cochlea. Brain Res Bull 2021; 174:153-160. [PMID: 34139316 DOI: 10.1016/j.brainresbull.2021.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 11/15/2022]
Abstract
Chromosome 13q deletions encompassing EFNB2, which encodes the transmembrane protein ephrin-B2, are likely to cause syndromic forms of sensorineural hearing loss of unclear origin. Thus, unravelling the pathogenic mechanisms could help to improve therapeutic strategies. In the cochlea, adjacent non-sensory epithelial cells are connected via gap junction channels, the activity of which is critical to maintain cochlear homeostasis. Here we show that ephrin-B2 promotes the assembly of connexin 30 (Cx30) gap junction plaques (GJPs) between adjacent non-sensory Deiters' cells. An in situ proximity ligation assay revealed that ephrin-B2 preferentially interacts with Cx30 in the periphery of the GJPs, i.e. where newly synthesized connexin hemichannels accrue to the GJP. Moreover, we observed that heterozygous mice encoding an Efnb2 null allele display excessive clathrin-mediated internalization of Cx30 GJPs in early postnatal stages. Finally, an in vitro organotypic assay revealed that ectopic activation of ephrin-B2 reverse signalling promotes the internalization of Cx30 GJPs. These data argue in favor of a cell-autonomous, Eph receptor-independent role of ephrin-B2 in the assembly of Cx30 GJPs. According to recent observations, early GJP degradation could certainly play a role in the pathogenic process leading to progressive sensorineural hearing loss due to Efnb2/EFNB2 haploinsufficiency.
Collapse
Affiliation(s)
- Jean Defourny
- GIGA-Neurosciences, Unit of Cell and Tissue Biology, University of Liège, CHU B36, 4000, Liège, Belgium.
| | - Christophe Audouard
- Center for Developmental Biology, Center for Integrative Biology, University of Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse, France
| | - Alice Davy
- Center for Developmental Biology, Center for Integrative Biology, University of Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse, France
| | - Marc Thiry
- GIGA-Neurosciences, Unit of Cell and Tissue Biology, University of Liège, CHU B36, 4000, Liège, Belgium
| |
Collapse
|
13
|
Shi F, He Y, Chen Y, Yin X, Sha X, Wang Y. Comparative Analysis of Multiple Neurodegenerative Diseases Based on Advanced Epigenetic Aging Brain. Front Genet 2021; 12:657636. [PMID: 34093653 PMCID: PMC8173158 DOI: 10.3389/fgene.2021.657636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/16/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Neurodegenerative Diseases (NDs) are age-dependent and include Alzheimer’s disease (AD), Parkinson’s disease (PD), progressive supranuclear palsy (PSP), frontotemporal dementia (FTD), and so on. There have been numerous studies showing that accelerated aging is closely related (even the driver of) ND, thus promoting imbalances in cellular homeostasis. However, the mechanisms of how different ND types are related/triggered by advanced aging are still unclear. Therefore, there is an urgent need to explore the potential markers/mechanisms of different ND types based on aging acceleration at a system level. Methods: AD, PD, PSP, FTD, and aging markers were identified by supervised machine learning methods. The aging acceleration differential networks were constructed based on the aging score. Both the enrichment analysis and sensitivity analysis were carried out to investigate both common and specific mechanisms among different ND types in the context of aging acceleration. Results: The extracellular fluid, cellular metabolisms, and inflammatory response were identified as the common driving factors of cellular homeostasis imbalances during the accelerated aging process. In addition, Ca ion imbalance, abnormal protein depositions, DNA damage, and cytoplasmic DNA in macrophages were also revealed to be special mechanisms that further promote AD, PD, PSP, and FTD, respectively. Conclusion: The accelerated epigenetic aging mechanisms of different ND types were integrated and compared through our computational pipeline.
Collapse
Affiliation(s)
- Feitong Shi
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Yudan He
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Yao Chen
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Xinman Yin
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Xianzheng Sha
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Yin Wang
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, China.,Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Identification of genetic loci affecting body mass index through interaction with multiple environmental factors using structured linear mixed model. Sci Rep 2021; 11:5001. [PMID: 33654129 PMCID: PMC7925554 DOI: 10.1038/s41598-021-83684-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 02/05/2021] [Indexed: 11/08/2022] Open
Abstract
Multiple environmental factors could interact with a single genetic factor to affect disease phenotypes. We used Struct-LMM to identify genetic variants that interacted with environmental factors related to body mass index (BMI) using data from the Korea Association Resource. The following factors were investigated: alcohol consumption, education, physical activity metabolic equivalent of task (PAMET), income, total calorie intake, protein intake, carbohydrate intake, and smoking status. Initial analysis identified 7 potential single nucleotide polymorphisms (SNPs) that interacted with the environmental factors (P value < 5.00 × 10-6). Of the 8 environmental factors, PAMET score was excluded for further analysis since it had an average Bayes Factor (BF) value < 1 (BF = 0.88). Interaction analysis using 7 environmental factors identified 11 SNPs (P value < 5.00 × 10-6). Of these, rs2391331 had the most significant interaction (P value = 7.27 × 10-9) and was located within the intron of EFNB2 (Chr 13). In addition, the gene-based genome-wide association study verified EFNB2 gene significantly interacting with 7 environmental factors (P value = 5.03 × 10-10). BF analysis indicated that most environmental factors, except carbohydrate intake, contributed to the interaction of rs2391331 on BMI. Although the replication of the results in other cohorts is warranted, these findings proved the usefulness of Struct-LMM to identify the gene-environment interaction affecting disease.
Collapse
|
15
|
Kischel A, Audouard C, Fawal MA, Davy A. Ephrin-B2 paces neuronal production in the developing neocortex. BMC DEVELOPMENTAL BIOLOGY 2020; 20:12. [PMID: 32404061 PMCID: PMC7222552 DOI: 10.1186/s12861-020-00215-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/19/2020] [Indexed: 01/19/2023]
Abstract
Background During mammalian cerebral cortex development, different types of projection neurons are produced in a precise temporal order and in stereotypical numbers. The mechanisms regulating timely generation of neocortex projection neurons and ensuring production in sufficient numbers of each neuronal identity are only partially understood. Results Here, we show that ephrin-B2, a member of the Eph:ephrin cell-to-cell communication pathway, sets the neurogenic tempo in the neocortex. Indeed, conditional mutant embryos for ephrin-B2 exhibit a transient delay in neurogenesis and acute stimulation of Eph signaling by in utero injection of synthetic ephrin-B2 led to a transient increase in neuronal production. Using genetic approaches we show that ephrin-B2 acts on neural progenitors to control their differentiation in a juxtacrine manner. Unexpectedly, we observed that perinatal neuron numbers recovered following both loss and gain of ephrin-B2, highlighting the ability of neural progenitors to adapt their behavior to the state of the system in order to produce stereotypical numbers of neurons. Conclusions Altogether, our data uncover a role for ephrin-B2 in embryonic neurogenesis and emphasize the plasticity of neuronal production in the neocortex.
Collapse
Affiliation(s)
- Anthony Kischel
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse, France
| | - Christophe Audouard
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse, France
| | - Mohamad-Ali Fawal
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse, France
| | - Alice Davy
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse, France.
| |
Collapse
|
16
|
Su SA, Xie Y, Zhang Y, Xi Y, Cheng J, Xiang M. Essential roles of EphrinB2 in mammalian heart: from development to diseases. Cell Commun Signal 2019; 17:29. [PMID: 30909943 PMCID: PMC6434800 DOI: 10.1186/s12964-019-0337-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
EphrinB2, a membrane-tethered ligand preferentially binding to its receptor EphB4, is ubiquitously expressed in all mammals. Through the particular bidirectional signaling, EphrinB2 plays a critical role during the development of cardiovascular system, postnatal angiogenesis physiologically and pathologically, and cardiac remodeling after injuries as an emerging role. This review highlights the pivotal involvement of EphrinB2 in heart, from developmental cardiogenesis to pathological cardiac remodeling process. Further potential translational therapies will be discussed in targeting EphrinB2 signaling, to better understand the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Sheng-An Su
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yao Xie
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yuhao Zhang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yutao Xi
- Texas Heart Institute, Houston, 77030, USA.
| | - Jie Cheng
- Texas Heart Institute, Houston, 77030, USA
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
17
|
Zeng X, Hunt A, Jin SC, Duran D, Gaillard J, Kahle KT. EphrinB2-EphB4-RASA1 Signaling in Human Cerebrovascular Development and Disease. Trends Mol Med 2019; 25:265-286. [PMID: 30819650 DOI: 10.1016/j.molmed.2019.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 12/13/2022]
Abstract
Recent whole exome sequencing studies in humans have provided novel insight into the importance of the ephrinB2-EphB4-RASA1 signaling axis in cerebrovascular development, corroborating and extending previous work in model systems. Here, we aim to review the human cerebrovascular phenotypes associated with ephrinB2-EphB4-RASA1 mutations, including those recently discovered in Vein of Galen malformation: the most common and severe brain arteriovenous malformation in neonates. We will also discuss emerging paradigms of the molecular and cellular pathophysiology of disease-causing ephrinB2-EphB4-RASA1 mutations, including the potential role of somatic mosaicism. These observations have potential diagnostic and therapeutic implications for patients with rare congenital cerebrovascular diseases and their families.
Collapse
Affiliation(s)
- Xue Zeng
- Department of Genetics, Yale School of Medicine, New Haven CT, USA; Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Ava Hunt
- Department of Neurosurgery, Yale School of Medicine, New Haven CT, USA
| | - Sheng Chih Jin
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Daniel Duran
- Department of Neurosurgery, Yale School of Medicine, New Haven CT, USA
| | - Jonathan Gaillard
- Department of Neurosurgery, Yale School of Medicine, New Haven CT, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Yale School of Medicine, New Haven CT, USA; Department of Pediatrics, Yale School of Medicine, New Haven CT, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven CT, USA.
| |
Collapse
|
18
|
Defourny J. Eph/ephrin signalling in the development and function of the mammalian cochlea. Dev Biol 2019; 449:35-40. [PMID: 30771305 DOI: 10.1016/j.ydbio.2019.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022]
Abstract
In mammals, the functional development of the cochlea requires the tight regulation of multiple molecules and signalling pathways including fibroblast growth factors, bone morphogenetic proteins, Wnt and Notch signalling pathways. Over the last decade, the Eph/ephrin system also emerged as a key player of the development and function of the mammalian cochlea. In this review, we discuss the recent advances on the role of Eph/ephrin signalling in patterning the cochlear sensory epithelium and the complex innervation of mechanosensory hair cells by spiral ganglion neurons. Finally, we address the issue of a syndromic form of hearing loss caused by a deficient member of the Eph/ephrin family.
Collapse
Affiliation(s)
- Jean Defourny
- GIGA-Neurosciences, Unit of Cell and Tissue Biology, University of Liège, C.H.U. B36, B-4000, Liège, Belgium.
| |
Collapse
|