1
|
Baardman R, Lemmink HH, Yenamandra VK, Commandeur-Jan SZ, Viel M, Kooi KA, Diercks GFH, Meijer R, van Geel M, Scheffer H, Sinke RJ, Sikkema-Raddatz B, Bolling MC, van den Akker PC. Evolution of genome diagnostics in epidermolysis bullosa: Unveiling the power of next-generation sequencing. J Eur Acad Dermatol Venereol 2024. [PMID: 38465480 DOI: 10.1111/jdv.19938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Genome diagnostics is considered gold standard diagnostics for epidermolysis bullosa (EB), a phenotypically and genetically heterogeneous group of rare disorders characterized by blistering and wounding of mucocutaneous tissues. EB is caused by pathogenic variants in genes encoding proteins of the dermo-epidermal junction. Accurate genetic diagnosis of EB is crucial for prognostication, counselling and precision-medicine. Genome diagnostics for EB started in 1991 with the introduction of Sanger sequencing (SS), analysing one gene at a time. In 2013, SS was superseded by next-generation sequencing (NGS), that allow for high-throughput sequencing of multiple genes in parallel. Several studies have shown a beneficial role for NGS in EB diagnostics, but its true benefit has not been quantified. OBJECTIVES To determine the benefit of NGS in EB by systematically evaluating the performance of different genome diagnostics used over time based on robust data from the Dutch EB Registry. METHODS The diagnostic performances of SS and NGS were systematically evaluated in a retrospective observational study including all index cases with a clinical diagnosis of EB in whom genome diagnostics was performed between 01 January 1994 and 01 January 2022 (n = 308), registered at the Dutch EB Expertise Centre. RESULTS Over time, a genetic diagnosis was made in 289/308 (94%) EB cases. The diagnostic yield increased from 89% (SS) to 95% (NGS). Most importantly, NGS significantly reduced diagnostic turnaround time (39 days vs. 211 days, p < 0.001). The likelihood of detecting variants of uncertain significance and additional findings increased from 5% and 1% (SS) to 22% and 13% (NGS) respectively. CONCLUSIONS Our study quantifies the benefit of NGS-based methods and demonstrate they have had a major impact on EB diagnostics through an increased diagnostic yield and a dramatically decreased turnaround time (39 days). Although our diagnostic yield is high (95%), further improvement of genome diagnostics is urgently needed to provide a genetic diagnosis in all EB patients.
Collapse
Affiliation(s)
- R Baardman
- Department of Dermatology, UMCG Centers of Expertise for Blistering Diseases and Genodermatoses, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - H H Lemmink
- Department of Genetics, UMCG Centers of Expertise for Blistering Diseases and Genodermatoses, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - V K Yenamandra
- Academy of Scientific and Innovative Research South Campus, CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - S Z Commandeur-Jan
- Department of Genetics, UMCG Centers of Expertise for Blistering Diseases and Genodermatoses, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M Viel
- Department of Genetics, UMCG Centers of Expertise for Blistering Diseases and Genodermatoses, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - K A Kooi
- Department of Genetics, UMCG Centers of Expertise for Blistering Diseases and Genodermatoses, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - G F H Diercks
- Department of Dermatology, UMCG Centers of Expertise for Blistering Diseases and Genodermatoses, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pathology, UMCG Centers of Expertise for Blistering Diseases and Genodermatoses, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - R Meijer
- Department of Genetics, University Medical Center Nijmegen, University of Nijmegen, Nijmegen, The Netherlands
| | - M van Geel
- Department of Genetics, Maastricht University Medical Center, University of Maastricht, Maastricht, The Netherlands
| | - H Scheffer
- Department of Genetics, University Medical Center Nijmegen, University of Nijmegen, Nijmegen, The Netherlands
| | - R J Sinke
- Department of Genetics, UMCG Centers of Expertise for Blistering Diseases and Genodermatoses, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - B Sikkema-Raddatz
- Department of Genetics, UMCG Centers of Expertise for Blistering Diseases and Genodermatoses, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M C Bolling
- Department of Dermatology, UMCG Centers of Expertise for Blistering Diseases and Genodermatoses, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - P C van den Akker
- Department of Dermatology, UMCG Centers of Expertise for Blistering Diseases and Genodermatoses, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, UMCG Centers of Expertise for Blistering Diseases and Genodermatoses, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Syafarina I, Mazaya M, Indrawati A, Akbar SZ, Sukowati C, Sadikin R. Skin Microbial Composition and Genetic Mutation Analysis in Precision Medicine for Epidermolysis Bullosa. Curr Drug Targets 2024; 25:404-415. [PMID: 38566380 DOI: 10.2174/0113894501290512240327091531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024]
Abstract
Epidermolysis bullosa (EB) is an inherited skin disease representing a spectrum of rare genetic disorders. These conditions share the common trait that causes fragile skin, resulting in the development of blisters and erosions. The inheritance follows an autosomal pattern, and the array of clinical presentations leads to significant physical suffering, considerable morbidity, and mortality. Despite EB having no cure, effectively managing EB remains an exceptional challenge due to its rarity and complexity, occasionally casting a profound impact on the lives of affected individuals. Considering that EB management requires a multidisciplinary approach, this sometimes worsens the condition of patients with EB due to inappropriate handling. Thus, more appropriate and precise treatment management of EB is essentially needed. Advanced technology in medicine and health comes into the bioinformatics era. Including treatment for skin diseases, omics-based approaches aim to evaluate and handle better disease management and treatment. In this work, we review several approaches regarding the implementation of omics-based technology, including genetics, pathogenic mutation, skin microbiomics, and metagenomics analysis for EB. In addition, we highlight recent updates on the potential of metagenomics analysis in precision medicine for EB.
Collapse
Affiliation(s)
- Inna Syafarina
- Research Center for Computing, National Research and Innovation Agency (BRIN), Jakarta Pusat 10340, Indonesia
| | - Maulida Mazaya
- Research Center for Computing, National Research and Innovation Agency (BRIN), Jakarta Pusat 10340, Indonesia
| | - Ariani Indrawati
- Research Center for Data Science and Information, National Research and Innovation Agency (BRIN), Jakarta Pusat 10340, Indonesia
| | - Sharfina Zahra Akbar
- Department of Nanotechnology Engineering, Airlangga University, Surabaya, Indonesia
| | - Caecilia Sukowati
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Jakarta Pusat 10340, Indonesia
- Liver Cancer Unit, Italian Liver Foundation NPO, Fondazione Italiana Fegato ONLUS, Trieste, Italy
| | - Rifki Sadikin
- Research Center for Computing, National Research and Innovation Agency (BRIN), Jakarta Pusat 10340, Indonesia
| |
Collapse
|
3
|
King AD, Deirawan H, Klein PA, Dasgeb B, Dumur CI, Mehregan DR. Next-generation sequencing in dermatology. Front Med (Lausanne) 2023; 10:1218404. [PMID: 37841001 PMCID: PMC10570430 DOI: 10.3389/fmed.2023.1218404] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/04/2023] [Indexed: 10/17/2023] Open
Abstract
Over the past decade, Next-Generation Sequencing (NGS) has advanced our understanding, diagnosis, and management of several areas within dermatology. NGS has emerged as a powerful tool for diagnosing genetic diseases of the skin, improving upon traditional PCR-based techniques limited by significant genetic heterogeneity associated with these disorders. Epidermolysis bullosa and ichthyosis are two of the most extensively studied genetic diseases of the skin, with a well-characterized spectrum of genetic changes occurring in these conditions. NGS has also played a critical role in expanding the mutational landscape of cutaneous squamous cell carcinoma, enhancing our understanding of its molecular pathogenesis. Similarly, genetic testing has greatly benefited melanoma diagnosis and treatment, primarily due to the high prevalence of BRAF hot spot mutations and other well-characterized genetic alterations. Additionally, NGS provides a valuable tool for measuring tumor mutational burden, which can aid in management of melanoma. Lastly, NGS demonstrates promise in improving the sensitivity of diagnosing cutaneous T-cell lymphoma. This article provides a comprehensive summary of NGS applications in the diagnosis and management of genodermatoses, cutaneous squamous cell carcinoma, melanoma, and cutaneous T-cell lymphoma, highlighting the impact of NGS on the field of dermatology.
Collapse
Affiliation(s)
- Andrew D. King
- Department of Dermatology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Hany Deirawan
- Department of Dermatology, Wayne State University School of Medicine, Detroit, MI, United States
| | | | - Bahar Dasgeb
- Department of Surgical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Catherine I. Dumur
- Bernhardt Laboratories, Sonic Healthcare Anatomic Pathology Division, Jacksonville, FL, United States
| | - Darius R. Mehregan
- Department of Dermatology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
4
|
Salik D, Richert B, Smits G. Clinical and molecular diagnosis of genodermatoses: Review and perspectives. J Eur Acad Dermatol Venereol 2023; 37:488-500. [PMID: 36502512 DOI: 10.1111/jdv.18769] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
Abstract
Genodermatoses are a complex and heterogeneous group of genetic skin disorders characterized by variable expression and clinical and genetic heterogeneity, rendering their diagnosis challenging. DNA-based techniques, like whole-exome sequencing, can establish a diagnosis in 50% of cases. RNA-sequencing is emerging as an attractive tool that can obtain information regarding gene expression while integrating functional genomic data with regard to the interpretation of variants. This increases the diagnostic rate by an additional 10-15%. In the present review, we detail the clinical steps involved in the diagnosis of genodermatoses, as well as the current DNA-based technologies available to clinicians. Herein, the intention is to facilitate a better understanding of the possibilities and limitations of these diagnostic technologies. In addition, this review could guide dermatologists through new emerging techniques, such as RNA-sequencing and its applications to familiarizing them with future techniques. Currently, this multi-omics approach is likely the best strategy designed to promote the diagnosis of patients with genodermatoses and discover new skin disease genes that could result in novel targeted therapies.
Collapse
Affiliation(s)
- Deborah Salik
- Department of Dermatology, CHU Saint-Pierre, CHU Brugmann and Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Bertrand Richert
- Department of Dermatology, CHU Saint-Pierre, CHU Brugmann and Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Guillaume Smits
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics Université Libre de Bruxelles (ULB), Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
5
|
Chen F, Wei R, Deng D, Zhang X, Cao Y, Pan C, Wang Y, Cao Q, Wang J, Zeng M, Huang L, Gu Y, Yao Z, Li M. Genotype and phenotype correlations in 441 patients with epidermolysis bullosa from China. J Eur Acad Dermatol Venereol 2023; 37:411-419. [PMID: 36287101 DOI: 10.1111/jdv.18692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/06/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Epidermolysis bullosa (EB) is a heterogeneous group of rare and incurable genetic blistering disorders. OBJECTIVES The objective was to analyse the genotype-phenotype correlation in EB among Chinese individuals. METHODS Next-generation sequencing and Sanger sequencing were performed to genetically confirm clinically diagnosed EB. Reverse transcription-PCR and splice-site analysis were used to evaluate the consequences of splicing mutations. RESULTS A total of 441 cases (413 families) across 11 genes were included. EB simplex (EBS), junctional EB (JEB), dystrophic EB (DEB), Kindler EB, simplex and junctional compound EB accounted for 23.4%, 12.7%, 61.5%, 1.1% and 0.2%, respectively. In 16 probands with presumptive recessive EB, failed to find the second allele, COL7A1 (10), COL17A1 (4), LAMB3 (1) and ITGB4 (1). De novo mutations are common in dominant EB (63.8% in EBS, 27.5% in DEB) but extremely rare in recessive DEB (RDEB; 0.74%). Mosaicism is more common than presumed, with 5.4% of dominant EBS. In JEB, only 45.0% of patients with biallelic premature termination codon (PTC) mutations in laminin 332 genes died within 24 months, with a longer average survival age of 11.1 months. In JEB, unusual phenotypes are frequently observed, notably urinary tract involvement, duodenal atresia and EB nevi. In RDEB, 48.8% of cases with biallelic PTC mutations in COL7A1 exhibited a relatively mild phenotype; they are likely to develop a severe phenotype at 0-4 years old, and the PTC mutations position closer to the N-terminal, leading to earlier onset. Glycine substitution mutations in DEB have complex genotypic and phenotypic heterogeneity. The rare subtype, dominant and recessive compound DEB, consists of 1.8% of the total DEB. CONCLUSIONS This study reveals the general rules governing genotype-phenotype correlations, rare phenotypes and complex genotypes. Collectively, mutation analysis in different forms of EB provides the basis for improved subclassification with accurate genetic counselling and for prenatal diagnosis.
Collapse
Affiliation(s)
- Fuying Chen
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruoqu Wei
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dan Deng
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xue Zhang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Cao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chaolan Pan
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yumeng Wang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiaoyu Cao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianbo Wang
- Department of Dermatology, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Ming Zeng
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou Overseas Chinese Hospital, Guangzhou, China
| | - Linting Huang
- Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Gu
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhirong Yao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ming Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| |
Collapse
|
6
|
Tu WT, Hou PC, Chen PC, Chen WR, Huang HY, Wang JY, Huang YT, Wu YH, Su CL, Tang YA, Iwata H, Natsuga K, Chao SC, Sun HS, Tang MJ, Lee JYY, McGrath JA, Hsu CK. Mutational analysis of epidermolysis bullosa in Taiwan by whole-exome sequencing complemented by RNA sequencing: a series of 77 patients. Orphanet J Rare Dis 2022; 17:451. [PMID: 36578049 PMCID: PMC9795651 DOI: 10.1186/s13023-022-02605-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Epidermolysis bullosa (EB) is a heterogeneous group of hereditary skin diseases characterized by skin fragility. Primary data on Taiwanese population remain scarce. METHODS We gathered clinical information from EB patients at National Cheng Kung University Hospital from January, 2012, to June, 2021. Diagnostic tests including transmission electron microscopy, immunofluorescence studies, and whole-exome sequencing (WES) were performed. The pathogenicity of novel splice-site mutations was determined through reverse transcriptase-PCR of skin mRNA followed by Sanger and/or RNA sequencing. RESULTS Seventy-seven EB patients from 45 families were included: 19 EB simplex, six junctional EB, and 52 dystrophic EB. Pathogenic variants were identified in 37 of 38 families (97.4%), in which WES was used as a first-line tool for mutational analysis; RNA sequencing determined pathogenic variants in the remaining one family. A total of 60 mutations in EB-related genes were identified, including 22 novel mutations. The mutations involved KRT5, KRT14, PLEC, COL17A1, LAMB3, LAMA3, ITGB4, and COL7A1. Over one-quarter of DEB patients had EB pruriginosa. CONCLUSIONS The distinct clinical presentation and molecular pathology of EB in Taiwan expand our understanding of this disorder. WES was an effective first-line diagnostic tool for identifying EB-associated variants. RNA sequencing complemented WES when multiple potentially pathogenic splice-site mutations were found.
Collapse
Affiliation(s)
- Wei-Ting Tu
- grid.64523.360000 0004 0532 3255Department of Dermatology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng-Li Road, Tainan City, Taiwan
| | - Ping-Chen Hou
- grid.64523.360000 0004 0532 3255Department of Dermatology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng-Li Road, Tainan City, Taiwan
| | - Peng-Chieh Chen
- grid.64523.360000 0004 0532 3255Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wan-Rung Chen
- grid.64523.360000 0004 0532 3255Department of Dermatology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng-Li Road, Tainan City, Taiwan
| | - Hsin-Yu Huang
- grid.64523.360000 0004 0532 3255Department of Dermatology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng-Li Road, Tainan City, Taiwan
| | - Jing-Yu Wang
- grid.64523.360000 0004 0532 3255School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ting Huang
- grid.64523.360000 0004 0532 3255School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Huei Wu
- grid.64523.360000 0004 0532 3255Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Lin Su
- grid.64523.360000 0004 0532 3255International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - Yen-An Tang
- grid.64523.360000 0004 0532 3255Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan ,grid.64523.360000 0004 0532 3255Center for Genomic Medicine, Innovation Headquarters, National Cheng Kung University, Tainan, Taiwan
| | - Hiroaki Iwata
- grid.39158.360000 0001 2173 7691Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ken Natsuga
- grid.39158.360000 0001 2173 7691Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Sheau-Chiou Chao
- grid.64523.360000 0004 0532 3255Department of Dermatology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng-Li Road, Tainan City, Taiwan
| | - H. Sunny Sun
- grid.64523.360000 0004 0532 3255Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan ,grid.64523.360000 0004 0532 3255Center for Genomic Medicine, Innovation Headquarters, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Jer Tang
- grid.64523.360000 0004 0532 3255International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - Julia Yu-Yun Lee
- grid.64523.360000 0004 0532 3255Department of Dermatology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng-Li Road, Tainan City, Taiwan
| | - John A. McGrath
- grid.13097.3c0000 0001 2322 6764St. John’s Institute of Dermatology, King’s College London (Guy’s Campus), London, UK
| | - Chao-Kai Hsu
- Department of Dermatology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng-Li Road, Tainan City, Taiwan. .,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
7
|
Chen F, Deng D, Pan C, Yao Z, Gu Y, Li M. Detection and characterization of low-level mosaicism among clinically unaffected parents of "sporadic" epidermolysis bullosa simplex cases. Br J Dermatol 2022; 187:441-443. [PMID: 35191026 DOI: 10.1111/bjd.21059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Fuying Chen
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dan Deng
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chaolan Pan
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhirong Yao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan Gu
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ming Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Chen F, Wang Y, Wang X, Yao Z, Li M. Complex genetic models in dystrophic epidermolysis bullosa families with marked intra-familial phenotypic heterogeneity. J Eur Acad Dermatol Venereol 2022; 36:e550-e553. [PMID: 35181940 DOI: 10.1111/jdv.18020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/19/2022] [Accepted: 02/08/2022] [Indexed: 11/30/2022]
Affiliation(s)
- F Chen
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Y Wang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - X Wang
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Z Yao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - M Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Chen F, Yao L, Zhang X, Gu Y, Yu H, Yao Z, Zhang J, Li M. Damaged Keratin Filament Network Caused by KRT5 Mutations in Localized Recessive Epidermolysis Bullosa Simplex. Front Genet 2021; 12:736610. [PMID: 34912369 PMCID: PMC8667171 DOI: 10.3389/fgene.2021.736610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/28/2021] [Indexed: 11/21/2022] Open
Abstract
Epidermolysis bullosa simplex (EBS) is a blistering dermatosis that is mostly caused by dominant mutations in KRT5 and KRT14. In this study, we investigated one patient with localized recessive EBS caused by novel homozygous c.1474T > C mutations in KRT5. Biochemical experiments showed a mutation-induced alteration in the keratin 5 structure, intraepidermal blisters, and collapsed keratin intermediate filaments, but no quantitative change at the protein levels and interaction between keratin 5 and keratin 14. Moreover, we found that MAPK signaling was inhibited, while desmosomal protein desmoglein 1 (DSG1) was upregulated upon KRT5 mutation. Inhibition of EGFR phosphorylation upregulated DSG1 levels in an in vitro model. Collectively, our findings suggest that this mutation leads to localized recessive EBS and that keratin 5 is involved in maintaining DSG1 via activating MAPK signaling.
Collapse
Affiliation(s)
- Fuying Chen
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lei Yao
- Experiment Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xue Zhang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan Gu
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong Yu
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhirong Yao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jia Zhang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ming Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Chen F, Guo Y, Zhou K, Deng D, Yue W, Yang W, Zhang B, Li Y, Liang J, Li M, Yao Z. The clinical efficacy and safety of anti-IgE therapy in recessive dystrophic epidermolysis bullosa. Clin Genet 2021; 101:110-115. [PMID: 34494659 DOI: 10.1111/cge.14062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/10/2021] [Accepted: 09/03/2021] [Indexed: 12/17/2022]
Abstract
The treatment of recessive dystrophic epidermolysis bullosa (RDEB) remains challenging. Elevated IgE levels have previously been reported in several RDEB patients. In this prospective, single-centre, open intervention study, elevated IgE levels were seen in 11 out of 12 patients with intense pruritus, and the patients with elevated IgE levels received anti-IgE therapy every 4 weeks for at least three cycles. Compared with the baseline, 10 patients with RDEB had good clinical outcomes with enhanced wound healing, a reduction in Birmingham (epidermolysis bullosa) EB severity score by 15%, a reduction in affected body surface area by 23.3%, amelioration of skin inflammation, and an increase in type VII collagen deposition by 13.1-fold. All the patients had a good tolerance to anti-IgE therapy. Furthermore, patients with higher IgE levels tended to have higher disease severity and more favorable clinical outcomes. Our report also suggested the potential role of IgE in the pathogenesis of inflammatory conditions associated with RDEB. (ChiCTR1900021437).
Collapse
Affiliation(s)
- Fuying Chen
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yifeng Guo
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kaili Zhou
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dan Deng
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wanbo Yue
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weiqin Yang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Beibei Zhang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yue Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianying Liang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ming Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhirong Yao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|