1
|
Shodry S, Hasan YTN, Ahdi IR, Ulhaq ZS. Gene targets with therapeutic potential in hepatocellular carcinoma. World J Gastrointest Oncol 2024; 16:4543-4547. [PMID: 39678796 PMCID: PMC11577361 DOI: 10.4251/wjgo.v16.i12.4543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 11/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide. Major treatments include liver transplantation, resection, and chemotherapy, but the 5-year recurrence rate remains high. Late diagnosis often prevents surgical intervention, contributing to poor patient survival rates. Carcinogenesis in HCC involves genetic alterations that drive the transformation of normal cells into malignant ones. Enhancer of zeste homolog 2 (EZH2), a key regulator of cell cycle progression, is frequently upregulated in HCC and is associated with advanced stages and poor prognosis, making it a potential biomarker. Additionally, signal transducer and activator of transcription 3, which binds to EZH2, affects disease staging and outcomes. Targeting EZH2 presents a promising therapeutic strategy. On the other hand, abnormal lipid metabolism is a hallmark of HCC and impacts prognosis. Fatty acid binding protein 5 is highly expressed in HCC tissues and correlates with key oncogenes, suggesting its potential as a biomarker. Other genes such as guanine monophosphate synthase, cell division cycle associated 5, and epidermal growth factor receptor provide insights into the molecular mechanisms of HCC, offering potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Syifaus Shodry
- Faculty of Medicine and Health Sciences, Maulana Ibrahim Islamic State University of Malang, Malang 65144, Jawa Timur, Indonesia
| | - Yuliono Trika Nur Hasan
- Faculty of Medicine and Health Sciences, Maulana Ibrahim Islamic State University of Malang, Malang 65144, Jawa Timur, Indonesia
| | - Iwal Reza Ahdi
- Faculty of Medicine and Health Sciences, Maulana Ibrahim Islamic State University of Malang, Malang 65144, Jawa Timur, Indonesia
| | - Zulvikar Syambani Ulhaq
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong 16911, Indonesia
| |
Collapse
|
2
|
Antal G, Zsigmond A, Till Á, Szabó A, Maász A, Bene J, Hadzsiev K. Molecular and Clinical Heterogeneity in Hungarian Patients with Treacher Collins Syndrome-Identification of Two Novel Mutations by Next-Generation Sequencing. Int J Mol Sci 2024; 25:11400. [PMID: 39518953 PMCID: PMC11546311 DOI: 10.3390/ijms252111400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Treacher Collins syndrome (TCS) is a rare congenital craniofacial disorder with variable penetrance and high genetic and phenotypic heterogeneity. It is caused by pathogenic variants in the TCOF1, POLR1D, POLR1C, and POLR1B genes, and its major characteristic features are malar and mandibular hypoplasia, downward slanting of the palpebral fissures, and conductive hearing loss. In this study, five patients (two males and three females, age range from 2 to 29 years) with TCS were tested by Next-Generation Sequencing (NGS)-based sequencing and clinically characterized. Genetic analyses detected two deletions and one insertion in the TCOF1 gene and one missense variant in the POLR1D gene. Two novel mutations, c.1371_1372insT (p.Lys458*) in the TCOF1 gene and c.295 G>C (p.Gly99Arg) in the POLR1D gene, were identified. Moreover, two already known mutations, c.4369_4373del (p.Lys1457Glufs*12) and c.2103_2106del (p.Ser701Argfs*9) in the TCOF1 gene, were detected. The novel TCOF1 c.1371_1372insT mutation was associated with mild craniofacial manifestations and very rare symptoms of TCS, i.e., developmental delay and moderate intellectual disability. Although incomplete penetrance is a known phenomenon in TCS, surprisingly, the majority of our patients inherited the disease-causing variants from an asymptomatic mother. The unique feature of our study is the observation of causative mutation transmission between asymptomatic family members. Our results expanded the clinical and mutational spectrum of TCS and further confirmed the inter- and intra-familial variability of this disorder.
Collapse
Affiliation(s)
- Gréta Antal
- Department of Dentistry, Oral and Maxillofacial Surgery, Clinical Center, Medical School, University of Pécs, 7623 Pécs, Hungary;
| | - Anna Zsigmond
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (A.Z.); (Á.T.); (A.S.); (A.M.); (K.H.)
| | - Ágnes Till
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (A.Z.); (Á.T.); (A.S.); (A.M.); (K.H.)
| | - András Szabó
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (A.Z.); (Á.T.); (A.S.); (A.M.); (K.H.)
| | - Anita Maász
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (A.Z.); (Á.T.); (A.S.); (A.M.); (K.H.)
| | - Judit Bene
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (A.Z.); (Á.T.); (A.S.); (A.M.); (K.H.)
| | - Kinga Hadzsiev
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (A.Z.); (Á.T.); (A.S.); (A.M.); (K.H.)
| |
Collapse
|
3
|
Ulhaq ZS, You MS, Yabe T, Takada S, Chen JK, Ogino Y, Jiang YJ, Tse WKF. Fgf8 contributes to the pathogenesis of Nager syndrome. Int J Biol Macromol 2024; 280:135692. [PMID: 39288852 DOI: 10.1016/j.ijbiomac.2024.135692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Nager syndrome (NS, OMIM 154400) is a rare disease characterized by craniofacial and limb malformations due to variants in the gene encoding splicing factor 3B subunit 4 (SF3B4). Although various noncanonical functions of SF3B4 unrelated to splicing have been previously described, limited studies elucidate molecular mechanisms underlying NS pathogenesis. Here we showed that sf3b4-deficient fish displayed craniofacial and segmentation defects associated with suppression of fgf8 levels, which perturbed FGF signaling and neural crest cell (NCC) expression. Our finding also pointed out that oxidative stress-induced apoptosis was prominently detected in sf3b4-deficient fish and may further exaggerate the bone remodeling process. Notably, injection of exogenous FGF8 significantly rescued the demonstrated defects in sf3b4-deficient fish, which further supported the participation of Fgf8 in NS pathogenesis. Overall, our study provides valuable insights into the molecular mechanism underlying developmental abnormalities observed in NS and suggests future therapeutic strategies to protect against the pathogenesis of NS and possibilities for preventing severe outcomes.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan; Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong 16911, Indonesia.
| | - May-Su You
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - Taijiro Yabe
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; The Graduate University for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Shinji Takada
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; The Graduate University for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Jen-Kun Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - Yukiko Ogino
- Laboratory of Aquatic Molecular Developmental Biology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yun-Jin Jiang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
4
|
Nurputra DK, Sofian J, Iskandar K, Triono A, Herini ES, Sunartini, Ulhaq ZS. Multidisciplinary approach on divergent outcomes in spinal muscular atrophies: comparing DYNC1H1 and SMN1 gene mutations. Neurol Sci 2024; 45:4583-4588. [PMID: 38806879 DOI: 10.1007/s10072-024-07613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Spinal Muscular Atrophy (SMA) emerges as a prominent genetic neuromuscular disorder primarily caused by variants in the survival motor neuron (SMN) gene. However, it is noteworthy that alternative variants impacting DYNC1H1 have also been linked to a subtype known as spinal muscular atrophy lower extremity predominant (SMA-LED). This observation underscores the complexity of SMA and highlights the necessity for tailored, gene-specific management strategies. Our study elucidates how similar approaches to managing SMA can yield distinct outcomes, emphasizing the imperative for personalized gene-based interventions in effectively addressing these conditions. Two patients were referred for further management due to clinical suspicion of type-3 SMA. The definitive diagnosis was confirmed through the polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) technique, as well as whole-exome sequencing (WES). The analysis revealed deletions in exon-7 and 8 of SMN1 in the first patient and a likely pathogenic mutation (NM_001376.5(DYNC1H1):c.1867 T > C (NP_001367.2: p.Phe623Leu)) in DYNC1H1 in the second patient. Both patients presented with lower limb muscle weakness. However, while the first patient exhibited a gradual increase in severity over the years, the second patient displayed no progressive symptoms. The management was adjusted accordingly based on the genetic findings. Our observation underscores the complexity of SMA and highlights the necessity for tailored, gene-specific management strategies. Our study elucidates how similar approaches to managing SMA can yield distinct outcomes, emphasizing the imperative for personalized gene-based interventions in effectively addressing these conditions.
Collapse
Affiliation(s)
- Dian Kesumapramudya Nurputra
- Department of Pediatrics, Division of Pediatric Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada - Sardjito General Hospital, Yogyakarta, Indonesia.
- Master Program of Clinical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Jessica Sofian
- Master Program of Clinical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Kristy Iskandar
- Department of Pediatrics, Division of Pediatric Neurology, Faculty of Medicine, Public Health and Nursing &, Academic Hospital of Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Agung Triono
- Department of Pediatrics, Division of Pediatric Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada - Sardjito General Hospital, Yogyakarta, Indonesia
| | - Elizabeth Siti Herini
- Department of Pediatrics, Division of Pediatric Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada - Sardjito General Hospital, Yogyakarta, Indonesia
| | - Sunartini
- Department of Pediatrics, Division of Pediatric Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada - Sardjito General Hospital, Yogyakarta, Indonesia
- Department of Pediatrics, Division of Pediatric Neurology, Faculty of Medicine, Public Health and Nursing &, Academic Hospital of Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Zulvikar Syambani Ulhaq
- Reserach Center for Preclinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia.
| |
Collapse
|
5
|
LeDoux MS. Polymerase I as a Target for Treating Neurodegenerative Disorders. Biomedicines 2024; 12:1092. [PMID: 38791054 PMCID: PMC11118182 DOI: 10.3390/biomedicines12051092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Polymerase I (Pol I) is at the epicenter of ribosomal RNA (rRNA) synthesis. Pol I is a target for the treatment of cancer. Given the many cellular commonalities between cancer and neurodegeneration (i.e., different faces of the same coin), it seems rational to consider targeting Pol I or, more generally, rRNA synthesis for the treatment of disorders associated with the death of terminally differentiated neurons. Principally, ribosomes synthesize proteins, and, accordingly, Pol I can be considered the starting point for protein synthesis. Given that cellular accumulation of abnormal proteins such as α-synuclein and tau is an essential feature of neurodegenerative disorders such as Parkinson disease and fronto-temporal dementia, reduction of protein production is now considered a viable target for treatment of these and closely related neurodegenerative disorders. Abnormalities in polymerase I activity and rRNA production may also be associated with nuclear and nucleolar stress, DNA damage, and childhood-onset neuronal death, as is the case for the UBTF E210K neuroregression syndrome. Moreover, restraining the activity of Pol I may be a viable strategy to slow aging. Before starting down the road of Pol I inhibition for treating non-cancerous disorders of the nervous system, many questions must be answered. First, how much Pol I inhibition can neurons tolerate, and for how long? Should inhibition of Pol I be continuous or pulsed? Will cells compensate for Pol I inhibition by upregulating the number of active rDNAs? At present, we have no effective and safe disease modulatory treatments for Alzheimer disease, α-synucleinopathies, or tauopathies, and novel therapeutic targets and approaches must be explored.
Collapse
Affiliation(s)
- Mark S. LeDoux
- Department of Psychology and College of Health Sciences, University of Memphis, Memphis, TN 38152, USA; or
- Veracity Neuroscience LLC, Memphis, TN 38157, USA
| |
Collapse
|
6
|
Ulhaq ZS, You MS, Jiang YJ, Tse WKF. p53 inhibitor or antioxidants reduce the severity of ethmoid plate deformities in zebrafish Type 3 Treacher Collins syndrome model. Int J Biol Macromol 2024; 266:131216. [PMID: 38556235 DOI: 10.1016/j.ijbiomac.2024.131216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Treacher Collins syndrome-3 (TCS-3) is a rare congenital craniofacial disorder attributed to variants in the RNA pol I subunit C (POLR1C). The pathogenesis of TCS-3 linked to polr1c involves the activation of apoptosis-dependent p53 pathways within neural crest cells (NCCs). This occurs due to disruptions in ribosome biogenesis, and the restoration of polr1c expression in early embryogenesis effectively rescues the observed craniofacial phenotype in polr1c-deficient zebrafish. Clinical variability in TCS patients suggests interactions between genes and factors like oxidative stress. Elevated production of reactive oxygen species (ROS) in epithelial cells may worsen phenotypic outcomes in TCS individuals. Our study confirmed excessive ROS production in facial regions, inducing apoptosis and altering p53 pathways. Deregulated cell-cycle and epithelial-to-mesenchymal transition (EMT) genes were also detected in the TCS-3 model. Utilizing p53 inhibitor (Pifithrin-α; PFT-α) or antioxidants (Glutathione; GSH and N-Acetyl-L-cysteine; NAC) effectively corrected migrated NCC distribution in the pharyngeal arch (PA), suppressed oxidative stress, prevented cell death, and modulated EMT inducers. Crucially, inhibiting p53 activation or applying antioxidants within a specific time window, notably within 30 h post-fertilization (hpf), successfully reversed phenotypic effects induced by polr1c MO.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan; Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency, Cibinong 16911, Indonesia.
| | - May-Su You
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - Yun-Jin Jiang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
7
|
Ulhaq ZS, Tse WKF. Transcriptomic analysis reveals mitochondrial dysfunction in the pathogenesis of Nager syndrome in sf3b4-depleted zebrafish. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167128. [PMID: 38508476 DOI: 10.1016/j.bbadis.2024.167128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Nager syndrome (NS) is a rare acrofacial dysostosis caused by heterozygous loss-of-function variants in the splicing factor 3B subunit 4 (SF3B4). The main clinical features of patients with NS are characterized by facial-mandibular and preaxial limb malformations. The migration and specification of neural crest cells are crucial for craniofacial development, and mitochondrial fitness appears to play a role in such processes. Here, by analyzing our previously published transcriptome dataset, we aim to investigate the potential involvement of mitochondrial components in the pathogenesis of craniofacial malformations, especially in sf3b4 mutant zebrafish. We identified that oxidative phosphorylation (OXPHOS) defects and overproduction of reactive oxygen species (ROS) due to decreased antioxidants defense activity, which leads to oxidative damage and mitochondrial dysfunction. Furthermore, our results highlight that fish lacking sf3b4 gene, primarily display defects in mitochondrial complex I. Altogether, our findings suggest that mitochondrial dysfunction may contribute to the development of the craniofacial anomalies observed in sf3b4-depleted zebrafish.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan; Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia.
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
8
|
Ulhaq ZS, Soraya GV, Istifiani LA, Pamungkas SA, Arisanti D, Dini B, Astari LF, Hasan YTN, Ayudianti P, Kusuma MAS, Shodry S, Herawangsa S, Nurputra DK, Idaiani S, Tse WKF. A Brief Analysis on Clinical Severity of Mandibulofacial Dysostosis Guion-Almeida Type. Cleft Palate Craniofac J 2024; 61:688-696. [PMID: 36317361 DOI: 10.1177/10556656221136177] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE Genetic variants in EFTUD2 were proven to influence variable phenotypic expressivity in mandibulofacial dysostosis Guion-Almeida type (MFDGA) or mandibulofacial dysostosis with microcephaly (MFDM). Yet, the association between the severity of clinical findings with variants within the EFTUD2 gene has not been established. Thus, we aim to elucidate a possible genotype-phenotype correlation in MFDM. METHODS Forty articles comprising 156 patients were evaluated. The genotype-phenotype correlation was analyzed using a chi-square or Fisher's exact test. RESULTS The proportion of patients with MFDM was higher in Caucasian relative to Asian populations. Although, in general, there was no apparent genotype-phenotype correlation in patients with MFDM, Asians tended to have more severe clinical manifestations than Caucasians. In addition, cardiac abnormality presented in patients with intronic variants located in canonical splice sites was a predisposing factor in affecting MFDM severity. CONCLUSION Altogether, this article provides the pathogenic variants observed in EFTUD2 and possible genotype-phenotype relationships in this disease.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Kyushu University, Faculty of Agriculture, Fukuoka, Fukuoka, Japan
- Research Center for Pre-Clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Maulana Malik Ibrahim State Islamic University, Malang, East Java, Indonesia
| | - Gita Vita Soraya
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Lola Ayu Istifiani
- Department of Nutrition, Faculty of Health Sciences, Brawijaya University, Malang, East Java, Indonesia
| | | | - Ditya Arisanti
- Department of Clinical Medicine, Faculty of Medicine and Health Science, Maulana Malik State Islamic University, Malang, Indonesia
| | - Badariyatud Dini
- Department of Clinical Medicine, Faculty of Medicine and Health Science, Maulana Malik State Islamic University, Malang, Indonesia
| | - Lina Fitria Astari
- Department of Clinical Medicine, Faculty of Medicine and Health Science, Maulana Malik State Islamic University, Malang, Indonesia
| | - Yuliono Trika Nur Hasan
- Department of Clinical Medicine, Faculty of Medicine and Health Science, Maulana Malik State Islamic University, Malang, Indonesia
| | - Prida Ayudianti
- Department of Clinical Medicine, Faculty of Medicine and Health Science, Maulana Malik State Islamic University, Malang, Indonesia
| | - Muhammad A'raaf Sirojan Kusuma
- Research Center for Pre-Clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia
| | - Syifaus Shodry
- Research Center for Pre-Clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia
| | - Sarah Herawangsa
- Research Center for Pre-Clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia
| | - Dian Kesumapramudya Nurputra
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | - Sri Idaiani
- Research Center for Pre-Clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Kyushu University, Faculty of Agriculture, Fukuoka, Fukuoka, Japan
| |
Collapse
|
9
|
Fan X, Yang T, Lu X, Chen Y, Chen X. Possible germline mosaicism in a pedigree with Treacher Collins syndrome: A case report and brief review. Sci Prog 2024; 107:368504241242278. [PMID: 38629201 PMCID: PMC11025436 DOI: 10.1177/00368504241242278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Treacher Collins syndrome (TCS) is a rare congenital craniofacial disorder, typically inherited as an autosomal dominant condition. Here, we report on a family in which germline mosaicism for TCS was likely present. The proband was diagnosed with TCS based on the typical clinical features and a pathogenic variant TCOF1 (c.4369_4373delAAGAA, p.K1457Efs*12). The mutation was not detected in his parents' peripheral blood DNA samples, suggesting a de novo mutation had occurred in the proband. However, a year later, the proband's mother became pregnant, and the amniotic fluid puncture revealed that the fetus carried the same mutation as the proband. Prenatal ultrasound also indicated a maxillofacial dysplasia with unilateral microtia. The mother then disclosed a previous birth history in which a baby had died of respiratory distress shortly after birth, displaying a TCS-like phenotype. Around the same time, the proband's father was diagnosed with mild bilateral conductive hearing loss. Based on array data, we concluded that the father may have had germline mosaicism for TCOF1 mutation. Our findings highlight the importance of considering germline mosaicism in sporadic de novo TCOF1 mutations when providing genetic consulting, and prenatal diagnosis is important when the proband's parents become pregnant again.
Collapse
Affiliation(s)
- Xinmiao Fan
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tengyu Yang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoping Lu
- Department of Radiology, Peking Union Medical College Hospital, Beijing, China
| | - Yu Chen
- Department of Radiology, Peking Union Medical College Hospital, Beijing, China
| | - Xiaowei Chen
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Sun H, Xu X, Chen B, Wang Y, Lyu J, Guo L, Yuan Y, Ren D. A novel intronic TCOF1 pathogenic variant in a Chinese family with Treacher Collins syndrome. BMC Med Genomics 2024; 17:75. [PMID: 38500116 PMCID: PMC10946134 DOI: 10.1186/s12920-024-01828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/08/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Treacher Collins syndrome (TCS; OMIM 154500) is a craniofacial developmental disorder. METHODS To investigate the genetic features of a four-generation Chinese family with TCS, clinical examinations, hearing tests, computed tomography, whole-exome sequencing (WES), Sanger sequencing, reverse transcription (RT)-PCR, and the Minigene assay were performed. RESULTS The probands, an 11-year-old male and his cousin exhibited typical clinical manifestations of TCS including conductive hearing loss, downward slanting palpebral fissures, and mandibular hypoplasia. Computed tomography revealed bilateral fusion of the anterior and posterior stapedial crura and malformation of the long crura of the incus. WES of both patients revealed a novel heterozygous intronic variant, i.e., c.4342 + 5_4342 + 8delGTGA (NM_001371623.1) in TCOF1. Minigene expression analysis revealed that the c.4342 + 5_4342 + 8delGTGA variant in TCOF1 caused a partial deletion of exon 24 (c.4115_4342del: p.Gly1373_Arg1448del), which was predicted to yield a truncated protein. The deletion was further confirmed via RT-PCR and sequencing of DNA from proband blood cells. A heterozygous variant in the POLR1C gene (NM_203290; exon6; c.525delG) was found almost co-segregated with the TCOF1 pathogenic variant. CONCLUSIONS In conclusion, we identified a heterozygous TCOF1 splicing variant c.4342 + 5_4342 + 8delGTGA (splicing) in a Chinese TSC family with ossicular chain malformations and facial anomalies. Our findings broadened the spectrum of TCS variants and will facilitate diagnostics and prognostic predictions.
Collapse
Affiliation(s)
- Haojie Sun
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
- Shanghai Auditory Medical Center, Shanghai, China
| | - Xinda Xu
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
- Shanghai Auditory Medical Center, Shanghai, China
| | - Binjun Chen
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
- Shanghai Auditory Medical Center, Shanghai, China
| | - Yanmei Wang
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
- Shanghai Auditory Medical Center, Shanghai, China
| | - Jihan Lyu
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
- Shanghai Auditory Medical Center, Shanghai, China
| | - Luo Guo
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.
- Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, ENT Institute and Otorhinolaryngology, Fudan University, No. 83, Fenyang Road, Shanghai, 200031, China.
| | - Yasheng Yuan
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China.
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.
- Shanghai Auditory Medical Center, Shanghai, China.
| | - Dongdong Ren
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China.
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.
- Shanghai Auditory Medical Center, Shanghai, China.
| |
Collapse
|
11
|
Gędaj A, Chorążewska A, Ciura K, Karelus R, Żukowska D, Biaduń M, Kalka M, Zakrzewska M, Porębska N, Opaliński Ł. The intracellular interplay between galectin-1 and FGF12 in the assembly of ribosome biogenesis complex. Cell Commun Signal 2024; 22:175. [PMID: 38468333 PMCID: PMC10926643 DOI: 10.1186/s12964-024-01558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024] Open
Abstract
Galectins constitute a class of lectins that specifically interact with β-galactoside sugars in glycoconjugates and are implicated in diverse cellular processes, including transport, autophagy or signaling. Since most of the activity of galectins depends on their ability to bind sugar chains, galectins exert their functions mainly in the extracellular space or at the cell surface, which are microenvironments highly enriched in glycoconjugates. Galectins are also abundant inside cells, but their specific intracellular functions are largely unknown. Here we report that galectin-1, -3, -7 and -8 directly interact with the proteinaceous core of fibroblast growth factor 12 (FGF12) in the cytosol and in nucleus. We demonstrate that binding of galectin-1 to FGF12 in the cytosol blocks FGF12 secretion. Furthermore, we show that intracellular galectin-1 affects the assembly of FGF12-containing nuclear/nucleolar ribosome biogenesis complexes consisting of NOLC1 and TCOF1. Our data provide a new link between galectins and FGF proteins, revealing an unexpected glycosylation-independent intracellular interplay between these groups of proteins.
Collapse
Affiliation(s)
- Aleksandra Gędaj
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Aleksandra Chorążewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Krzysztof Ciura
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Radosław Karelus
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Dominika Żukowska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Martyna Biaduń
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Marta Kalka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Małgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Natalia Porębska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Łukasz Opaliński
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland.
| |
Collapse
|
12
|
Zhuang D, Sun S, Hu Z, Xie M, Zhang Y, Yan L, Pan J, Li H. Two novel pathogenic variants in the TCOF1 found in two Chinese cases of Treacher Collins syndrome. Mol Genet Genomic Med 2024; 12:e2405. [PMID: 38444283 PMCID: PMC10915472 DOI: 10.1002/mgg3.2405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/21/2023] [Accepted: 02/07/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Treacher Collins Ι syndrome (TCS1, OMIM:154500) is an autosomal dominant disease with a series of clinical manifestations such as craniofacial dysplasia including eye and ear abnormalities, small jaw deformity, cleft lip, as well as repeated respiratory tract infection and conductive hearing loss. Two cases of Treacher Collins syndrome with TCOF1(OMIM:606847) gene variations were reported in the article, with clinical characteristics, gene variants and the etiology. METHODS The clinical data of two patients with Treacher Collins syndrome caused by TCOF1 gene variation were retrospectively analyzed. The whole exome sequencing (WES) was performed to detect the pathogenic variants of TCOF1 gene in the patients, and the verification of variants were confirmed by Sanger sequencing. RESULTS Proband 1 presented with bilateral craniofacial deformities, conductive hearing loss and recurrent respiratory tract infection. Proband 2 showed bilateral craniofacial malformations with cleft palate, which harbored similar manifestations in her family. She died soon after birth due to dyspnea and feeding difficulties. WES identified two novel pathogenic variants of TCOF1 gene in two probands, each with one variant. According to the American College of Medical Genetics and Genomics, the heterozygous variation NM_001371623.1: c.877del (p. Ala293Profs*34) of TCOF1 gene was detected in Proband 1, which was evaluated as a likely pathogenic (LP) and de novo variant. Another variant found in Proband 2 was NM_001135243.1: c.1660_1661del (p. D554Qfs*3) heterozygous variation, which was evaluated as a pathogenic variation and the variant inherited from the mother. To date, the two variants have not been reported before. CONCLUSION Our study found two novel pathogenic variants of TCOF1 gene and clarified the etiology of Treacher Collins syndrome. We also enriched the phenotypic spectrum of Treacher Collins syndrome and TCOF1 gene variation spectrum in the Chinese population, and provided the basis for clinical diagnosis, treatment and genetic counseling.
Collapse
Affiliation(s)
- Dan‐Yan Zhuang
- The Central Laboratory of Birth Defects Prevention and ControlWomen and Children's Hospital of Ningbo UniversityNingboZhejiangChina
| | - Shu‐Ni Sun
- Department of NeonatologyWomen and Children’ s Hospital of Ningbo UniversityNingboZhejiangChina
| | - Zhuo‐Jie Hu
- Department of Child Health CareWomen and Children's Hospital of Ningbo UniversityNingboZhejiangChina
| | - Min Xie
- The Central Laboratory of Birth Defects Prevention and ControlWomen and Children's Hospital of Ningbo UniversityNingboZhejiangChina
| | - Yu‐Xin Zhang
- The Central Laboratory of Birth Defects Prevention and ControlWomen and Children's Hospital of Ningbo UniversityNingboZhejiangChina
| | - Lu‐Lu Yan
- The Central Laboratory of Birth Defects Prevention and ControlWomen and Children's Hospital of Ningbo UniversityNingboZhejiangChina
| | - Jie‐Wen Pan
- The Central Laboratory of Birth Defects Prevention and ControlWomen and Children's Hospital of Ningbo UniversityNingboZhejiangChina
| | - Hai‐bo Li
- The Central Laboratory of Birth Defects Prevention and ControlWomen and Children's Hospital of Ningbo UniversityNingboZhejiangChina
| |
Collapse
|
13
|
Ulhaq ZS, Okamoto K, Ogino Y, Tse WKF. Dysregulation of Spliceosomes Complex Induces Retinitis Pigmentosa-Like Characteristics in sf3b4-Depleted Zebrafish. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1223-1233. [PMID: 37263342 DOI: 10.1016/j.ajpath.2023.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/03/2023]
Abstract
The SF3B4 gene encodes a highly conserved protein that plays a critical role in mRNA splicing. Mutations in this gene are known to cause Nager syndrome, a rare craniofacial disorder. Although SF3B4 expression is detected in the optic vesicle before it is detected in the limb and somite, the role of SF3B4 in the eye is not well understood. This study investigated the function of sf3b4 in the retina by performing transcriptome profiles, immunostaining, and behavioral analysis of sf3b4-/- mutant zebrafish. Results from this study suggest that dysregulation of the spliceosome complex affects not only craniofacial development but also retinogenesis. Zebrafish lacking functional sf3b4 displayed characteristics similar to retinitis pigmentosa (RP), marked by severe retinal pigment epithelium defects and rod degeneration. Pathway analysis revealed altered retinol metabolism and retinoic acid signaling in the sf3b4-/- mutants. Supplementation of retinoic acid rescued key cellular phenotypes observed in the sf3b4-/- mutants, offering potential therapeutic strategies for RP in the future. In conclusion, this study sheds light on the previously unknown role of SF3B4 in retinogenesis and provides insights into the underlying mechanisms of RP.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan; Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency, Republic of Indonesia, Cibinong, Indonesia.
| | - Keigo Okamoto
- Laboratory of Aquatic Molecular Developmental Biology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yukiko Ogino
- Laboratory of Aquatic Molecular Developmental Biology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
14
|
Luo S, Sun H, Bian Q, Liu Z, Wang X. The etiology, clinical features, and treatment options of hemifacial microsomia. Oral Dis 2023; 29:2449-2462. [PMID: 36648381 DOI: 10.1111/odi.14508] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
The second most frequent craniomaxillofacial congenital deformity is hemifacial microsomia (HFM). Patients often accompany short mandible, ear dysplasia, facial nerve, and soft tissue dysplasia. The etiology of HFM is not fully understood. To organize the possible up-to-date information on the etiology, craniofacial phenotypes, and therapeutic alternatives in order to fully comprehend the HFM. Reviewing the potential causes, exploring the clinical features of HFM and summarizing the available treatment options. Vascular malformation, Meckel's cartilage abnormalities, and cranial neural crest cells (CNCCs) abnormalities are three potential etiology hypotheses. The commonly used clinical classification for HFM is OMENS, OMENS-plus, and SAT. Other craniofacial anomalies, like dental defects, and zygomatic deformities, are still not precisely documented in the classification. Patients with moderate phenotypes may not need any treatment from infancy through adulthood. However, patients with severe HFM require to undergo multiple surgeries to address facial asymmetries, such as mandibular distraction osteogenesis (MDO), autologous costochondral rib graft (CCG), orthodontic and orthognathic treatment, and facial soft tissue reconstruction. It is anticipated that etiology research will examine the pathogenic mechanism of HFM. A precise treatment for HFM may be possible with thoroughly documented phenotypes and a pathogenic diagnosis.
Collapse
Affiliation(s)
- Songyuan Luo
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Hao Sun
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Qian Bian
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
| | - Zhixu Liu
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xudong Wang
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
15
|
Belkevich AE, Pascual HG, Fakhouri AM, Ball DG, Knutson BA. Distinct Interaction Modes for the Eukaryotic RNA Polymerase Alpha-like Subunits. Mol Cell Biol 2023; 43:269-282. [PMID: 37222571 PMCID: PMC10251799 DOI: 10.1080/10985549.2023.2210023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/26/2023] [Accepted: 04/12/2023] [Indexed: 05/25/2023] Open
Abstract
Eukaryotic DNA-dependent RNA polymerases (Pols I-III) encode two distinct alpha-like heterodimers where one is shared between Pols I and III, and the other is unique to Pol II. Human alpha-like subunit mutations are associated with several diseases including Treacher Collins Syndrome (TCS), 4H leukodystrophy, and primary ovarian sufficiency. Yeast is commonly used to model human disease mutations, yet it remains unclear whether the alpha-like subunit interactions are functionally similar between yeast and human homologs. To examine this, we mutated several regions of the yeast and human small alpha-like subunits and used biochemical and genetic assays to establish the regions and residues required for heterodimerization with their corresponding large alpha-like subunits. Here we show that different regions of the small alpha-like subunits serve differential roles in heterodimerization, in a polymerase- and species-specific manner. We found that the small human alpha-like subunits are more sensitive to mutations, including a "humanized" yeast that we used to characterize the molecular consequence of the TCS-causingPOLR1D G52E mutation. These findings help explain why some alpha subunit associated disease mutations have little to no effect when made in their yeast orthologs and offer a better yeast model to assess the molecular basis of POLR1D associated disease mutations.
Collapse
Affiliation(s)
- Alana E. Belkevich
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Haleigh G. Pascual
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Aula M. Fakhouri
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - David G. Ball
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Bruce A. Knutson
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
16
|
Boer LL, Kircher SG, Rehder H, Behunova J, Winter E, Ringl H, Scharrer A, de Boer E, Oostra RJ. History and highlights of the teratological collection in the Narrenturm, Vienna (Austria). Am J Med Genet A 2023; 191:1301-1324. [PMID: 36806455 DOI: 10.1002/ajmg.a.63153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/22/2023]
Abstract
The collection of the Narrenturm in Vienna houses and maintains more than 50,000 objects including approximately 1200 teratological specimens; making it one of the biggest collections of specimens from human origin in Europe. The existence of this magnificent collection-representing an important resource for dysmorphology research, mostly awaiting contemporary diagnoses-is not widely known in the scientific community. Here, we show that the Narrenturm harbors a wealth of specimens with (exceptionally) rare congenital anomalies. These museums can be seen as physical repositories of human malformation, covering hundreds of years of dedicated collecting and preserving, thereby creating unique settings that can be used to expand our knowledge of developmental conditions that have to be preserved for future generations of scientists.
Collapse
Affiliation(s)
- Lucas L Boer
- Department of Imaging, Section Anatomy and Museum for Anatomy and Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Susanne Gerit Kircher
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Helga Rehder
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Jana Behunova
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Eduard Winter
- Pathologisch-Anatomische Sammlung im Narrenturm-NHM, Vienna, Austria
| | - Helmut Ringl
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Anke Scharrer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Elke de Boer
- Department of Human Genetics, Radboudumc, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Roelof-Jan Oostra
- Department of Medical Biology, Section Clinical Anatomy and Embryology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|