1
|
He J, Liu Y, Xu H, Wei X, Chen M. Insights into the variations in microbial community structure during the development of periodontitis and its pathogenesis. Clin Oral Investig 2024; 28:675. [PMID: 39617812 DOI: 10.1007/s00784-024-06074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024]
Abstract
OBJECTIVE To characterize the subgingival microbiota in subjects with stage I/II periodontitis (moderate periodontitis, MP), stage III/IV periodontitis (severe periodontitis, SP), and periodontal health (PH) at the same probing depth (PD) (shallow ≤ 3 mm, moderate 4-6 mm, or deep ≥ 7 mm), and to investigate the changes associated with probing depth progression. MATERIALS AND METHODS 100 subgingival plaque samples were collected from 50 subjects (16 MP, 17 SP and 17 PH), forming six groups: PHS (PH, shallow), MPS (MP, shallow), MPM (MP, moderate), SPS (SP, shallow), SPM (SP, moderate), and SPD (SP, deep). Samples were analyzed using high-throughput sequencing. RESULT The subgingival microbiome showed significant differences associated with both PD and periodontitis stage (p < 0.05). With increasing PD, alpha diversity initially increased and then decreased. Pathogenic genera like Fusobacterium, Filifactor, and Porphyromonas increased, while health-associated genera like Streptococcus and Haemophilus decreased. At shallow sites, the PHS, MPS, and SPS groups showed similar community structure. At moderate and deep sites, the SPM and SPD groups exhibited significant differences in community structure compared to the MPM group, with the SPM and SPD groups showing decreased abundances of Actinomyces and increased abundances of Treponema. The microbial co-networks in the SPD and SPM groups exhibited greater complexity and connectivity and were more resilient to random microbial or node removal. CONCLUSIONS The subgingival microbiome shows strong associations with PD and periodontitis stage. CLINICAL RELEVANCE Once periodontitis progresses to stage III/IV, reconstructing a healthy subgingival microbiome may be challenging, emphasizing the importance of early prevention.
Collapse
Affiliation(s)
- Junlin He
- Department of Periodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Yefei Liu
- Department of Endodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Hongzhen Xu
- Department of Prosthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Xiaolin Wei
- Department of Endodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China.
| | - Meihua Chen
- Department of Periodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Oh EJ, Jang HH, Park S, Lim HP, Yun KD, Jang W, Kim OS, Park C, Won EJ. Fretibacterium Species to Fusobacterium periodonticum Ratio as a Potential Biomarker of Periodontitis Based on Salivary Microbiome Profiling. Ann Lab Med 2024; 44:600-603. [PMID: 38644360 PMCID: PMC11375194 DOI: 10.3343/alm.2024.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/10/2024] [Accepted: 04/12/2024] [Indexed: 04/23/2024] Open
Affiliation(s)
- Eun Ji Oh
- Department of Prosthodontics, Chonnam National University, Gwangju, Korea
| | - Hyun Hee Jang
- Biomedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, Korea
| | - Sangwon Park
- Department of Prosthodontics, Chonnam National University, Gwangju, Korea
| | - Hyun-Pil Lim
- Department of Prosthodontics, Chonnam National University, Gwangju, Korea
| | - Kwi-Dug Yun
- Department of Prosthodontics, Chonnam National University, Gwangju, Korea
| | - Woohyung Jang
- Department of Prosthodontics, Chonnam National University, Gwangju, Korea
| | - Ok-Su Kim
- Department of Periodontology, Chonnam National University, Gwangju, Korea
| | - Chan Park
- Department of Prosthodontics, Chonnam National University, Gwangju, Korea
| | - Eun Jeong Won
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Yu PS, Tu CC, Wara-Aswapati N, Wang CY, Tu YK, Hou HH, Ueno T, Chen IH, Fu KL, Li HY, Chen YW. Microbiome of periodontitis and peri-implantitis before and after therapy: Long-read 16S rRNA gene amplicon sequencing. J Periodontal Res 2024; 59:657-668. [PMID: 38718089 DOI: 10.1111/jre.13269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 07/16/2024]
Abstract
AIMS The microbial profiles of peri-implantitis and periodontitis (PT) are inconclusive. The controversies mainly arise from the differences in sampling sites, targeted gene fragment, and microbiome analysis techniques. The objective of this study was to explore the microbiomes of peri-implantitis (PI), control implants (CI), PT and control teeth (CT), and the microbial change of PI after nonsurgical treatment (PIAT). METHODS Twenty-two patients diagnosed with both PT and peri-implantitis were recruited. Clinical periodontal parameters and radiographic bone levels were recorded. In each patient, the subgingival and submucosal plaque samples were collected from sites with PI, CI, PT, CT, and PIAT. Microbiome diversity was analyzed by high-throughput amplicon sequencing using full-length of 16S rRNA gene by next generation sequencing. RESULTS The 16S rRNA gene sequencing analysis revealed 512 OTUs in oral microbiome and 377 OTUs reached strain levels. The PI and PT groups possessed their own unique core microbiome. Treponema denticola was predominant in PI with probing depth of 8-10 mm. Interestingly, Thermovirga lienii DSM 17291 and Dialister invisus DSM 15470 were found to associate with PI. Nonsurgical treatment for peri-implantitis did not significantly alter the microbiome, except Rothia aeria. CONCLUSION Our study suggests Treponemas species may play a pivotal role in peri-implantitis. Nonsurgical treatment did not exert a major influence on the peri-implantitis microbiome in short-term follow-up. PT and peri-implantitis possess the unique microbiome profiles, and different therapeutic strategies may be suggested in the future.
Collapse
Affiliation(s)
- Pei-Shiuan Yu
- Department of Dentistry, National Taiwan University Hospital and Graduate Institute of Clinical Dentistry, National Taiwan University, Taipei, Taiwan
| | - Che-Chang Tu
- Department of Dentistry, National Taiwan University Hospital and Graduate Institute of Clinical Dentistry, National Taiwan University, Taipei, Taiwan
| | - Nawarat Wara-Aswapati
- Department of Periodontology, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Chen-Ying Wang
- Department of Dentistry, National Taiwan University Hospital and Graduate Institute of Clinical Dentistry, National Taiwan University, Taipei, Taiwan
| | - Yu-Kang Tu
- Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hsin-Han Hou
- Graduate Institute of Oral Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Takaaki Ueno
- Department of Dentistry and Oral Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - I-Hui Chen
- Department of Dentistry, National Taiwan University Hospital and Graduate Institute of Clinical Dentistry, National Taiwan University, Taipei, Taiwan
- Division of Periodontology, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Kuan-Lun Fu
- Department of Dentistry, National Taiwan University Hospital and Graduate Institute of Clinical Dentistry, National Taiwan University, Taipei, Taiwan
| | - Huei-Ying Li
- Medical Microbiota Center of the First Core Laboratory, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Wen Chen
- Department of Dentistry, National Taiwan University Hospital and Graduate Institute of Clinical Dentistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Padial-Molina M, Montalvo-Acosta S, Martín-Morales N, Pérez-Carrasco V, Magan-Fernandez A, Mesa F, O’Valle F, Garcia-Salcedo JA, Galindo-Moreno P. Correlation between Inflammasomes and Microbiota in Peri-Implantitis. Int J Mol Sci 2024; 25:961. [PMID: 38256037 PMCID: PMC10815557 DOI: 10.3390/ijms25020961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The activation of inflammasomes is thought to induce the inflammatory process around dental implants. No information is available on the correlation between microbiota and inflammasomes in clinical samples from patients suffering peri-implantitis. For this cross-sectional study, 30 biofilm samples were obtained from 19 patients undergoing surgical treatment for peri-implantitis because of the presence of bleeding on probing, probing depth higher than 6 mm, and radiographic bone loss higher than 3 mm. Then, soft tissue samples from around the implant were also collected. The relative abundance of bacteria and alpha-diversity indexes were calculated after analyzing the 16S rRNA gene using next-generation sequencing. The soft-tissue samples were processed for evaluation of the inflammasomes NLRP3 and AIM2 as well as caspase-1 and IL-1β. The relative abundance (mean (SD)) of specific species indicated that the most abundant species were Porphyromonas gingivalis (10.95 (14.17)%), Fusobacterium vincentii (10.93 (13.18)%), Porphyromonas endodontalis (5.89 (7.23)%), Prevotella oris (3.88 (4.94)%), Treponema denticola (2.91 (3.19)%), and Tannerella forsythia (2.84 (4.15)%). Several correlations were found between the species and the immunohistochemical detection of the inflammasomes NLRP3 and AIM2 as well as caspase-1 and IL-1β, both in the epithelium and the lamina propria. A network analysis found an important cluster of variables formed by NLRP3 in the lamina propria and AIM2, caspase-1, and IL-1β in the lamina propria and the epithelium with Prevotella dentalis, Prevotella tannerae, Tannerella forsythia, or Selenomonas timonae. Thus, it could be concluded that inflammasomes NLRP3 and AIM2 and their downstream effectors caspase-1 and interleukin-1β can be significantly associated with specific bacteria.
Collapse
Affiliation(s)
- Miguel Padial-Molina
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Saray Montalvo-Acosta
- PhD Program in Clinical Medicine and Public Health, University of Granada, 18071 Granada, Spain
| | - Natividad Martín-Morales
- PhD Program in Biomedicine, University of Granada, 18071 Granada, Spain
- Department of Pathology, School of Medicine, University of Granada, 18071 Granada, Spain
| | - Virginia Pérez-Carrasco
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Centre for Genomics and Oncological Research, Pfizer–University of Granada–Andalusian Regional Government (GENYO), PTS Granada, 18016 Granada, Spain
- Microbiology Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain
| | - Antonio Magan-Fernandez
- Department of Periodontics, School of Dentistry, University of Granada, 18071 Granada, Spain (F.M.)
| | - Francisco Mesa
- Department of Periodontics, School of Dentistry, University of Granada, 18071 Granada, Spain (F.M.)
| | - Francisco O’Valle
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Institute of Biopathology and Regenerative Medicine (IBIMER, CIBM), University of Granada, 18071 Granada, Spain
| | - Jose Antonio Garcia-Salcedo
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Centre for Genomics and Oncological Research, Pfizer–University of Granada–Andalusian Regional Government (GENYO), PTS Granada, 18016 Granada, Spain
- Microbiology Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain
| | - Pablo Galindo-Moreno
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
5
|
Carvalho ÉBS, Romandini M, Sadilina S, Sant'Ana ACP, Sanz M. Microbiota associated with peri-implantitis-A systematic review with meta-analyses. Clin Oral Implants Res 2023; 34:1176-1187. [PMID: 37523470 DOI: 10.1111/clr.14153] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/01/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
AIM To answer the following PECO question: "In systemically healthy human subjects (P), which are the differences between peri-implantitis (E) and peri-implant health/mucositis (C) in terms of bacterial presence/count (O)?" MATERIALS AND METHODS Cross-sectional studies fulfilling specific inclusion criteria established to answer the PECO question were included. Two review authors independently searched for studies, screened the titles and abstracts, did full-text analysis, extracted the data from the included reports, and performed the risk of bias assessment through an adaptation of the Newcastle/Ottawa tool for cross-sectional studies and of the JBI critical appraisal checklist. In case of disagreement, a third reviewer author took the final decision. Study results were summarized using random effects meta-analyses. RESULTS A total of 12 studies were included, involving 1233 participants and 1513 implants. Peri-implantitis was associated with the presence of S. epidermidis (Odds ratio, OR = 10.28 [95% Confidence interval, CI: 1.26-83.98]), F. nucleatum (OR = 7.83 [95% CI: 2.24-27.36]), T. denticola (OR = 6.11 [95% CI: 2.72-13.76]), T. forsythia (OR = 4.25 [95% CI: 1.71-10.57]), P. intermedia (OR = 3.79 [95% CI: 1.07-13.35]), and P. gingivalis (OR = 2.46 [95% CI: 1.21-5.00]). Conversely, the presence of A. actinomycetemcomitans (OR = 3.82 [95% CI: 0.59-24.68]), S. aureus (OR = 1.05 [95% CI: 0.06-17.08]), and C. rectus (OR = 1.48 [95% CI: 0.69-3.17]) was not associated with peri-implantitis. CONCLUSIONS Peri-implantitis is associated with the presence of S. epidermidis and specific periodontopathogens (P. gingivalis, T. forsythia, T. denticola, F. nucleatum, and P. intermedia). (CRD42021254589).
Collapse
Affiliation(s)
- Érika B S Carvalho
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of Sao Paulo, Bauru, Sao Paulo, Brazil
| | - Mario Romandini
- Department of Periodontology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Sofya Sadilina
- Department of Oral and Maxillofacial Surgery, Pavlov University, Saint Petersburg, Russia
| | - Adriana C P Sant'Ana
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of Sao Paulo, Bauru, Sao Paulo, Brazil
| | - Mariano Sanz
- Department of Periodontology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- ETEP Research Group, Faculty of Odontology, University Complutense, Madrid, Spain
| |
Collapse
|
6
|
Belibasakis GN, Belstrøm D, Eick S, Gursoy UK, Johansson A, Könönen E. Periodontal microbiology and microbial etiology of periodontal diseases: Historical concepts and contemporary perspectives. Periodontol 2000 2023. [PMID: 36661184 DOI: 10.1111/prd.12473] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/21/2022] [Accepted: 09/06/2022] [Indexed: 01/21/2023]
Abstract
This narrative review summarizes the collective knowledge on periodontal microbiology, through a historical timeline that highlights the European contribution in the global field. The etiological concepts on periodontal disease culminate to the ecological plaque hypothesis and its dysbiosis-centered interpretation. Reference is made to anerobic microbiology and to the discovery of select periodontal pathogens and their virulence factors, as well as to biofilms. The evolution of contemporary molecular methods and high-throughput platforms is highlighted in appreciating the breadth and depth of the periodontal microbiome. Finally clinical microbiology is brought into perspective with the contribution of different microbial species in periodontal diagnosis, the combination of microbial and host biomarkers for this purpose, and the use of antimicrobials in the treatment of the disease.
Collapse
Affiliation(s)
- Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Belstrøm
- Section for Clinical Oral Microbiology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Ulvi K Gursoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | | | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
7
|
Polymeri A, van der Horst J, Buijs MJ, Zaura E, Wismeijer D, Crielaard W, Loos BG, Laine ML, Brandt BW. Submucosal microbiome of peri-implant sites: A cross-sectional study. J Clin Periodontol 2021; 48:1228-1239. [PMID: 34101220 PMCID: PMC8457166 DOI: 10.1111/jcpe.13502] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022]
Abstract
AIM To study the peri-implant submucosal microbiome in relation to implant disease status, dentition status, smoking habit, gender, implant location, implant system, time of functional loading, probing pocket depth (PPD), and presence of bleeding on probing. MATERIALS AND METHODS Biofilm samples were collected from the deepest peri-implant site of 41 patients with paper points, and analysed using 16S rRNA gene pyrosequencing. RESULTS We observed differences in microbial profiles by PPD, implant disease status, and dentition status. Microbiota in deep pockets included higher proportions of the genera Fusobacterium, Prevotella, and Anaeroglobus compared with shallow pockets that harboured more Rothia, Neisseria, Haemophilus, and Streptococcus. Peri-implantitis (PI) sites were dominated by Fusobacterium and Treponema compared with healthy implants and peri-implant mucositis, which were mostly colonized by Rothia and Streptococcus. Partially edentulous (PE) individuals presented more Fusobacterium, Prevotella, and Rothia, whereas fully edentulous individuals presented more Veillonella and Streptococcus. CONCLUSIONS PPD, implant disease status, and dentition status may affect the submucosal ecology leading to variation in composition of the microbiome. Deep pockets, PI, and PE individuals were dominated by Gram-negative anaerobic taxa.
Collapse
Affiliation(s)
- Angeliki Polymeri
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU Amsterdam, Amsterdam, The Netherlands
| | - Joyce van der Horst
- Department Oral Implantology and Prosthodontics, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU Amsterdam, Amsterdam, The Netherlands
| | - Mark J Buijs
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU Amsterdam, Amsterdam, The Netherlands
| | - Egija Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU Amsterdam, Amsterdam, The Netherlands
| | - Daniel Wismeijer
- Department Oral Implantology and Prosthodontics, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU Amsterdam, Amsterdam, The Netherlands
| | - Wim Crielaard
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU Amsterdam, Amsterdam, The Netherlands
| | - Bruno G Loos
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU Amsterdam, Amsterdam, The Netherlands
| | - Marja L Laine
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU Amsterdam, Amsterdam, The Netherlands
| | - Bernd W Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Al-Ahmad A, Wollensak K, Rau S, Guevara Solarte DL, Paschke S, Lienkamp K, Staszewski O. How Do Polymer Coatings Affect the Growth and Bacterial Population of a Biofilm Formed by Total Human Salivary Bacteria?-A Study by 16S-RNA Sequencing. Microorganisms 2021; 9:1427. [PMID: 34361863 PMCID: PMC8304871 DOI: 10.3390/microorganisms9071427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 11/23/2022] Open
Abstract
Antimicrobial surface modifications are required to prevent biomaterial-associated biofilm infections, which are also a major concern for oral implants. The aim of this study was to evaluate the influence of three different coatings on the biofilm formed by human saliva. Biofilms grown from human saliva on three different bioactive poly(oxanorbornene)-based polymer coatings (the protein-repellent PSB: poly(oxanorbornene)-based poly(sulfobetaine), the protein-repellent and antimicrobial PZI: poly(carboxyzwitterion), and the mildly antimicrobial and protein-adhesive SMAMP: synthetic mimics of antimicrobial peptides) were analyzed and compared with the microbial composition of saliva, biofilms grown on uncoated substrates, and biofilms grown in the presence of chlorhexidine digluconate. It was found that the polymer coatings significantly reduced the amount of adherent bacteria and strongly altered the microbial composition, as analyzed by 16S RNA sequencing. This may hold relevance for maintaining oral health and the outcome of oral implants due to the existing synergism between the host and the oral microbiome. Especially the reduction of some bacterial species that are associated with poor oral health such as Tannerella forsythia and Fusobacterium nucleatum (observed for PSB and SMAMP), and Prevotella denticola (observed for all coatings) may positively modulate the oral biofilm, including in situ.
Collapse
Affiliation(s)
- Ali Al-Ahmad
- Medical Center, Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany; (K.W.); (S.R.); (D.L.G.S.)
| | - Kira Wollensak
- Medical Center, Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany; (K.W.); (S.R.); (D.L.G.S.)
- Bioactive Polymer Synthesis and Surface Engineering Group, Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany; (S.P.); (K.L.)
| | - Sibylle Rau
- Medical Center, Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany; (K.W.); (S.R.); (D.L.G.S.)
| | - Diana Lorena Guevara Solarte
- Medical Center, Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany; (K.W.); (S.R.); (D.L.G.S.)
| | - Stefan Paschke
- Bioactive Polymer Synthesis and Surface Engineering Group, Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany; (S.P.); (K.L.)
| | - Karen Lienkamp
- Bioactive Polymer Synthesis and Surface Engineering Group, Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany; (S.P.); (K.L.)
- Institut für Materialwissenschaft und Werkstoffkunde, Universität des Saarlandes, Campus, 66123 Saarbrücken, Germany
| | - Ori Staszewski
- Medical Center, Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| |
Collapse
|
9
|
Xu Y, Yu Y, Shen Y, Li Q, Lan J, Wu Y, Zhang R, Cao G, Yang C. Effects of Bacillus subtilis and Bacillus licheniformis on growth performance, immunity, short chain fatty acid production, antioxidant capacity, and cecal microflora in broilers. Poult Sci 2021; 100:101358. [PMID: 34358955 PMCID: PMC8350532 DOI: 10.1016/j.psj.2021.101358] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022] Open
Abstract
This study investigated the effects of dietary supplementation with Bacillus subtilis (B. subtilis) or Bacillus licheniformis (B. licheniformis) on growth performance, immunity, antioxidant capacity, short chain fatty acid (SCFA) production, and the cecal microflora in broiler chickens. In total, 360 male, 1-day-old Cobb 500 birds were randomly divided into 3 groups: the control group was fed a basal diet; the B. subtilis group was fed a basal diet supplemented with 1.5 × 109 CFU/kg B. subtilis; the B. licheniformis group was fed a basal diet supplemented with 1.5 × 109 CFU/kg B. licheniformis. Results showed that chickens supplemented with either B. subtilis or B. licheniformis had comparatively higher (P < 0.05) body weight and average daily gain, whereas no difference (P > 0.05) was observed in feed efficiency. Concentrations of serum IgA, IgY, and IgM, as well as anti-inflammatory IL-10 were significantly increased (P < 0.05), and proinflammatory IL-1β and IL-6 were significantly decreased (P < 0.05) by B. subtilis or B. licheniformis supplementation. Moreover, chickens fed with diets supplemented by either B. subtilis or B. licheniformis had greater antioxidant capacity, indicated by the notable increases (P < 0.05) in glutathione peroxidase, superoxide dismutase, and catalase, along with decrease (P < 0.05) in malondialdehyde. Compared to the control group, levels of SCFA, excluding acetic and propionic acid, in cecal content had improved (P < 0.05) by adding B. licheniformis, and significant increase (P < 0.05) in acetic and butyric acid was observed with B. subtilis supplementation. Microbial analysis showed that both B. subtilis or B. licheniformis supplementation could increase butyrate-producing bacteria such as Alistipes and Butyricicoccus, and decrease pathogenic bacteria such as the Synergistetes and Gammaproteobacteria. In summary, dietary supplemented with B. subtilis or B. licheniformis improved growth performance, immune status, and antioxidant capacity, increased SCFA production, and modulated cecal microbiota in chickens. Moreover, B. licheniformis was more effective than B. subtilis with the same supplemental amount.
Collapse
Affiliation(s)
- Yinglei Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology College of Veterinary Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Yang Yu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology College of Veterinary Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Yuanyuan Shen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology College of Veterinary Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Qing Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology College of Veterinary Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Junhong Lan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology College of Veterinary Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Yanping Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology College of Veterinary Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Ruiqiang Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology College of Veterinary Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Guantian Cao
- College of Standardisation, China Jiliang University, Hangzhou 310018, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology College of Veterinary Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China.
| |
Collapse
|
10
|
Ghensi P, Manghi P, Zolfo M, Armanini F, Pasolli E, Bolzan M, Bertelle A, Dell'Acqua F, Dellasega E, Waldner R, Tessarolo F, Tomasi C, Segata N. Strong oral plaque microbiome signatures for dental implant diseases identified by strain-resolution metagenomics. NPJ Biofilms Microbiomes 2020; 6:47. [PMID: 33127901 PMCID: PMC7603341 DOI: 10.1038/s41522-020-00155-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
Dental implants are installed in an increasing number of patients. Mucositis and peri-implantitis are common microbial-biofilm-associated diseases affecting the tissues that surround the dental implant and are a major medical and socioeconomic burden. By metagenomic sequencing of the plaque microbiome in different peri-implant health and disease conditions (113 samples from 72 individuals), we found microbial signatures for peri-implantitis and mucositis and defined the peri-implantitis-related complex (PiRC) composed by the 7 most discriminative bacteria. The peri-implantitis microbiome is site specific as contralateral healthy sites resembled more the microbiome of healthy implants, while mucositis was specifically enriched for Fusobacterium nucleatum acting as a keystone colonizer. Microbiome-based machine learning showed high diagnostic and prognostic power for peri-implant diseases and strain-level profiling identified a previously uncharacterized subspecies of F. nucleatum to be particularly associated with disease. Altogether, we associated the plaque microbiome with peri-implant diseases and identified microbial signatures of disease severity.
Collapse
Affiliation(s)
- Paolo Ghensi
- Department CIBIO, University of Trento, Trento, Italy
| | - Paolo Manghi
- Department CIBIO, University of Trento, Trento, Italy
| | - Moreno Zolfo
- Department CIBIO, University of Trento, Trento, Italy
| | | | | | - Mattia Bolzan
- Department CIBIO, University of Trento, Trento, Italy.,PreBiomics S.r.l., Trento, Italy
| | | | | | | | | | - Francesco Tessarolo
- Department of Industrial Engineering, University of Trento, Trento, Italy.,Healthcare Research and Innovation Program (IRCS-FBK-PAT), Bruno Kessler Foundation, Trento, Italy
| | - Cristiano Tomasi
- Department of Periodontology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy.
| |
Collapse
|
11
|
Qiao S, Wu D, Wang M, Qian S, Zhu Y, Shi J, Wei Y, Lai H. Oral microbial profile variation during canine ligature-induced peri-implantitis development. BMC Microbiol 2020; 20:293. [PMID: 32993514 PMCID: PMC7526148 DOI: 10.1186/s12866-020-01982-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022] Open
Abstract
Background Dental implants have become well-established in oral rehabilitation for fully or partially edentulous patients. However, peri-implantitis often leads to the failure of dental implants. The aim of this study was to understand the core microbiome associated with peri-implantitis and evaluate potential peri-implantitis pathogens based on canine peri-implantitis model. Results In this study, three beagle dogs were used to build peri-implantitis models with ligature-induced strategy. The peri-implant sulcular fluids were collected at four different phases based on disease severity during the peri-implantitis development. Microbial compositions during peri-implantitis development were monitored and evaluated. The microbes were presented with operational taxonomic unit (OTU) classified at 97% identity of the high-throughput 16S rRNA gene fragments. Microbial diversity and richness varied during peri-implantitis. At the phylum-level, Firmicutes decreased and Bacteroides increased during peri-implantitis development. At the genus-level, Peptostreptococcus decreased and Porphyromonas increased, suggesting peri-implantitis pathogens might be assigned to these two genera. Further species-level and co-occurrence network analyses identified several potential keystone species during peri-implantitis development, and some OTUs were potential peri-implantitis pathogens. Conclusion In summary, canine peri-implantitis models help to identify several potential keystone peri-implantitis associated species. The canine model can give insight into human peri-implantitis associated microbiota.
Collapse
Affiliation(s)
- Shichong Qiao
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Dongle Wu
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Mengge Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education & School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, PR China
| | - Shujiao Qian
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Yu Zhu
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Junyu Shi
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Yongjun Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education & School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, PR China.
| | - Hongchang Lai
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China.
| |
Collapse
|
12
|
Abstract
Osseointegrated dental implants are a revolutionary tool in the armament of reconstructive dentistry, employed to replace missing teeth and restore masticatory, occlusal, and esthetic functions. Like natural teeth, the orally exposed part of dental implants offers a pristine nonshedding surface for salivary pellicle-mediated microbial adhesion and biofilm formation. In early colonization stages, these bacterial communities closely resemble those of healthy periodontal sites, with lower diversity. Because the peri-implant tissues are more susceptible to endogenous oral infections, understanding of the ecological triggers that underpin the microbial pathogenesis of peri-implantitis is central to developing improved prevention, diagnosis, and therapeutic strategies. The advent of next-generation sequencing (NGS) technologies, notably applied to 16S ribosomal RNA gene amplicons, has enabled the comprehensive taxonomic characterization of peri-implant bacterial communities in health and disease, revealing a differentially abundant microbiota between these 2 states, or with periodontitis. With that, the peri-implant niche is highlighted as a distinct ecosystem that shapes its individual resident microbial community. Shifts from health to disease include an increase in diversity and a gradual depletion of commensals, along with an enrichment of classical and emerging periodontal pathogens. Metatranscriptomic profiling revealed similarities in the virulence characteristics of microbial communities from peri-implantitis and periodontitis, nonetheless with some distinctive pathways and interbacterial networks. Deeper functional assessment of the physiology and virulence of the well-characterized microbial communities of the peri-implant niche will elucidate further the etiopathogenic mechanisms and drivers of the disease.
Collapse
Affiliation(s)
- G N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| | - D Manoil
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| |
Collapse
|
13
|
Sahrmann P, Gilli F, Wiedemeier DB, Attin T, Schmidlin PR, Karygianni L. The Microbiome of Peri-Implantitis: A Systematic Review and Meta-Analysis. Microorganisms 2020; 8:microorganisms8050661. [PMID: 32369987 PMCID: PMC7284896 DOI: 10.3390/microorganisms8050661] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/30/2022] Open
Abstract
This review aimed to systematically compare microbial profiles of peri-implantitis to those of periodontitis and healthy implants. Therefore, an electronic search in five databases was conducted. For inclusion, studies assessing the microbiome of peri-implantitis in otherwise healthy patients were considered. Literature was assessed for consistent evidence of exclusive or predominant peri-implantitis microbiota. Of 158 potentially eligible articles, data of 64 studies on 3730 samples from peri-implant sites were included in this study. Different assessment methods were described in the studies, namely bacterial culture, PCR-based assessment, hybridization techniques, pyrosequencing, and transcriptomic analyses. After analysis of 13 selected culture-dependent studies, no microbial species were found to be specific for peri-implantitis. After assessment of 28 studies using PCR-based methods and a meta-analysis on 19 studies, a higher prevalence of Aggregatibacter actinomycetemcomitans and Prevotella intermedia (log-odds ratio 4.04 and 2.28, respectively) was detected in peri-implantitis biofilms compared with healthy implants. Actinomyces spp., Porphyromonas spp. and Rothia spp. were found in all five pyrosequencing studies in healthy-, periodontitis-, and peri-implantitis samples. In conclusion, the body of evidence does not show a consistent specific profile. Future studies should focus on the assessment of sites with different diagnosis for the same patient, and investigate the complex host-biofilm interaction.
Collapse
Affiliation(s)
- Philipp Sahrmann
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, CH-8032 Zurich, Switzerland; (F.G.); (T.A.); (P.R.S.); (L.K.)
- Correspondence: ; Tel.: +41-44-634-3412
| | - Fabienne Gilli
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, CH-8032 Zurich, Switzerland; (F.G.); (T.A.); (P.R.S.); (L.K.)
| | - Daniel B. Wiedemeier
- Statistical Services, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, CH-8032 Zurich, Switzerland;
| | - Thomas Attin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, CH-8032 Zurich, Switzerland; (F.G.); (T.A.); (P.R.S.); (L.K.)
| | - Patrick R. Schmidlin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, CH-8032 Zurich, Switzerland; (F.G.); (T.A.); (P.R.S.); (L.K.)
| | - Lamprini Karygianni
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, CH-8032 Zurich, Switzerland; (F.G.); (T.A.); (P.R.S.); (L.K.)
| |
Collapse
|
14
|
Yu XL, Chan Y, Zhuang L, Lai HC, Lang NP, Keung Leung W, Watt RM. Intra-oral single-site comparisons of periodontal and peri-implant microbiota in health and disease. Clin Oral Implants Res 2019; 30:760-776. [PMID: 31102416 DOI: 10.1111/clr.13459] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Periodontitis and peri-implantitis are oral infectious-inflammatory diseases that share similarities in their pathology and etiology. Our objective was to characterize the single-site subgingival and submucosal microbiomes of implant-rehabilitated, partially dentate Chinese subjects (n = 18) presenting with both periodontitis and peri-implantitis. MATERIALS AND METHODS Subgingival/submucosal plaque samples were collected from four clinically distinct sites in each subject: peri-implantitis submucosa (DI), periodontal pocket (DT), clinically healthy (unaffected) peri-implant submucosa (HI), and clinically healthy (unaffected) subgingival sulcus (HT). The bacterial microbiota present was analyzed using Illumina MiSeq sequencing. RESULTS Twenty-six phyla and 5,726 operational taxonomic units (OTUs, 97% sequence similarity cutoff) were identified. Firmicutes, Proteobacteria, Fusobacteria, Bacteroidetes, Actinobacteria, Synergistetes, TM7, and Spirochaetes comprised 99.6% of the total reads detected. Bacterial communities within the DI, DT, HI, and HT sites shared high levels of taxonomic similarity. Thirty-one "core species" were present in >90% sites, with Streptococcus infantis/mitis/oralis (HMT-070/HMT-071/HMT-638/HMT-677) and Fusobacterium sp. HMT-203/HMT-698 being particularly prevalent and abundant. Beta-diversity analyses (PERMANOVA test, weighted UniFrac) revealed the largest variance in the microbiota was at the subject level (46%), followed by periodontal health status (4%). Differing sets of OTUs were associated with periodontitis and peri-implantitis sites, respectively. This included putative "periodontopathogens," such as Prevotella, Porphyromonas, Tannerella, Bacteroidetes [G-5], and Treponema spp. Interaction network analysis identified several putative patterns underlying dysbiosis in periodontitis/peri-implantitis sites. CONCLUSIONS Species (OTU) composition of the periodontal and peri-implant microbiota varied widely between subjects. The inter-subject variations in subgingival/submucosal microbiome composition outweighed differences observed between implant vs. tooth sites, or between diseased vs. healthy (unaffected) peri-implant/periodontal sites.
Collapse
Affiliation(s)
- Xiao-Lin Yu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.,Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yuki Chan
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | | | - Hong-Chang Lai
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | | | - Wai Keung Leung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Rory M Watt
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
15
|
Sanz-Martin I, Doolittle-Hall J, Teles RP, Patel M, Belibasakis GN, Hämmerle CHF, Jung RE, Teles FRF. Exploring the microbiome of healthy and diseased peri-implant sites using Illumina sequencing. J Clin Periodontol 2017; 44:1274-1284. [PMID: 28766745 DOI: 10.1111/jcpe.12788] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2017] [Indexed: 01/02/2023]
Abstract
AIM To compare the microbiome of healthy (H) and diseased (P) peri-implant sites and determine the core peri-implant microbiome. MATERIALS AND METHODS Submucosal biofilms from 32 H and 35 P sites were analysed using 16S rRNA sequencing (MiSeq, Illumina), QIIME and HOMINGS. Differences between groups were determined using principal coordinate analysis (PCoA), t tests and Wilcoxon rank sum test and FDR-adjusted. The peri-implant core microbiome was determined. RESULTS PCoA showed partitioning between H and P at all taxonomic levels. Bacteroidetes, Spirochetes and Synergistetes were higher in P, while Actinobacteria prevailed in H (p < .05). Porphyromonas and Treponema were more abundant in P while Rothia and Neisseria were higher in H (p < .05). The core peri-implant microbiome contained Fusobacterium, Parvimonas and Campylobacter sp. T. denticola, and P. gingivalis levels were higher in P, as well as F. alocis, F. fastidiosum and T. maltophilum (p < .05). CONCLUSION The peri-implantitis microbiome is commensal-depleted and pathogen-enriched, harbouring traditional and new pathogens. The core peri-implant microbiome harbours taxa from genera often associated with periodontal inflammation.
Collapse
Affiliation(s)
- Ignacio Sanz-Martin
- Section of Periodontology, Faculty of Odontology, University Complutense of Madrid, Madrid, Spain
| | - Janet Doolittle-Hall
- Department of Dental Ecology, University of North Carolina at Chapel Hill School of Dentistry, Chapel Hill, NC, USA
| | - Ricardo P Teles
- Department of Periodontology, University of North Carolina at Chapel Hill School of Dentistry, Chapel Hill, NC, USA
| | - Michele Patel
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA
| | | | - Christoph H F Hämmerle
- Clinic of Fixed and Removable Prosthodontics and Dental Material Science, Center of Dental Medicine, University of Zürich, Zürich, Switzerland
| | - Ronald E Jung
- Clinic of Fixed and Removable Prosthodontics and Dental Material Science, Center of Dental Medicine, University of Zürich, Zürich, Switzerland
| | - Flavia R F Teles
- Department of Periodontology, University of North Carolina at Chapel Hill School of Dentistry, Chapel Hill, NC, USA
| |
Collapse
|
16
|
Microbiome of peri -implantitis affected and healthy dental sites in patients with a history of chronic periodontitis. Arch Oral Biol 2017; 83:145-152. [DOI: 10.1016/j.archoralbio.2017.07.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/05/2017] [Accepted: 07/09/2017] [Indexed: 12/26/2022]
|
17
|
Multilocus Sequence Analysis of Phylogroup 1 and 2 Oral Treponeme Strains. Appl Environ Microbiol 2017; 83:AEM.02499-16. [PMID: 27864174 DOI: 10.1128/aem.02499-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/14/2016] [Indexed: 02/08/2023] Open
Abstract
More than 75 "species-level" phylotypes of spirochete bacteria belonging to the genus Treponema reside within the human oral cavity. The majority of these oral treponeme phylotypes correspond to as-yet-uncultivated taxa or strains of uncertain standing in taxonomy. Here, we analyze phylogenetic and taxonomic relationships between oral treponeme strains using a multilocus sequence analysis (MLSA) scheme based on the highly conserved 16S rRNA, pyrH, recA, and flaA genes. We utilized this MLSA scheme to analyze genetic data from a curated collection of oral treponeme strains (n = 71) of diverse geographical origins. This comprises phylogroup 1 (n = 23) and phylogroup 2 (n = 48) treponeme strains, including all relevant American Type Culture Collection reference strains. The taxonomy of all strains was confirmed or inferred via the analysis of ca. 1,450-bp 16S rRNA gene sequences using a combination of bioinformatic and phylogenetic approaches. Taxonomic and phylogenetic relationships between the respective treponeme strains were further investigated by analyzing individual and concatenated flaA (1,074-nucleotide [nt]), recA (1,377-nt), and pyrH (696-nt) gene sequence data sets. Our data confirmed the species differentiation between Treponema denticola (n = 41) and Treponema putidum (n = 7) strains. Notably, our results clearly supported the differentiation of the 23 phylogroup 1 treponeme strains into five distinct "species-level" phylotypes. These respectively corresponded to "Treponema vincentii" (n = 11), Treponema medium (n = 1), "Treponema sinensis" (Treponema sp. IA; n = 4), Treponema sp. IB (n = 3), and Treponema sp. IC (n = 4). In conclusion, our MLSA-based approach can be used to effectively discriminate oral treponeme taxa, confirm taxonomic assignment, and enable the delineation of species boundaries with high confidence. IMPORTANCE Periodontal diseases are caused by persistent polymicrobial biofilm infections of the gums and underlying tooth-supporting structures and have a complex and variable etiology. Although Treponema denticola is strongly associated with periodontal diseases, the etiological roles of other treponeme species/phylotypes are less well defined. This is due to a paucity of formal species descriptions and a poor understanding of genetic relationships between oral treponeme taxa. Our study directly addresses these issues. It represents one of the most comprehensive analyses of oral treponeme strains performed to date, including isolates from North America, Europe, and Asia. We envisage that our results will greatly facilitate future metagenomic efforts aimed at characterizing the clinical distributions of oral treponeme species/phylotypes, helping investigators to establish a more detailed understanding of their etiological roles in periodontal diseases and other infectious diseases. Our results are also directly relevant to various polymicrobial tissue infections in animals, which also involve treponeme populations.
Collapse
|
18
|
Valente NA, Andreana S. Peri-implant disease: what we know and what we need to know. J Periodontal Implant Sci 2016; 46:136-51. [PMID: 27382503 PMCID: PMC4928203 DOI: 10.5051/jpis.2016.46.3.136] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/14/2016] [Indexed: 12/31/2022] Open
Abstract
Peri-implant disease is a serious problem that plagues today's dentistry, both in terms of therapy and epidemiology. With the expansion of the practice of implantology and an increasing number of implants placed annually, the frequency of peri-implant disease has greatly expanded. Its clinical manifestations, in the absence of a globally established classification, are peri-implant mucositis and peri-implantitis, the counterparts of gingivitis and periodontitis, respectively. However, many doubts remain about its features. Official diagnostic criteria, globally recognized by the dental community, have not yet been introduced. The latest studies using metagenomic methods are casting doubt on the assumption of microbial equivalence between periodontal and peri-implant crevices. Research on most of the features of peri-implant disease remains at an early stage; moreover, there is not a commonly accepted treatment for it. In any case, although the evidence so far collected is limited, we need to be aware of the current state of the science regarding this topic to better understand and ultimately prevent this disease.
Collapse
Affiliation(s)
- Nicola Alberto Valente
- Department of Periodontics and Endodontics, State University of New York at Buffalo School of Dental Medicine, Buffalo, NY, USA
| | - Sebastiano Andreana
- Department of Restorative Dentistry, State University of New York at Buffalo School of Dental Medicine, Buffalo, NY, USA
| |
Collapse
|
19
|
Yu XL, Chan Y, Zhuang LF, Lai HC, Lang NP, Lacap-Bugler DC, Leung WK, Watt RM. Distributions of Synergistetes in clinically-healthy and diseased periodontal and peri-implant niches. Microb Pathog 2016; 94:90-103. [DOI: 10.1016/j.micpath.2015.11.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 11/28/2015] [Accepted: 11/30/2015] [Indexed: 02/07/2023]
|