1
|
Reis-Cunha JL, Pimenta-Carvalho SA, Almeida LV, Coqueiro-Dos-Santos A, Marques CA, Black JA, Damasceno J, McCulloch R, Bartholomeu DC, Jeffares DC. Ancestral aneuploidy and stable chromosomal duplication resulting in differential genome structure and gene expression control in trypanosomatid parasites. Genome Res 2024; 34:441-453. [PMID: 38604731 PMCID: PMC11067883 DOI: 10.1101/gr.278550.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
Aneuploidy is widely observed in both unicellular and multicellular eukaryotes, usually associated with adaptation to stress conditions. Chromosomal duplication stability is a tradeoff between the fitness cost of having unbalanced gene copies and the potential fitness gained from increased dosage of specific advantageous genes. Trypanosomatids, a family of protozoans that include species that cause neglected tropical diseases, are a relevant group to study aneuploidies. Their life cycle has several stressors that could select for different patterns of chromosomal duplications and/or losses, and their nearly universal use of polycistronic transcription increases their reliance on gene expansion/contraction, as well as post-transcriptional control as mechanisms for gene expression regulation. By evaluating the data from 866 isolates covering seven trypanosomatid genera, we have revealed that aneuploidy tolerance is an ancestral characteristic of trypanosomatids but has a reduced occurrence in a specific monophyletic clade that has undergone large genomic reorganization and chromosomal fusions. We have also identified an ancient chromosomal duplication that was maintained across these parasite's speciation, named collectively as the trypanosomatid ancestral supernumerary chromosome (TASC). TASC has most genes in the same coding strand, is expressed as a disomic chromosome (even having four copies), and has increased potential for functional variation, but it purges highly deleterious mutations more efficiently than other chromosomes. The evidence of stringent control over gene expression in this chromosome suggests that these parasites have adapted to mitigate the fitness cost associated with this ancient chromosomal duplication.
Collapse
Affiliation(s)
- João L Reis-Cunha
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, United Kingdom;
| | - Samuel A Pimenta-Carvalho
- Instituto de Ciências Biológicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Laila V Almeida
- Instituto de Ciências Biológicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Anderson Coqueiro-Dos-Santos
- Instituto de Ciências Biológicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Catarina A Marques
- The Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Jennifer A Black
- The Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14049-900, Brazil
| | - Jeziel Damasceno
- The Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Daniella C Bartholomeu
- Instituto de Ciências Biológicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Daniel C Jeffares
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
2
|
Girasol MJ, Krasilnikova M, Marques CA, Damasceno JD, Lapsley C, Lemgruber L, Burchmore R, Beraldi D, Carruthers R, Briggs EM, McCulloch R. RAD51-mediated R-loop formation acts to repair transcription-associated DNA breaks driving antigenic variation in Trypanosoma brucei. Proc Natl Acad Sci U S A 2023; 120:e2309306120. [PMID: 37988471 PMCID: PMC10691351 DOI: 10.1073/pnas.2309306120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/13/2023] [Indexed: 11/23/2023] Open
Abstract
RNA-DNA hybrids are epigenetic features of all genomes that intersect with many processes, including transcription, telomere homeostasis, and centromere function. Increasing evidence suggests that RNA-DNA hybrids can provide two conflicting roles in the maintenance and transmission of genomes: They can be the triggers of DNA damage, leading to genome change, or can aid the DNA repair processes needed to respond to DNA lesions. Evasion of host immunity by African trypanosomes, such as Trypanosoma brucei, relies on targeted recombination of silent Variant Surface Glycoprotein (VSG) genes into a specialized telomeric locus that directs transcription of just one VSG from thousands. How such VSG recombination is targeted and initiated is unclear. Here, we show that a key enzyme of T. brucei homologous recombination, RAD51, interacts with RNA-DNA hybrids. In addition, we show that RNA-DNA hybrids display a genome-wide colocalization with DNA breaks and that this relationship is impaired by mutation of RAD51. Finally, we show that RAD51 acts to repair highly abundant, localised DNA breaks at the single transcribed VSG and that mutation of RAD51 alters RNA-DNA hybrid abundance at 70 bp repeats both around the transcribed VSG and across the silent VSG archive. This work reveals a widespread, generalised role for RNA-DNA hybrids in directing RAD51 activity during recombination and uncovers a specialised application of this interplay during targeted DNA break repair needed for the critical T. brucei immune evasion reaction of antigenic variation.
Collapse
Affiliation(s)
- Mark John Girasol
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
- Faculty of the MD-PhD in Molecular Medicine Program, College of Medicine, University of the Philippines Manila, Manila1000, Philippines
| | - Marija Krasilnikova
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Catarina A. Marques
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Jeziel D. Damasceno
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Craig Lapsley
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Leandro Lemgruber
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Richard Burchmore
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Dario Beraldi
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Ross Carruthers
- College of Medical, Veterinary and Life Sciences, School of Cancer Sciences, University of Glasgow, GlasgowG12 0YN, United Kingdom
| | - Emma M. Briggs
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3FL, United Kingdom
| | - Richard McCulloch
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
| |
Collapse
|
3
|
Barcons-Simon A, Carrington M, Siegel TN. Decoding the impact of nuclear organization on antigenic variation in parasites. Nat Microbiol 2023; 8:1408-1418. [PMID: 37524976 DOI: 10.1038/s41564-023-01424-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/13/2023] [Indexed: 08/02/2023]
Abstract
Antigenic variation as a strategy to evade the host adaptive immune response has evolved in divergent pathogens. Antigenic variation involves restricted, and often mutually exclusive, expression of dominant antigens and a periodic switch in antigen expression during infection. In eukaryotes, nuclear compartmentalization, including three-dimensional folding of the genome and physical separation of proteins in compartments or condensates, regulates mutually exclusive gene expression and chromosomal translocations. In this Review, we discuss the impact of nuclear organization on antigenic variation in the protozoan pathogens Trypanosoma brucei and Plasmodium falciparum. In particular, we highlight the relevance of nuclear organization in both mutually exclusive antigen expression and genome stability, which underlie antigenic variation.
Collapse
Affiliation(s)
- Anna Barcons-Simon
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - T Nicolai Siegel
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
4
|
Soni A, Klebanov-Akopyan O, Erben E, Plaschkes I, Benyamini H, Mitesser V, Harel A, Yamin K, Onn I, Shlomai J. UMSBP2 is chromatin remodeler that functions in regulation of gene expression and suppression of antigenic variation in trypanosomes. Nucleic Acids Res 2023; 51:5678-5698. [PMID: 37207337 PMCID: PMC10287944 DOI: 10.1093/nar/gkad402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/03/2023] [Indexed: 05/21/2023] Open
Abstract
Universal Minicircle Sequence binding proteins (UMSBPs) are CCHC-type zinc-finger proteins that bind the single-stranded G-rich UMS sequence, conserved at the replication origins of minicircles in the kinetoplast DNA, the mitochondrial genome of kinetoplastids. Trypanosoma brucei UMSBP2 has been recently shown to colocalize with telomeres and to play an essential role in chromosome end protection. Here we report that TbUMSBP2 decondenses in vitro DNA molecules, which were condensed by core histones H2B, H4 or linker histone H1. DNA decondensation is mediated via protein-protein interactions between TbUMSBP2 and these histones, independently of its previously described DNA binding activity. Silencing of the TbUMSBP2 gene resulted in a significant decrease in the disassembly of nucleosomes in T. brucei chromatin, a phenotype that could be reverted, by supplementing the knockdown cells with TbUMSBP2. Transcriptome analysis revealed that silencing of TbUMSBP2 affects the expression of multiple genes in T. brucei, with a most significant effect on the upregulation of the subtelomeric variant surface glycoproteins (VSG) genes, which mediate the antigenic variation in African trypanosomes. These observations suggest that UMSBP2 is a chromatin remodeling protein that functions in the regulation of gene expression and plays a role in the control of antigenic variation in T. brucei.
Collapse
Affiliation(s)
- Awakash Soni
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel- Canada and the Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Olga Klebanov-Akopyan
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel- Canada and the Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Esteban Erben
- Heidelberg University Center for Molecular Biology at Heidelberg University, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Inbar Plaschkes
- The Info-Core Bioinformatics Unit, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Hadar Benyamini
- The Info-Core Bioinformatics Unit, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Vera Mitesser
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel- Canada and the Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Amnon Harel
- Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold Street, Safed1311502, Israel
| | - Katereena Yamin
- Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold Street, Safed1311502, Israel
| | - Itay Onn
- Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold Street, Safed1311502, Israel
| | - Joseph Shlomai
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel- Canada and the Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
5
|
Dubey AK, Kumar P, Mandal D, Ravichandiran V, Singh SK. An introduction to dynamic nucleoporins in Leishmania species: Novel targets for tropical-therapeutics. J Parasit Dis 2022; 46:1176-1191. [PMID: 36457769 PMCID: PMC9606170 DOI: 10.1007/s12639-022-01515-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022] Open
Abstract
As an ailment, leishmaniasis is still an incessant challenge in neglected tropical diseases and neglected infections of poverty worldwide. At present, the diagnosis and treatment to combat Leishmania tropical infections are not substantial remedies and require advanced & specific research. Therefore, there is a need for a potential novel target to overcome established medicament modalities' limitations in pathogenicity. In this review, we proposed a few ab initio findings in nucleoporins of nuclear pore complex in Leishmania sp. concerning other infectious protists. So, through structural analysis and dynamics studies, we hypothesize the nuclear pore molecular machinery & functionality. The gatekeepers Nups, export of mRNA, mitotic spindle formation are salient features in cellular mechanics and this is regulated by dynamic nucleoporins. Here, diverse studies suggest that Nup93/NIC96, Nup155/Nup144, Mlp1/Mlp2/Tpr of Leishmania Species can be a picked out marker for diagnostic, immune-modulation, and novel drug targets. In silico prediction of nucleoporin-functional interactors such as NUP54/57, RNA helicase, Ubiquitin-protein ligase, Exportin 1, putative T-lymphocyte triggering factor, and 9 uncharacterized proteins suggest few more noble targets. The novel drug targeting to importins/exportins of Leishmania sp. and defining mechanism of Leptomycin-B, SINE compounds, Curcumins, Selinexor can be an arc-light in therapeutics. The essence of the review in Leishmania's nucleoporins is to refocus our research on noble molecular targets for tropical therapeutics. Supplementary Information The online version contains supplementary material available at 10.1007/s12639-022-01515-0.
Collapse
Affiliation(s)
- Amit Kumar Dubey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Vaishali, Bihar 844102 India
- Parasite Immunology Lab, Microbiology Department, Indian Council of Medical Research (ICMR)-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar 800007 India
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Vaishali, Bihar 844102 India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Vaishali, Bihar 844102 India
| | - V. Ravichandiran
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Vaishali, Bihar 844102 India
| | - Shubhankar Kumar Singh
- Parasite Immunology Lab, Microbiology Department, Indian Council of Medical Research (ICMR)-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar 800007 India
| |
Collapse
|
6
|
Castellanos M, Verhey TB, Goldstein M, Chaconas G. The Putative Endonuclease Activity of MutL Is Required for the Segmental Gene Conversion Events That Drive Antigenic Variation of the Lyme Disease Spirochete. Front Microbiol 2022; 13:888494. [PMID: 35663861 PMCID: PMC9159922 DOI: 10.3389/fmicb.2022.888494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022] Open
Abstract
The Lyme disease spirochete Borrelia burgdorferi, encodes an elaborate antigenic variation system that promotes the ongoing variation of a major surface lipoprotein, VlsE. Changes in VlsE are continual and always one step ahead of the host acquired immune system, which requires 1–2 weeks to generate specific antibodies. By the time this happens, new VlsE variants have arisen that escape immunosurveillance, providing an avenue for persistent infection. This antigenic variation system is driven by segmental gene conversion events that transfer information from a series of silent cassettes (vls2-16) to the expression locus, vlsE. The molecular details of this process remain elusive. Recombinational switching at vlsE is RecA-independent and the only required factor identified to date is the RuvAB branch migrase. In this work we have used next generation long-read sequencing to analyze the effect of several DNA replication/recombination/repair gene disruptions on the frequency of gene conversions at vlsE and report a requirement for the mismatch repair protein MutL. Site directed mutagenesis of mutL suggests that the putative MutL endonuclease activity is required for recombinational switching at vlsE. This is the first report of an unexpected essential role for MutL in a bacterial recombination system and expands the known function of this protein as well as our knowledge of the details of the novel recombinational switching mechanism for vlsE variation.
Collapse
Affiliation(s)
- Mildred Castellanos
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Theodore B. Verhey
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Madeleine Goldstein
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - George Chaconas
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- *Correspondence: George Chaconas,
| |
Collapse
|
7
|
Florini F, Visone JE, Deitsch KW. Shared Mechanisms for Mutually Exclusive Expression and Antigenic Variation by Protozoan Parasites. Front Cell Dev Biol 2022; 10:852239. [PMID: 35350381 PMCID: PMC8957917 DOI: 10.3389/fcell.2022.852239] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/17/2022] [Indexed: 01/05/2023] Open
Abstract
Cellular decision-making at the level of gene expression is a key process in the development and evolution of every organism. Variations in gene expression can lead to phenotypic diversity and the development of subpopulations with adaptive advantages. A prime example is the mutually exclusive activation of a single gene from within a multicopy gene family. In mammals, this ranges from the activation of one of the two immunoglobulin (Ig) alleles to the choice in olfactory sensory neurons of a single odorant receptor (OR) gene from a family of more than 1,000. Similarly, in parasites like Trypanosoma brucei, Giardia lamblia or Plasmodium falciparum, the process of antigenic variation required to escape recognition by the host immune system involves the monoallelic expression of vsg, vsp or var genes, respectively. Despite the importance of this process, understanding how this choice is made remains an enigma. The development of powerful techniques such as single cell RNA-seq and Hi-C has provided new insights into the mechanisms these different systems employ to achieve monoallelic gene expression. Studies utilizing these techniques have shown how the complex interplay between nuclear architecture, physical interactions between chromosomes and different chromatin states lead to single allele expression. Additionally, in several instances it has been observed that high-level expression of a single gene is preceded by a transient state where multiple genes are expressed at a low level. In this review, we will describe and compare the different strategies that organisms have evolved to choose one gene from within a large family and how parasites employ this strategy to ensure survival within their hosts.
Collapse
Affiliation(s)
| | | | - Kirk W. Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
8
|
Thivolle A, Mehnert AK, Tihon E, McLaughlin E, Dujeancourt-Henry A, Glover L. DNA double strand break position leads to distinct gene expression changes and regulates VSG switching pathway choice. PLoS Pathog 2021; 17:e1010038. [PMID: 34767618 PMCID: PMC8612549 DOI: 10.1371/journal.ppat.1010038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/24/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022] Open
Abstract
Antigenic variation is an immune evasion strategy used by Trypanosoma brucei that results in the periodic exchange of the surface protein coat. This process is facilitated by the movement of variant surface glycoprotein genes in or out of a specialized locus known as bloodstream form expression site by homologous recombination, facilitated by blocks of repetitive sequence known as the 70-bp repeats, that provide homology for gene conversion events. DNA double strand breaks are potent drivers of antigenic variation, however where these breaks must fall to elicit a switch is not well understood. To understand how the position of a break influences antigenic variation we established a series of cell lines to study the effect of an I-SceI meganuclease break in the active expression site. We found that a DNA break within repetitive regions is not productive for VSG switching, and show that the break position leads to a distinct gene expression profile and DNA repair response which dictates how antigenic variation proceeds in African trypanosomes. Crucial to triggering antigenic variation is the formation of DNA double strand breaks (DSB). These lesions have been shown to be potent drivers of variant surface glycoprotein (VSG) switching, albeit highly toxic. Trypanosomes immune evasion strategy relies on their ability to rapidly exchange the singly expressed VSG for one that is antigenically distinct. It has been previously shown that the subtelomeric ends, here the locus from which the VSG is expressed, accumulate DSBs. Using the I-SceI meganuclease system we established a series of cell lines to assess how the position of a DSB influences antigenic variation and the cellular response to a break. We show that a DSB in highly repetitive regions are poor triggers for antigenic variation. Contrastingly, a DSB that does lead to VSG switching via recombination results in the upregulation of DNA damage linked genes. Our results provide new insights into how the position of a DSB influences repair pathway choice and the subsequent gene expression changes. We propose that where repair is not dominated by recombination, but rather by an error prone mechanism, silent BES promoters are partially activated to facilitate rapid transcriptional switching should repair be deleterious to the cell.
Collapse
Affiliation(s)
- Alix Thivolle
- Institut Pasteur, Université de Paris, Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Paris, France
| | - Ann-Kathrin Mehnert
- Institut Pasteur, Université de Paris, Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Paris, France
| | - Eliane Tihon
- Institut Pasteur, Université de Paris, Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Paris, France
| | - Emilia McLaughlin
- Institut Pasteur, Université de Paris, Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Annick Dujeancourt-Henry
- Institut Pasteur, Université de Paris, Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Paris, France
| | - Lucy Glover
- Institut Pasteur, Université de Paris, Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Paris, France
- * E-mail:
| |
Collapse
|
9
|
A DOT1B/Ribonuclease H2 Protein Complex Is Involved in R-Loop Processing, Genomic Integrity, and Antigenic Variation in Trypanosoma brucei. mBio 2021; 12:e0135221. [PMID: 34749530 PMCID: PMC8576533 DOI: 10.1128/mbio.01352-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The parasite Trypanosoma brucei periodically changes the expression of protective variant surface glycoproteins (VSGs) to evade its host’s immune system in a process known as antigenic variation. One route to change VSG expression is the transcriptional activation of a previously silent VSG expression site (ES), a subtelomeric region containing the VSG genes. Homologous recombination of a different VSG from a large reservoir into the active ES represents another route. The conserved histone methyltransferase DOT1B is involved in transcriptional silencing of inactive ES and influences ES switching kinetics. The molecular machinery that enables DOT1B to execute these regulatory functions remains elusive, however. To better understand DOT1B-mediated regulatory processes, we purified DOT1B-associated proteins using complementary biochemical approaches. We identified several novel DOT1B interactors. One of these was the RNase H2 complex, previously shown to resolve RNA-DNA hybrids, maintain genome integrity, and play a role in antigenic variation. Our study revealed that DOT1B depletion results in an increase in RNA-DNA hybrids, accumulation of DNA damage, and ES switching events. Surprisingly, a similar pattern of VSG deregulation was observed in RNase H2 mutants. We propose that both proteins act together in resolving R-loops to ensure genome integrity and contribute to the tightly regulated process of antigenic variation.
Collapse
|
10
|
Black JA, Crouch K, Lemgruber L, Lapsley C, Dickens N, Tosi LRO, Mottram JC, McCulloch R. Trypanosoma brucei ATR Links DNA Damage Signaling during Antigenic Variation with Regulation of RNA Polymerase I-Transcribed Surface Antigens. Cell Rep 2021; 30:836-851.e5. [PMID: 31968257 PMCID: PMC6988115 DOI: 10.1016/j.celrep.2019.12.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 08/19/2019] [Accepted: 12/13/2019] [Indexed: 11/29/2022] Open
Abstract
Trypanosoma brucei evades mammalian immunity by using recombination to switch its surface-expressed variant surface glycoprotein (VSG), while ensuring that only one of many subtelomeric multigene VSG expression sites are transcribed at a time. DNA repair activities have been implicated in the catalysis of VSG switching by recombination, not transcriptional control. How VSG switching is signaled to guide the appropriate reaction or to integrate switching into parasite growth is unknown. Here, we show that the loss of ATR, a DNA damage-signaling protein kinase, is lethal, causing nuclear genome instability and increased VSG switching through VSG-localized damage. Furthermore, ATR loss leads to the increased transcription of silent VSG expression sites and expression of mixed VSGs on the cell surface, effects that are associated with the altered localization of RNA polymerase I and VEX1. This work shows that ATR acts in antigenic variation both through DNA damage signaling and surface antigen expression control. Loss of the repair protein kinase ATR in Trypanosoma brucei is lethal Loss of T. brucei ATR alters VSG coat expression needed for immune evasion Monoallelic RNA polymerase I VSG expression is undermined by ATR loss ATR loss leads to expression of subtelomeric VSGs, indicative of recombination
Collapse
Affiliation(s)
- Jennifer Ann Black
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK; Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900 SP, Brazil
| | - Kathryn Crouch
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK
| | - Leandro Lemgruber
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK
| | - Craig Lapsley
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK
| | - Nicholas Dickens
- Marine Science Lab, FAU Harbor Branch Oceanographic Institute, 5600 US 1 North, Fort Pierce, FL 34946, USA
| | - Luiz R O Tosi
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900 SP, Brazil
| | - Jeremy C Mottram
- Centre for Immunology and Infection, Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
11
|
Mehnert AK, Prorocic M, Dujeancourt-Henry A, Hutchinson S, McCulloch R, Glover L. The MRN complex promotes DNA repair by homologous recombination and restrains antigenic variation in African trypanosomes. Nucleic Acids Res 2021; 49:1436-1454. [PMID: 33450001 PMCID: PMC7897489 DOI: 10.1093/nar/gkaa1265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Homologous recombination dominates as the major form of DNA repair in Trypanosoma brucei, and is especially important for recombination of the subtelomeric variant surface glycoprotein during antigenic variation. RAD50, a component of the MRN complex (MRE11, RAD50, NBS1), is central to homologous recombination through facilitating resection and governing the DNA damage response. The function of RAD50 in trypanosomes is untested. Here we report that RAD50 and MRE11 are required for RAD51-dependent homologous recombination and phosphorylation of histone H2A following a DNA double strand break (DSB), but neither MRE11 nor RAD50 substantially influence DSB resection at a chromosome-internal locus. In addition, we reveal intrinsic separation-of-function between T. brucei RAD50 and MRE11, with only RAD50 suppressing DSB repair using donors with short stretches of homology at a subtelomeric locus, and only MRE11 directing DSB resection at the same locus. Finally, we show that loss of either MRE11 or RAD50 causes a greater diversity of expressed VSG variants following DSB repair. We conclude that MRN promotes stringent homologous recombination at subtelomeric loci and restrains antigenic variation.
Collapse
Affiliation(s)
- Ann-Kathrin Mehnert
- Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Institut Pasteur, 75015, Paris, France
| | - Marco Prorocic
- Wellcome Center for Integrative Parasitology, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK
| | - Annick Dujeancourt-Henry
- Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Institut Pasteur, 75015, Paris, France
| | - Sebastian Hutchinson
- Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, Institut Pasteur & INSERM U1201, 75015 Paris, France
| | - Richard McCulloch
- Wellcome Center for Integrative Parasitology, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK
| | - Lucy Glover
- Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Institut Pasteur, 75015, Paris, France
| |
Collapse
|
12
|
Chaconas G, Castellanos M, Verhey TB. Changing of the guard: How the Lyme disease spirochete subverts the host immune response. J Biol Chem 2020; 295:301-313. [PMID: 31753921 PMCID: PMC6956529 DOI: 10.1074/jbc.rev119.008583] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lyme disease, also known as Lyme borreliosis, is the most common tick-transmitted disease in the Northern Hemisphere. The disease is caused by the bacterial spirochete Borrelia burgdorferi and other related Borrelia species. One of the many fascinating features of this unique pathogen is an elaborate system for antigenic variation, whereby the sequence of the surface-bound lipoprotein VlsE is continually modified through segmental gene conversion events. This perpetual changing of the guard allows the pathogen to remain one step ahead of the acquired immune response, enabling persistent infection. Accordingly, the vls locus is the most evolutionarily diverse genetic element in Lyme disease-causing borreliae. Small stretches of information are transferred from a series of silent cassettes in the vls locus to generate an expressed mosaic vlsE gene version that contains genetic information from several different silent cassettes, resulting in ∼1040 possible vlsE sequences. Yet, despite its extreme evolutionary flexibility, the locus has rigidly conserved structural features. These include a telomeric location of the vlsE gene, an inverse orientation of vlsE and the silent cassettes, the presence of nearly perfect inverted repeats of ∼100 bp near the 5' end of vlsE, and an exceedingly high concentration of G runs in vlsE and the silent cassettes. We discuss the possible roles of these evolutionarily conserved features, highlight recent findings from several studies that have used next-generation DNA sequencing to unravel the switching process, and review advances in the development of a mini-vls system for genetic manipulation of the locus.
Collapse
Affiliation(s)
- George Chaconas
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | - Mildred Castellanos
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Theodore B Verhey
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
13
|
Briggs E, Crouch K, Lemgruber L, Hamilton G, Lapsley C, McCulloch R. Trypanosoma brucei ribonuclease H2A is an essential R-loop processing enzyme whose loss causes DNA damage during transcription initiation and antigenic variation. Nucleic Acids Res 2019; 47:9180-9197. [PMID: 31350892 PMCID: PMC6753483 DOI: 10.1093/nar/gkz644] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 12/21/2022] Open
Abstract
Ribonucleotides represent a threat to DNA genome stability and transmission. Two types of Ribonuclease H (RNase H) excise ribonucleotides when they form part of the DNA strand, or hydrolyse RNA when it base-pairs with DNA in structures termed R-loops. Loss of either RNase H is lethal in mammals, whereas yeast survives the absence of both enzymes. RNase H1 loss is tolerated by the parasite Trypanosoma brucei but no work has examined the function of RNase H2. Here we show that loss of T. brucei RNase H2 (TbRH2A) leads to growth and cell cycle arrest that is concomitant with accumulation of nuclear damage at sites of RNA polymerase (Pol) II transcription initiation, revealing a novel and critical role for RNase H2. Differential gene expression analysis reveals limited overall changes in RNA levels for RNA Pol II genes after TbRH2A loss, but increased perturbation of nucleotide metabolic genes. Finally, we show that TbRH2A loss causes R-loop and DNA damage accumulation in telomeric RNA Pol I transcription sites, also leading to altered gene expression. Thus, we demonstrate separation of function between two nuclear T. brucei RNase H enzymes during RNA Pol II transcription, but overlap in function during RNA Pol I-mediated gene expression during host immune evasion.
Collapse
Affiliation(s)
- Emma Briggs
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Kathryn Crouch
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Leandro Lemgruber
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Graham Hamilton
- Glasgow Polyomics, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Rd, Bearsden G61 1QH, UK
| | - Craig Lapsley
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
14
|
Klebanov-Akopyan O, Mishra A, Glousker G, Tzfati Y, Shlomai J. Trypanosoma brucei UMSBP2 is a single-stranded telomeric DNA binding protein essential for chromosome end protection. Nucleic Acids Res 2019; 46:7757-7771. [PMID: 30007364 PMCID: PMC6125633 DOI: 10.1093/nar/gky597] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/06/2018] [Indexed: 01/22/2023] Open
Abstract
Universal minicircle sequence binding proteins (UMSBPs) are CCHC-type zinc-finger proteins that bind a single-stranded G-rich sequence, UMS, conserved at the replication origins of the mitochondrial (kinetoplast) DNA of trypanosomatids. Here, we report that Trypanosoma brucei TbUMSBP2, which has been previously proposed to function in the replication and segregation of the mitochondrial DNA, colocalizes with telomeres at the nucleus and is essential for their structure, protection and function. Knockdown of TbUMSBP2 resulted in telomere clustering in one or few foci, phosphorylation of histone H2A at the vicinity of the telomeres, impaired nuclear division, endoreduplication and cell growth arrest. Furthermore, TbUMSBP2 depletion caused rapid reduction in the G-rich telomeric overhang, and an increase in C-rich single-stranded telomeric DNA and in extrachromosomal telomeric circles. These results indicate that TbUMSBP2 is essential for the integrity and function of telomeres. The sequence similarity between the mitochondrial UMS and the telomeric overhang and the finding that UMSBPs bind both sequences suggest a common origin and/or function of these interactions in the replication and maintenance of the genomes in the two organelles. This feature could have converged or preserved during the evolution of the nuclear and mitochondrial genomes from their ancestral (likely circular) genome in early diverged protists.
Collapse
Affiliation(s)
- Olga Klebanov-Akopyan
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada and Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Amartya Mishra
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada and Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Galina Glousker
- Department of Genetics, The Silberman Institute of Life Sciences, Edmond Safra Campus, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yehuda Tzfati
- Department of Genetics, The Silberman Institute of Life Sciences, Edmond Safra Campus, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Joseph Shlomai
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada and Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| |
Collapse
|
15
|
Cayla M, Rojas F, Silvester E, Venter F, Matthews KR. African trypanosomes. Parasit Vectors 2019; 12:190. [PMID: 31036044 PMCID: PMC6489224 DOI: 10.1186/s13071-019-3355-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/26/2019] [Indexed: 12/15/2022] Open
Abstract
African trypanosomes cause human African trypanosomiasis and animal African trypanosomiasis. They are transmitted by tsetse flies in sub-Saharan Africa. Although most famous for their mechanisms of immune evasion by antigenic variation, there have been recent important studies that illuminate important aspects of the biology of these parasites both in their mammalian host and during passage through their tsetse fly vector. This Primer overviews current research themes focused on these parasites and discusses how these biological insights and the development of new technologies to interrogate gene function are being used in the search for new approaches to control the parasite. The new insights into the biology of trypanosomes in their host and vector highlight that we are in a ‘golden age’ of discovery for these fascinating parasites.
Collapse
Affiliation(s)
- Mathieu Cayla
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Federico Rojas
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Eleanor Silvester
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Frank Venter
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
16
|
In-depth analysis of the genome of Trypanosoma evansi, an etiologic agent of surra. SCIENCE CHINA-LIFE SCIENCES 2019; 62:406-419. [PMID: 30685829 DOI: 10.1007/s11427-018-9473-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 12/29/2018] [Indexed: 12/16/2022]
Abstract
Trypanosoma evansi is the causative agent of the animal trypanosomiasis surra, a disease with serious economic burden worldwide. The availability of the genome of its closely related parasite Trypanosoma brucei allows us to compare their genetic and evolutionarily shared and distinct biological features. The complete genomic sequence of the T. evansi YNB strain was obtained using a combination of genomic and transcriptomic sequencing, de novo assembly, and bioinformatic analysis. The genome size of the T. evansi YNB strain was 35.2 Mb, showing 96.59% similarity in sequence and 88.97% in scaffold alignment with T. brucei. A total of 8,617 protein-coding genes, accounting for 31% of the genome, were predicted. Approximately 1,641 alternative splicing events of 820 genes were identified, with a majority mediated by intron retention, which represented a major difference in post-transcriptional regulation between T. evansi and T. brucei. Disparities in gene copy number of the variant surface glycoprotein, expression site-associated genes, microRNAs, and RNA-binding protein were clearly observed between the two parasites. The results revealed the genomic determinants of T. evansi, which encoded specific biological characteristics that distinguished them from other related trypanosome species.
Collapse
|
17
|
Briggs E, Crouch K, Lemgruber L, Lapsley C, McCulloch R. Ribonuclease H1-targeted R-loops in surface antigen gene expression sites can direct trypanosome immune evasion. PLoS Genet 2018; 14:e1007729. [PMID: 30543624 PMCID: PMC6292569 DOI: 10.1371/journal.pgen.1007729] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/01/2018] [Indexed: 11/19/2022] Open
Abstract
Switching of the Variant Surface Glycoprotein (VSG) in Trypanosoma brucei provides a crucial host immune evasion strategy that is catalysed both by transcription and recombination reactions, each operating within specialised telomeric VSG expression sites (ES). VSG switching is likely triggered by events focused on the single actively transcribed ES, from a repertoire of around 15, but the nature of such events is unclear. Here we show that RNA-DNA hybrids, called R-loops, form preferentially within sequences termed the 70 bp repeats in the actively transcribed ES, but spread throughout the active and inactive ES, in the absence of RNase H1, which degrades R-loops. Loss of RNase H1 also leads to increased levels of VSG coat switching and replication-associated genome damage, some of which accumulates within the active ES. This work indicates VSG ES architecture elicits R-loop formation, and that these RNA-DNA hybrids connect T. brucei immune evasion by transcription and recombination.
Collapse
Affiliation(s)
- Emma Briggs
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| | - Kathryn Crouch
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| | - Leandro Lemgruber
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| | - Craig Lapsley
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| | - Richard McCulloch
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| |
Collapse
|
18
|
Marques CA, McCulloch R. Conservation and Variation in Strategies for DNA Replication of Kinetoplastid Nuclear Genomes. Curr Genomics 2018; 19:98-109. [PMID: 29491738 PMCID: PMC5814967 DOI: 10.2174/1389202918666170815144627] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/19/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022] Open
Abstract
Introduction: Understanding how the nuclear genome of kinetoplastid parasites is replicated received experimental stimulus from sequencing of the Leishmania major, Trypanosoma brucei and Trypanosoma cruzi genomes around 10 years ago. Gene annotations suggested key players in DNA replication initiation could not be found in these organisms, despite considerable conservation amongst characterised eukaryotes. Initial studies that indicated trypanosomatids might possess an archaeal-like Origin Recognition Complex (ORC), composed of only a single factor termed ORC1/CDC6, have been supplanted by the more recent identification of an ORC in T. brucei. However, the constituent subunits of T. brucei ORC are highly diverged relative to other eukaryotic ORCs and the activity of the complex appears subject to novel, positive regulation. The availability of whole genome sequences has also allowed the deployment of genome-wide strategies to map DNA replication dynamics, to date in T. brucei and Leishmania. ORC1/CDC6 binding and function in T. brucei displays pronounced overlap with the unconventional organisation of gene expression in the genome. Moreover, mapping of sites of replication initiation suggests pronounced differences in replication dynamics in Leishmania relative to T. brucei. Conclusion: Here we discuss what implications these emerging data may have for parasite and eukaryotic biology of DNA replication.
Collapse
Affiliation(s)
- Catarina A Marques
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, Dow Street, University of Dundee, Dundee, DD1 5EH, UK
| | - Richard McCulloch
- The Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, Sir Graeme Davis Building, 120 University Place, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
19
|
Verhey TB, Castellanos M, Chaconas G. Analysis of recombinational switching at the antigenic variation locus of the Lyme spirochete using a novel PacBio sequencing pipeline. Mol Microbiol 2017; 107:104-115. [PMID: 29105221 DOI: 10.1111/mmi.13873] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2017] [Indexed: 12/19/2022]
Abstract
The Lyme disease spirochete evades the host immune system by combinatorial variation of VlsE, a surface antigen. Antigenic variation occurs via segmental gene conversion from contiguous silent cassettes into the vlsE locus. Because of the high degree of similarity between switch variants and the size of vlsE, short-read NGS technologies have been unsuitable for sequencing vlsE populations. Here we use PacBio sequencing technology coupled with the first fully-automated software pipeline (VAST) to accurately process NGS data by minimizing error frequency, eliminating heteroduplex errors and accurately aligning switch variants. We extend earlier studies by showing use of almost all of the vlsE SNP repertoire. In different tissues of the same mouse, 99.6% of the variants were unique, suggesting that dissemination of Borrelia burgdorferi is predominantly unidirectional with little tissue-to-tissue hematogenous dissemination. We also observed a similar number of variants in SCID and wild-type mice, a heatmap of location and frequency of amino acid changes on the 3D structure and note differences observed in SCID versus wild type mice that hint at possible amino acid function. Our observed selection against diversification of residues at the dimer interface in wild-type mice strongly suggests that dimerization is required for in vivo functionality of vlsE.
Collapse
Affiliation(s)
- Theodore B Verhey
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mildred Castellanos
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - George Chaconas
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
20
|
Ridewood S, Ooi CP, Hall B, Trenaman A, Wand NV, Sioutas G, Scherwitzl I, Rudenko G. The role of genomic location and flanking 3'UTR in the generation of functional levels of variant surface glycoprotein in Trypanosoma brucei. Mol Microbiol 2017; 106:614-634. [PMID: 28906055 PMCID: PMC5698767 DOI: 10.1111/mmi.13838] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2017] [Indexed: 12/21/2022]
Abstract
Trypanosoma brucei faces relentless immune attack in the mammalian bloodstream, where it is protected by an essential coat of Variant Surface Glycoprotein (VSG) comprising ∼10% total protein. The active VSG gene is in a Pol I‐transcribed telomeric expression site (ES). We investigated factors mediating these extremely high levels of VSG expression by inserting ectopic VSG117 into VSG221 expressing T. brucei. Mutational analysis of the ectopic VSG 3′UTR demonstrated the essentiality of a conserved 16‐mer for mRNA stability. Expressing ectopic VSG117 from different genomic locations showed that functional VSG levels could be produced from a gene 60 kb upstream of its normal telomeric location. High, but very heterogeneous levels of VSG117 were obtained from the Pol I‐transcribed rDNA. Blocking VSG synthesis normally triggers a precise precytokinesis cell‐cycle checkpoint. VSG117 expression from the rDNA was not adequate for functional complementation, and the stalled cells arrested prior to cytokinesis. However, VSG levels were not consistently low enough to trigger a characteristic ‘VSG synthesis block’ cell‐cycle checkpoint, as some cells reinitiated S phase. This demonstrates the essentiality of a Pol I‐transcribed ES, as well as conserved VSG 3′UTR 16‐mer sequences for the generation of functional levels of VSG expression in bloodstream form T. brucei.
Collapse
Affiliation(s)
- Sophie Ridewood
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Cher-Pheng Ooi
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Belinda Hall
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Anna Trenaman
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Nadina Vasileva Wand
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Georgios Sioutas
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Iris Scherwitzl
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Gloria Rudenko
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK
| |
Collapse
|
21
|
Devlin R, Marques CA, McCulloch R. Does DNA replication direct locus-specific recombination during host immune evasion by antigenic variation in the African trypanosome? Curr Genet 2017; 63:441-449. [PMID: 27822899 PMCID: PMC5422504 DOI: 10.1007/s00294-016-0662-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022]
Abstract
All pathogens must survive host immune attack and, amongst the survival strategies that have evolved, antigenic variation is a particularly widespread reaction to thwart adaptive immunity. Though the reactions that underlie antigenic variation are highly varied, recombination by gene conversion is a widespread approach to immune survival in bacterial and eukaryotic pathogens. In the African trypanosome, antigenic variation involves gene conversion-catalysed movement of a huge number of variant surface glycoprotein (VSG) genes into a few telomeric sites for VSG expression, amongst which only a single site is actively transcribed at one time. Genetic evidence indicates VSG gene conversion has co-opted the general genome maintenance reaction of homologous recombination, aligning the reaction strategy with targeted rearrangements found in many organisms. What is less clear is how gene conversion might be initiated within the locality of the VSG expression sites. Here, we discuss three emerging models for VSG switching initiation and ask how these compare with processes for adaptive genome change found in other organisms.
Collapse
Affiliation(s)
- Rebecca Devlin
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Catarina A Marques
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, UK
| | - Richard McCulloch
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
22
|
Selective inhibition of RNA polymerase I transcription as a potential approach to treat African trypanosomiasis. PLoS Negl Trop Dis 2017; 11:e0005432. [PMID: 28263991 PMCID: PMC5354456 DOI: 10.1371/journal.pntd.0005432] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/16/2017] [Accepted: 02/23/2017] [Indexed: 02/06/2023] Open
Abstract
Trypanosoma brucei relies on an essential Variant Surface Glycoprotein (VSG) coat for survival in the mammalian bloodstream. High VSG expression within an expression site body (ESB) is mediated by RNA polymerase I (Pol I), which in other eukaryotes exclusively transcribes ribosomal RNA genes (rDNA). As T. brucei is reliant on Pol I for VSG transcription, we investigated Pol I transcription inhibitors for selective anti-trypanosomal activity. The Pol I inhibitors quarfloxin (CX-3543), CX-5461, and BMH-21 are currently under investigation for treating cancer, as rapidly dividing cancer cells are particularly dependent on high levels of Pol I transcription compared with nontransformed cells. In T. brucei all three Pol I inhibitors have IC50 concentrations for cell proliferation in the nanomolar range: quarfloxin (155 nM), CX-5461 (279 nM) or BMH-21 (134 nM) compared with IC50 concentrations in the MCF10A human breast epithelial cell line (4.44 μM, 6.89 μM or 460 nM, respectively). T. brucei was therefore 29-fold more sensitive to quarfloxin, 25-fold more sensitive to CX-5461 and 3.4-fold more sensitive to BMH-21. Cell death in T. brucei was due to rapid inhibition of Pol I transcription, as within 15 minutes treatment with the inhibitors rRNA precursor transcript was reduced 97-98% and VSG precursor transcript 91-94%. Incubation with Pol I transcription inhibitors also resulted in disintegration of the ESB as well as the nucleolus subnuclear structures, within one hour. Rapid ESB loss following the block in Pol I transcription argues that the ESB is a Pol I transcription nucleated structure, similar to the nucleolus. In addition to providing insight into Pol I transcription and ES control, Pol I transcription inhibitors potentially also provide new approaches to treat trypanosomiasis. Trypanosoma brucei is protected by an essential Variant Surface Glycoprotein (VSG) coat in the mammalian bloodstream. The active VSG gene is transcribed by RNA polymerase I (Pol I), which typically only transcribes rDNA. Pol I transcription inhibitors are under clinical trials for cancer chemotherapy. As T. brucei relies on Pol I for VSG transcription, we investigated its susceptibility to these drugs. We show that quarfloxin (CX-3543), CX-5461, and BMH-21 are effective against T. brucei at nanomolar concentrations. T. brucei death was due to rapid and specific inhibition of Pol I transcription. Incubation with Pol I transcription inhibitors also resulted in disappearance of Pol I subnuclear structures like the nucleolus and the VSG expression site body (ESB). Rapid ESB loss followed the Pol I transcription block, arguing that the ESB is nucleated by Pol I transcription. Pol I transcription inhibitors could therefore potentially function as novel drugs against trypanosomiasis.
Collapse
|
23
|
Cheung JLY, Wand NV, Ooi CP, Ridewood S, Wheeler RJ, Rudenko G. Blocking Synthesis of the Variant Surface Glycoprotein Coat in Trypanosoma brucei Leads to an Increase in Macrophage Phagocytosis Due to Reduced Clearance of Surface Coat Antibodies. PLoS Pathog 2016; 12:e1006023. [PMID: 27893860 PMCID: PMC5125712 DOI: 10.1371/journal.ppat.1006023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 10/25/2016] [Indexed: 11/19/2022] Open
Abstract
The extracellular bloodstream form parasite Trypanosoma brucei is supremely adapted to escape the host innate and adaptive immune system. Evasion is mediated through an antigenically variable Variant Surface Glycoprotein (VSG) coat, which is recycled at extraordinarily high rates. Blocking VSG synthesis triggers a precytokinesis arrest where stalled cells persist for days in vitro with superficially intact VSG coats, but are rapidly cleared within hours in mice. We therefore investigated the role of VSG synthesis in trypanosome phagocytosis by activated mouse macrophages. T. brucei normally effectively evades macrophages, and induction of VSG RNAi resulted in little change in phagocytosis of the arrested cells. Halting VSG synthesis resulted in stalled cells which swam directionally rather than tumbling, with a significant increase in swim velocity. This is possibly a consequence of increased rigidity of the cells due to a restricted surface coat in the absence of VSG synthesis. However if VSG RNAi was induced in the presence of anti-VSG221 antibodies, phagocytosis increased significantly. Blocking VSG synthesis resulted in reduced clearance of anti-VSG antibodies from the trypanosome surface, possibly as a consequence of the changed motility. This was particularly marked in cells in the G2/ M cell cycle stage, where the half-life of anti-VSG antibody increased from 39.3 ± 4.2 seconds to 99.2 ± 15.9 seconds after induction of VSG RNAi. The rates of internalisation of bulk surface VSG, or endocytic markers like transferrin, tomato lectin or dextran were not significantly affected by the VSG synthesis block. Efficient elimination of anti-VSG-antibody complexes from the trypanosome cell surface is therefore essential for trypanosome evasion of macrophages. These experiments highlight the essentiality of high rates of VSG recycling for the rapid removal of host opsonins from the parasite surface, and identify this process as a key parasite virulence factor during a chronic infection.
Collapse
Affiliation(s)
- Jackie L. Y. Cheung
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, United Kingdom
| | - Nadina V. Wand
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, United Kingdom
| | - Cher-Pheng Ooi
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, United Kingdom
| | - Sophie Ridewood
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, United Kingdom
| | - Richard J. Wheeler
- Department of Pathology, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Gloria Rudenko
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Hutchinson S, Glover L, Horn D. High-resolution analysis of multi-copy variant surface glycoprotein gene expression sites in African trypanosomes. BMC Genomics 2016; 17:806. [PMID: 27756224 PMCID: PMC5070307 DOI: 10.1186/s12864-016-3154-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/11/2016] [Indexed: 11/10/2022] Open
Abstract
Background African trypanosomes cause lethal diseases in humans and animals and escape host immune attack by switching the expression of Variant Surface Glycoprotein (VSG) genes. The expressed VSGs are located at the ends of telomeric, polycistronic transcription units known as VSG expression sites (VSG-ESs). Each cell has many VSG-ESs but only one is transcribed in bloodstream-form parasites and all of them are inactive upon transmission to the insect vector mid-gut; a subset of monocistronic metacyclic VSG-ESs are then activated in the insect salivary gland. Deep-sequence analyses have been informative but assigning sequences to individual VSG-ESs has been challenging because they each contain closely related expression-site associated genes, or ESAGs, thought to contribute to virulence. Results We utilised ART, an in silico short read simulator to demonstrate the feasibility of accurately aligning reads to VSG-ESs. Then, using high-resolution transcriptomes from isogenic bloodstream and insect-stage Lister 427 Trypanosoma brucei, we uncover increased abundance in the insect mid-gut stage of mRNAs from metacyclic VSG-ESs and of mRNAs from the unusual ESAG, ESAG10. Further, we show that the silencing associated with allelic exclusion involves repression focussed at the ends of the VSG-ESs. We also use the approach to report relative fitness costs following ESAG RNAi from a genome-scale screen. Conclusions By assigning sequences to individual VSG-ESs we provide new insights into VSG-ES transcription control, allelic exclusion and impacts on fitness. Thus, deeper insights into the expression and function of regulated multi-gene families are more accessible than previously anticipated. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3154-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sebastian Hutchinson
- Division of Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Lucy Glover
- Division of Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.,Present address: Trypanosomes Molecular Biology, Institut Pasteur, 75015, Paris, France
| | - David Horn
- Division of Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| |
Collapse
|
25
|
Mugnier MR, Stebbins CE, Papavasiliou FN. Masters of Disguise: Antigenic Variation and the VSG Coat in Trypanosoma brucei. PLoS Pathog 2016; 12:e1005784. [PMID: 27583379 PMCID: PMC5008768 DOI: 10.1371/journal.ppat.1005784] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Monica R. Mugnier
- The Rockefeller University, Laboratory of Lymphocyte Biology, New York, New York, United States of America
| | - C. Erec Stebbins
- The Rockefeller University, Laboratory of Structural Microbiology, New York, New York, United States of America
| | - F. Nina Papavasiliou
- The Rockefeller University, Laboratory of Lymphocyte Biology, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
Choi K, Reinhard C, Serra H, Ziolkowski PA, Underwood CJ, Zhao X, Hardcastle TJ, Yelina NE, Griffin C, Jackson M, Mézard C, McVean G, Copenhaver GP, Henderson IR. Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes. PLoS Genet 2016; 12:e1006179. [PMID: 27415776 PMCID: PMC4945094 DOI: 10.1371/journal.pgen.1006179] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 06/15/2016] [Indexed: 12/31/2022] Open
Abstract
Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity.
Collapse
Affiliation(s)
- Kyuha Choi
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Carsten Reinhard
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Heïdi Serra
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Piotr A. Ziolkowski
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
- Department of Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Charles J. Underwood
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Xiaohui Zhao
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Thomas J. Hardcastle
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Nataliya E. Yelina
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Catherine Griffin
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Matthew Jackson
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Christine Mézard
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, Versailles, France
| | - Gil McVean
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Gregory P. Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Ian R. Henderson
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
27
|
McCulloch R, Navarro M. The protozoan nucleus. Mol Biochem Parasitol 2016; 209:76-87. [PMID: 27181562 DOI: 10.1016/j.molbiopara.2016.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022]
Abstract
The nucleus is arguably the defining characteristic of eukaryotes, distinguishing their cell organisation from both bacteria and archaea. Though the evolutionary history of the nucleus remains the subject of debate, its emergence differs from several other eukaryotic organelles in that it appears not to have evolved through symbiosis, but by cell membrane elaboration from an archaeal ancestor. Evolution of the nucleus has been accompanied by elaboration of nuclear structures that are intimately linked with most aspects of nuclear genome function, including chromosome organisation, DNA maintenance, replication and segregation, and gene expression controls. Here we discuss the complexity of the nucleus and its substructures in protozoan eukaryotes, with a particular emphasis on divergent aspects in eukaryotic parasites, which shed light on nuclear function throughout eukaryotes and reveal specialisations that underpin pathogen biology.
Collapse
Affiliation(s)
- Richard McCulloch
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK.
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (CSIC), Avda. del Conocimiento s/n, 18100 Granada, Spain.
| |
Collapse
|
28
|
Matthews KR, McCulloch R, Morrison LJ. The within-host dynamics of African trypanosome infections. Philos Trans R Soc Lond B Biol Sci 2016; 370. [PMID: 26150654 PMCID: PMC4528486 DOI: 10.1098/rstb.2014.0288] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
African trypanosomes are single-celled protozoan parasites that are capable of long-term survival while living extracellularly in the bloodstream and tissues of mammalian hosts. Prolonged infections are possible because trypanosomes undergo antigenic variation-the expression of a large repertoire of antigenically distinct surface coats, which allows the parasite population to evade antibody-mediated elimination. The mechanisms by which antigen genes become activated influence their order of expression, most likely by influencing the frequency of productive antigen switching, which in turn is likely to contribute to infection chronicity. Superimposed upon antigen switching as a contributor to trypanosome infection dynamics is the density-dependent production of cell-cycle arrested parasite transmission stages, which limit the infection while ensuring parasite spread to new hosts via the bite of blood-feeding tsetse flies. Neither antigen switching nor developmental progression to transmission stages is driven by the host. However, the host can contribute to the infection dynamic through the selection of distinct antigen types, the influence of genetic susceptibility or trypanotolerance and the potential influence of host-dependent effects on parasite virulence, development of transmission stages and pathogenicity. In a zoonotic infection cycle where trypanosomes circulate within a range of host animal populations, and in some cases humans, there is considerable scope for a complex interplay between parasite immune evasion, transmission potential and host factors to govern the profile and outcome of infection.
Collapse
Affiliation(s)
- Keith R Matthews
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | - Richard McCulloch
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
29
|
DNA Recombination Strategies During Antigenic Variation in the African Trypanosome. Microbiol Spectr 2016; 3:MDNA3-0016-2014. [PMID: 26104717 DOI: 10.1128/microbiolspec.mdna3-0016-2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Survival of the African trypanosome in its mammalian hosts has led to the evolution of antigenic variation, a process for evasion of adaptive immunity that has independently evolved in many other viral, bacterial and eukaryotic pathogens. The essential features of trypanosome antigenic variation have been understood for many years and comprise a dense, protective Variant Surface Glycoprotein (VSG) coat, which can be changed by recombination-based and transcription-based processes that focus on telomeric VSG gene transcription sites. However, it is only recently that the scale of this process has been truly appreciated. Genome sequencing of Trypanosoma brucei has revealed a massive archive of >1000 VSG genes, the huge majority of which are functionally impaired but are used to generate far greater numbers of VSG coats through segmental gene conversion. This chapter will discuss the implications of such VSG diversity for immune evasion by antigenic variation, and will consider how this expressed diversity can arise, drawing on a growing body of work that has begun to examine the proteins and sequences through which VSG switching is catalyzed. Most studies of trypanosome antigenic variation have focused on T. brucei, the causative agent of human sleeping sickness. Other work has begun to look at antigenic variation in animal-infective trypanosomes, and we will compare the findings that are emerging, as well as consider how antigenic variation relates to the dynamics of host-trypanosome interaction.
Collapse
|
30
|
Perdomo D, Bonhivers M, Robinson DR. The Trypanosome Flagellar Pocket Collar and Its Ring Forming Protein-TbBILBO1. Cells 2016; 5:cells5010009. [PMID: 26950156 PMCID: PMC4810094 DOI: 10.3390/cells5010009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 12/11/2022] Open
Abstract
Sub-species of Trypanosoma brucei are the causal agents of human African sleeping sickness and Nagana in domesticated livestock. These pathogens have developed an organelle-like compartment called the flagellar pocket (FP). The FP carries out endo- and exocytosis and is the only structure this parasite has evolved to do so. The FP is essential for parasite viability, making it an interesting structure to evaluate as a drug target, especially since it has an indispensible cytoskeleton component called the flagellar pocket collar (FPC). The FPC is located at the neck of the FP where the flagellum exits the cell. The FPC has a complex architecture and division cycle, but little is known concerning its organization. Recent work has focused on understanding how the FP and the FPC are formed and as a result of these studies an important calcium-binding, polymer-forming protein named TbBILBO1 was identified. Cellular biology analysis of TbBILBO1 has demonstrated its uniqueness as a FPC component and until recently, it was unknown what structural role it played in forming the FPC. This review summarizes the recent data on the polymer forming properties of TbBILBO1 and how these are correlated to the FP cytoskeleton.
Collapse
Affiliation(s)
- Doranda Perdomo
- CNRS, Microbiology Fundamental and Pathogenicity, UMR 5234, F-33000 Bordeaux, France.
| | - Mélanie Bonhivers
- CNRS, Microbiology Fundamental and Pathogenicity, UMR 5234, F-33000 Bordeaux, France.
| | - Derrick R Robinson
- CNRS, Microbiology Fundamental and Pathogenicity, UMR 5234, F-33000 Bordeaux, France.
| |
Collapse
|
31
|
Stanne T, Narayanan MS, Ridewood S, Ling A, Witmer K, Kushwaha M, Wiesler S, Wickstead B, Wood J, Rudenko G. Identification of the ISWI Chromatin Remodeling Complex of the Early Branching Eukaryote Trypanosoma brucei. J Biol Chem 2015; 290:26954-26967. [PMID: 26378228 PMCID: PMC4646403 DOI: 10.1074/jbc.m115.679019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Indexed: 12/25/2022] Open
Abstract
ISWI chromatin remodelers are highly conserved in eukaryotes and are important for the assembly and spacing of nucleosomes, thereby controlling transcription initiation and elongation. ISWI is typically associated with different subunits, forming specialized complexes with discrete functions. In the unicellular parasite Trypanosoma brucei, which causes African sleeping sickness, TbISWI down-regulates RNA polymerase I (Pol I)-transcribed variant surface glycoprotein (VSG) gene expression sites (ESs), which are monoallelically expressed. Here, we use tandem affinity purification to determine the interacting partners of TbISWI. We identify three proteins that do not show significant homology with known ISWI-associated partners. Surprisingly, one of these is nucleoplasmin-like protein (NLP), which we had previously shown to play a role in ES control. In addition, we identify two novel ISWI partners, regulator of chromosome condensation 1-like protein (RCCP) and phenylalanine/tyrosine-rich protein (FYRP), both containing protein motifs typically found on chromatin proteins. Knockdown of RCCP or FYRP in bloodstream form T. brucei results in derepression of silent variant surface glycoprotein ESs, as had previously been shown for TbISWI and NLP. All four proteins are expressed and interact with each other in both major life cycle stages and show similar distributions at Pol I-transcribed loci. They are also found at Pol II strand switch regions as determined with ChIP. ISWI, NLP, RCCP, and FYRP therefore appear to form a single major ISWI complex in T. brucei (TbIC). This reduced complexity of ISWI regulation and the presence of novel ISWI partners highlights the early divergence of trypanosomes in evolution.
Collapse
Affiliation(s)
- Tara Stanne
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Mani Shankar Narayanan
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Sophie Ridewood
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Alexandra Ling
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Kathrin Witmer
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Manish Kushwaha
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Simone Wiesler
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Bill Wickstead
- the School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Jennifer Wood
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Gloria Rudenko
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and.
| |
Collapse
|
32
|
McCulloch R, Field MC. Quantitative sequencing confirms VSG diversity as central to immune evasion by Trypanosoma brucei. Trends Parasitol 2015; 31:346-9. [DOI: 10.1016/j.pt.2015.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/05/2015] [Indexed: 11/29/2022]
|
33
|
Unciti-Broceta JD, Arias JL, Maceira J, Soriano M, Ortiz-González M, Hernández-Quero J, Muñóz-Torres M, de Koning HP, Magez S, Garcia-Salcedo JA. Specific Cell Targeting Therapy Bypasses Drug Resistance Mechanisms in African Trypanosomiasis. PLoS Pathog 2015; 11:e1004942. [PMID: 26110623 PMCID: PMC4482409 DOI: 10.1371/journal.ppat.1004942] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 05/08/2015] [Indexed: 01/01/2023] Open
Abstract
African trypanosomiasis is a deadly neglected disease caused by the extracellular parasite Trypanosoma brucei. Current therapies are characterized by high drug toxicity and increasing drug resistance mainly associated with loss-of-function mutations in the transporters involved in drug import. The introduction of new antiparasitic drugs into therapeutic use is a slow and expensive process. In contrast, specific targeting of existing drugs could represent a more rapid and cost-effective approach for neglected disease treatment, impacting through reduced systemic toxicity and circumventing resistance acquired through impaired compound uptake. We have generated nanoparticles of chitosan loaded with the trypanocidal drug pentamidine and coated by a single domain nanobody that specifically targets the surface of African trypanosomes. Once loaded into this nanocarrier, pentamidine enters trypanosomes through endocytosis instead of via classical cell surface transporters. The curative dose of pentamidine-loaded nanobody-chitosan nanoparticles was 100-fold lower than pentamidine alone in a murine model of acute African trypanosomiasis. Crucially, this new formulation displayed undiminished in vitro and in vivo activity against a trypanosome cell line resistant to pentamidine as a result of mutations in the surface transporter aquaglyceroporin 2. We conclude that this new drug delivery system increases drug efficacy and has the ability to overcome resistance to some anti-protozoal drugs.
Collapse
Affiliation(s)
- Juan D. Unciti-Broceta
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
- Instituto de Parasitología y Biomedicina “López-Neyra” (IPBLN-CSIC), PTS Granada, Armilla, Spain
- Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), PTS Granada, Granada, Spain
| | - José L. Arias
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - José Maceira
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
- Instituto de Parasitología y Biomedicina “López-Neyra” (IPBLN-CSIC), PTS Granada, Armilla, Spain
- Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), PTS Granada, Granada, Spain
| | - Miguel Soriano
- Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), PTS Granada, Granada, Spain
- Departamento de Agronomía, Universidad de Almería, Almería, Spain
| | - Matilde Ortiz-González
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
- Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), PTS Granada, Granada, Spain
| | - José Hernández-Quero
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
| | - Manuel Muñóz-Torres
- Unidad de Metabolismo Óseo, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
| | - Harry P. de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Stefan Magez
- Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Structural Biology, VIB, Vrije Universiteit Brussel, Brussels, Belgium
| | - José A. Garcia-Salcedo
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
- Instituto de Parasitología y Biomedicina “López-Neyra” (IPBLN-CSIC), PTS Granada, Armilla, Spain
- Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), PTS Granada, Granada, Spain
- * E-mail:
| |
Collapse
|
34
|
Hovel-Miner G, Mugnier M, Papavasiliou FN, Pinger J, Schulz D. A Host-Pathogen Interaction Reduced to First Principles: Antigenic Variation in T. brucei. Results Probl Cell Differ 2015; 57:23-46. [PMID: 26537376 DOI: 10.1007/978-3-319-20819-0_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Antigenic variation is a common microbial survival strategy, powered by diversity in expressed surface antigens across the pathogen population over the course of infection. Even so, among pathogens, African trypanosomes have the most comprehensive system of antigenic variation described. African trypanosomes (Trypanosoma brucei spp.) are unicellular parasites native to sub-Saharan Africa, and the causative agents of sleeping sickness in humans and of n'agana in livestock. They cycle between two habitats: a specific species of fly (Glossina spp. or, colloquially, the tsetse) and the bloodstream of their mammalian hosts, by assuming a succession of proliferative and quiescent developmental forms, which vary widely in cell architecture and function. Key to each of the developmental forms that arise during these transitions is the composition of the surface coat that covers the plasma membrane. The trypanosome surface coat is extremely dense, covered by millions of repeats of developmentally specified proteins: procyclin gene products cover the organism while it resides in the tsetse and metacyclic gene products cover it while in the fly salivary glands, ready to make the transition to the mammalian bloodstream. But by far the most interesting coat is the Variant Surface Glycoprotein (VSG) coat that covers the organism in its infectious form (during which it must survive free living in the mammalian bloodstream). This coat is highly antigenic and elicits robust VSG-specific antibodies that mediate efficient opsonization and complement mediated lysis of the parasites carrying the coat against which the response was made. Meanwhile, a small proportion of the parasite population switches coats, which stimulates a new antibody response to the prevalent (new) VSG species and this process repeats until immune system failure. The disease is fatal unless treated, and treatment at the later stages is extremely toxic. Because the organism is free living in the blood, the VSG:antibody surface represents the interface between pathogen and host, and defines the interaction of the parasite with the immune response. This interaction (cycles of VSG switching, antibody generation, and parasite deletion) results in stereotypical peaks and troughs of parasitemia that were first recognized more than 100 years ago. Essentially, the mechanism of antigenic variation in T. brucei results from a need, at the population level, to maintain an extensive repertoire, to evade the antibody response. In this chapter, we will examine what is currently known about the VSG repertoire, its depth, and the mechanisms that diversify it both at the molecular (DNA) and at the phenotypic (surface displayed) level, as well as how it could interact with antibodies raised specifically against it in the host.
Collapse
Affiliation(s)
- Galadriel Hovel-Miner
- Laboratory of Lymphocyte Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Monica Mugnier
- Laboratory of Lymphocyte Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - F Nina Papavasiliou
- Laboratory of Lymphocyte Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| | - Jason Pinger
- Laboratory of Lymphocyte Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Danae Schulz
- Laboratory of Lymphocyte Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
35
|
SUMOylation by the E3 ligase TbSIZ1/PIAS1 positively regulates VSG expression in Trypanosoma brucei. PLoS Pathog 2014; 10:e1004545. [PMID: 25474309 PMCID: PMC4256477 DOI: 10.1371/journal.ppat.1004545] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/29/2014] [Indexed: 12/31/2022] Open
Abstract
Bloodstream form trypanosomes avoid the host immune response by switching the expression of their surface proteins between Variant Surface Glycoproteins (VSG), only one of which is expressed at any given time. Monoallelic transcription of the telomeric VSG Expression Site (ES) by RNA polymerase I (RNA pol I) localizes to a unique nuclear body named the ESB. Most work has focused on silencing mechanisms of inactive VSG-ESs, but the mechanisms involved in transcriptional activation of a single VSG-ES remain largely unknown. Here, we identify a highly SUMOylated focus (HSF) in the nucleus of the bloodstream form that partially colocalizes with the ESB and the active VSG-ES locus. SUMOylation of chromatin-associated proteins was enriched along the active VSG-ES transcriptional unit, in contrast to silent VSG-ES or rDNA, suggesting that it is a distinct feature of VSG-ES monoallelic expression. In addition, sequences upstream of the active VSG-ES promoter were highly enriched in SUMOylated proteins. We identified TbSIZ1/PIAS1 as the SUMO E3 ligase responsible for SUMOylation in the active VSG-ES chromatin. Reduction of SUMO-conjugated proteins by TbSIZ1 knockdown decreased the recruitment of RNA pol I to the VSG-ES and the VSG-ES-derived transcripts. Furthermore, cells depleted of SUMO conjugated proteins by TbUBC9 and TbSUMO knockdown confirmed the positive function of SUMO for VSG-ES expression. In addition, the largest subunit of RNA pol I TbRPA1 was SUMOylated in a TbSIZ-dependent manner. Our results show a positive mechanism associated with active VSG-ES expression via post-translational modification, and indicate that chromatin SUMOylation plays an important role in the regulation of VSG-ES. Thus, protein SUMOylation is linked to active gene expression in this protozoan parasite that diverged early in evolution. African trypanosomes have evolved one of the most complex strategies of immune evasion by routinely switching the expression of surface proteins called Variant Surface Glycoproteins (VSG), only one of which is expressed at any given time. Previous work has suggested that the recruitment of a single VSG telomeric locus to a discrete nuclear body (ESB) underlies the mechanism responsible for VSG monoallelic expression. Our findings establish unexpected roles for SUMOylation as a specific post-translational modification that marks the ESB and the VSG-ES chromatin. We describe a highly SUMOylated focus (HSF) as a novel nuclear structure that partially colocalizes with the VSG-ES locus and the nuclear body ESB. Furthermore, chromatin SUMOylation is a distinct feature of the active VSG-ES locus, in contrast to other loci investigated. SUMOylation of chromatin-associated proteins is required for efficient recruitment of the polymerase to the VSG-ES promoter and for VSG-ES expression. Altogether, these data suggest the presence of a large number of SUMOylated proteins associated with monoallelic expression as Protein Group SUMOylation. In contrast to the wealth of literature focused on VSG regulation by silencing, our results indicate a positive mechanism via SUMOylation to regulate VSG expression in the infectious form of this protozoan parasite.
Collapse
|
36
|
Denninger V, Rudenko G. FACT plays a major role in histone dynamics affecting VSG expression site control in Trypanosoma brucei. Mol Microbiol 2014; 94:945-62. [PMID: 25266856 PMCID: PMC4625058 DOI: 10.1111/mmi.12812] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2014] [Indexed: 12/21/2022]
Abstract
Chromatin remodelling is involved in the transcriptional regulation of the RNA polymerase I transcribed variant surface glycoprotein (VSG) expression sites (ESs) of Trypanosoma brucei. We show that the T. brucei FACT complex contains the Pob3 and Spt16 subunits, and plays a key role in ES silencing. We see an inverse correlation between transcription and condensed chromatin, whereby FACT knockdown results in ES derepression and more open chromatin around silent ES promoters. Derepressed ESs show increased sensitivity to micrococcal nuclease (MNase) digestion, and a decrease in histones at silent ES promoters but not telomeres. In contrast, FACT knockdown results in more histones at the active ES, correlated with transcription shut-down. ES promoters are derepressed in cells stalled at the G2/M cell cycle stage after knockdown of FACT, but not in G2/M cells stalled after knockdown of cyclin 6. This argues that the observed ES derepression is a direct consequence of histone chaperone activity by FACT at the G2/M cell cycle stage which could affect transcription elongation, rather than an indirect consequence of a cell cycle checkpoint. These experiments highlight the role of the FACT complex in cell cycle-specific chromatin remodelling within VSG ESs.
Collapse
Affiliation(s)
- Viola Denninger
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | | |
Collapse
|
37
|
Mono-allelic VSG expression by RNA polymerase I in Trypanosoma brucei: expression site control from both ends? Gene 2014; 556:68-73. [PMID: 25261847 DOI: 10.1016/j.gene.2014.09.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 02/01/2023]
Abstract
Trypanosoma brucei is a vector borne, lethal protistan parasite of humans and livestock in sub-Saharan Africa. Antigenic variation of its cell surface coat enables the parasite to evade adaptive immune responses and to live freely in the blood of its mammalian hosts. The coat consists of ten million copies of variant surface glycoprotein (VSG) that is expressed from a single VSG gene, drawn from a large repertoire and located near the telomere at one of fifteen so-called bloodstream expression sites (BESs). Thus, antigenic variation is achieved by switching to the expression of a different VSG gene. A BES is a tandem array of expression site-associated genes and a terminal VSG gene. It is polycistronically transcribed by a multifunctional RNA polymerase I (RNAPI) from a short promoter that is located 45-60 kb upstream of the VSG gene. The mechanism(s) restricting VSG expression to a single BES are not well understood. There is convincing evidence that epigenetic silencing and transcription attenuation play important roles. Furthermore, recent data indicated that there is regulation at the level of transcription initiation and that, surprisingly, the VSG mRNA appears to have a role in restricting VSG expression to a single gene. Here, we review BES expression regulation and propose a model in which telomere-directed, epigenetic BES silencing is opposed by BES promoter-directed, activated RNAPI transcription.
Collapse
|
38
|
Achcar F, Kerkhoven EJ, Barrett MP. Trypanosoma brucei: meet the system. Curr Opin Microbiol 2014; 20:162-9. [DOI: 10.1016/j.mib.2014.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/16/2014] [Accepted: 06/19/2014] [Indexed: 12/30/2022]
|
39
|
Transcription is initiated on silent variant surface glycoprotein expression sites despite monoallelic expression in Trypanosoma brucei. Proc Natl Acad Sci U S A 2014; 111:8943-8. [PMID: 24889641 DOI: 10.1073/pnas.1404873111] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
African trypanosomes survive the immune defense of their hosts by regularly changing their antigenic coat made of variant surface glycoprotein (VSG). The Trypanosoma brucei genome contains more than 1,000 VSG genes. To be expressed, a given VSG gene must be located in one of 15 telomeric regions termed "VSG expression sites" (ESs), each of which contains a polycistronic transcription unit that includes ES-associated genes. Only one ES is fully active at a time, so only one VSG gene is transcribed per cell. Although this monoallelic expression is controlled at the transcriptional level, the precise molecular mechanism for this control is not understood. Here we report that in single cells transcription is initiated on several ESs simultaneously, indicating that the monoallelic control is not determined only at transcription initiation, but also at further control steps such as transcription elongation or RNA processing.
Collapse
|
40
|
Abstract
Studies on Variant Surface Glycoproteins (VSGs) and antigenic variation in the African trypanosome, Trypanosoma brucei, have yielded a remarkable range of novel and important insights. The features first identified in T. brucei extend from unique to conserved-among-trypanosomatids to conserved-among-eukaryotes. Consequently, much of what we now know about trypanosomatid biology and much of the technology available has its origin in studies related to VSGs. T. brucei is now probably the most advanced early branched eukaryote in terms of experimental tractability and can be approached as a pathogen, as a model for studies on fundamental processes, as a model for studies on eukaryotic evolution or often all of the above. In terms of antigenic variation itself, substantial progress has been made in understanding the expression and switching of the VSG coat, while outstanding questions continue to stimulate innovative new approaches. There are large numbers of VSG genes in the genome but only one is expressed at a time, always immediately adjacent to a telomere. DNA repair processes allow a new VSG to be copied into the single transcribed locus. A coordinated transcriptional switch can also allow a new VSG gene to be activated without any detectable change in the DNA sequence, thereby maintaining singular expression, also known as allelic exclusion. I review the story behind VSGs; the genes, their expression and switching, their central role in T. brucei virulence, the discoveries that emerged along the way and the persistent questions relating to allelic exclusion in particular.
Collapse
Affiliation(s)
- David Horn
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
41
|
Renkawitz J, Lademann CA, Jentsch S. Mechanisms and principles of homology search during recombination. Nat Rev Mol Cell Biol 2014; 15:369-83. [PMID: 24824069 DOI: 10.1038/nrm3805] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Homologous recombination is crucial for genome stability and for genetic exchange. Although our knowledge of the principle steps in recombination and its machinery is well advanced, homology search, the critical step of exploring the genome for homologous sequences to enable recombination, has remained mostly enigmatic. However, recent methodological advances have provided considerable new insights into this fundamental step in recombination that can be integrated into a mechanistic model. These advances emphasize the importance of genomic proximity and nuclear organization for homology search and the critical role of homology search mediators in this process. They also aid our understanding of how homology search might lead to unwanted and potentially disease-promoting recombination events.
Collapse
Affiliation(s)
- Jörg Renkawitz
- 1] Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany. [2] Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria. [3]
| | - Claudio A Lademann
- 1] Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany. [2]
| | - Stefan Jentsch
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
42
|
Tiengwe C, Marques CA, McCulloch R. Nuclear DNA replication initiation in kinetoplastid parasites: new insights into an ancient process. Trends Parasitol 2013; 30:27-36. [PMID: 24287149 DOI: 10.1016/j.pt.2013.10.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 10/28/2013] [Accepted: 10/30/2013] [Indexed: 12/23/2022]
Abstract
Nuclear DNA replication is, arguably, the central cellular process in eukaryotes, because it drives propagation of life and intersects with many other genome reactions. Perhaps surprisingly, our understanding of nuclear DNA replication in kinetoplastids was limited until a clutch of studies emerged recently, revealing new insight into both the machinery and genome-wide coordination of the reaction. Here, we discuss how these studies suggest that the earliest acting components of the kinetoplastid nuclear DNA replication machinery - the factors that demarcate sites of the replication initiation, termed origins - are diverged from model eukaryotes. In addition, we discuss how origin usage and replication dynamics relate to the highly unusual organisation of transcription in the genome of Trypanosoma brucei.
Collapse
Affiliation(s)
- Calvin Tiengwe
- The University of Glasgow, Wellcome Trust Centre for Molecular Parasitology and Institute of Infection, Immunity and Inflammation, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK; The Johns Hopkins University School of Medicine, Department of Cell Biology, Baltimore, MD, USA
| | - Catarina A Marques
- The University of Glasgow, Wellcome Trust Centre for Molecular Parasitology and Institute of Infection, Immunity and Inflammation, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Richard McCulloch
- The University of Glasgow, Wellcome Trust Centre for Molecular Parasitology and Institute of Infection, Immunity and Inflammation, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|