1
|
Xue T, Wang Y, Liu Y, Liu Y, Li C. Establishment and characterization of SSI cell line from Sebastes schlegelii intestine for investigating the immune response to Pathogenic Bacteria. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109993. [PMID: 39481502 DOI: 10.1016/j.fsi.2024.109993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
As a commercially valuable fish species, Sebastes schlegelii faces threats from pathogenic bacteria like Edwardsiella piscicida during aquaculture. The global host range of E. piscicida encompasses various species, yet its pathogenic mechanism remains incompletely elucidated. Cell lines offer invaluable in vitro resources for studying the pathogen pathogenicity. Here, we established and characterized a cell line derived from the intestinal tissue of the S. schlegelii, designated as SSI. SSI has undergone continuous subculturing for over 80 passages, demonstrating robust growth in DMEM supplemented with 10%-20% FBS and 20 μM HEPES at 24°C. Karyotype analysis and 18S rRNA amplification confirm its origin. SSI exhibits high transfection efficiency for exogenous DNA, making it suitable for gene expression and intestinal function analysis. E. piscicida infects SSI cells at low densities without inducing morphological changes within 6 h of infection, suggesting the potential of SSI as an in vitro model for studying E. piscicida pathogenicity. This cell line provides a valuable tool for investigating mucosal immunity and E. piscicida pathogenic mechanisms in marine fish.
Collapse
Affiliation(s)
- Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanmin Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yiping Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuping Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
2
|
Simpson HL, Smits E, Moerkens R, Wijmenga C, Mooiweer J, Jonkers IH, Withoff S. Human organoids and organ-on-chips in coeliac disease research. Trends Mol Med 2024:S1471-4914(24)00270-3. [PMID: 39448329 DOI: 10.1016/j.molmed.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Coeliac disease (CeD) is an immune-mediated disorder characterised by gluten-triggered inflammation and damage in the small intestine, with lifelong gluten-free diet (GFD) as the only treatment. It is a multifactorial disease, involving genetic and environmental susceptibility factors, and its complexity and lack of comprehensive human model systems have hindered understanding of its pathogenesis and development of new treatments. Therefore, it is crucial to establish systems that recapitulate patient genetic background and the interactions between the small intestinal epithelial barrier, immune cells, and environment that contribute to CeD. In this review, we discuss disease complexity, recent advances in stem cell biology, organoids, tissue co-cultures, and organ-on-chip (OoC) systems that facilitate the development of comprehensive human model systems, and model applications in preclinical studies of potential treatments.
Collapse
Affiliation(s)
- Hanna L Simpson
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Eline Smits
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Renée Moerkens
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Joram Mooiweer
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Iris H Jonkers
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Sebo Withoff
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
3
|
Miner MV, Rauch I. Why put yourself on a pedestal? The pathogenic role of the A/E pedestal. Infect Immun 2024; 92:e0048923. [PMID: 38591884 PMCID: PMC11384751 DOI: 10.1128/iai.00489-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Certain Escherichia coli (E. coli) strains are attaching and effacing (A/E) lesion pathogens that primarily infect intestinal epithelial cells. They cause actin restructuring and polymerization within the host cell to create an actin-rich protrusion below the site of adherence, termed the pedestal. Although there is clarity on the pathways initiating pedestal formation, the underlying purpose(s) of the pedestal remains ambiguous. The conservation of pedestal-forming activity across multiple pathogens and redundancy in formation pathways indicate a pathogenic advantage. However, few decisive conclusions have been drawn, given that the results vary between model systems. Some research argues that the pedestal increases the colonization capability of the bacterium. These studies utilize A/E pathogens specifically deficient in pedestal formation to evaluate adhesion and intestinal colonization following infection. There have been many proposed mechanisms for the colonization benefit conferred by the pedestal. One suggested benefit is that the pedestal allows for direct cytosolic anchoring through incorporation of the established host cortical actin, causing a stable link between the pathogen and cell structure. The pedestal may confer enhanced motility, as enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) are better able to migrate on the surface of host cells and infect neighboring cells in the presence of the pedestal. Additionally, some research suggests that the pedestal improves effector delivery. This review will investigate the purpose of pedestal formation using evidence from recent literature and will critically evaluate the methodology and model systems. Most importantly, we will contextualize the proposed functions to reconcile potential synergistic effects.
Collapse
Affiliation(s)
- M. V. Miner
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - I. Rauch
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
4
|
Ansari I, Mandal A, Kansal K, Walling P, Khan S, Aijaz S. The C-terminal proline-rich repeats of Enteropathogenic E. coli effector EspF are sufficient for the depletion of tight junction membrane proteins and interactions with early and recycling endosomes. Gut Pathog 2024; 16:36. [PMID: 38972985 PMCID: PMC11229284 DOI: 10.1186/s13099-024-00626-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/28/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Enteropathogenic E. coli (EPEC) causes acute infantile diarrhea accounting for significant morbidity and mortality in developing countries. EPEC uses a type three secretion system to translocate more than twenty effectors into the host intestinal cells. At least four of these effectors, namely EspF, Map, EspG1/G2 and NleA, are reported to disrupt the intestinal tight junction barrier. We have reported earlier that the expression of EspF and Map in MDCK cells causes the depletion of the TJ membrane proteins and compromises the integrity of the intestinal barrier. In the present study, we have examined the role of the proline-rich repeats (PRRs) within the C-terminus of EspF in the depletion of the tight junction membrane proteins and identified key endocytosis markers that interact with EspF via these repeats. RESULTS We generated mutant EspF proteins which lacked one or more proline-rich repeats (PRRs) from the N-terminus of EspF and examined the effect of their expression on the cellular localization of tight junction membrane proteins. In lysates derived from cells expressing the mutant EspF proteins, we found that the C-terminal PRRs of EspF are sufficient to cause the depletion of TJ membrane proteins. Pull-down assays revealed that the PRRs mediate interactions with the TJ adaptor proteins ZO-1 and ZO-2 as well as with the proteins involved in endocytosis such as caveolin-1, Rab5A and Rab11. CONCLUSIONS Our study demonstrates the direct role of the proline-rich repeats of EspF in the depletion of the TJ membrane proteins and a possible involvement of the PRRs in the endocytosis of host proteins. New therapeutic strategies can target these PRR domains to prevent intestinal barrier dysfunction in EPEC infections.
Collapse
Affiliation(s)
- Imran Ansari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anupam Mandal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kritika Kansal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pangertoshi Walling
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sumbul Khan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Saima Aijaz
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
5
|
Rogers AP, Mileto SJ, Lyras D. Impact of enteric bacterial infections at and beyond the epithelial barrier. Nat Rev Microbiol 2023; 21:260-274. [PMID: 36175770 DOI: 10.1038/s41579-022-00794-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
The mucosal lining of the gut has co-evolved with a diverse microbiota over millions of years, leading to the development of specialized mechanisms to actively limit the invasion of pathogens. However, some enteric microorganisms have adapted against these measures, developing ways to hijack or overcome epithelial micro-integrity mechanisms. This breach of the gut barrier not only enables the leakage of host factors out of circulation but can also initiate a cascade of detrimental systemic events as microbiota, pathogens and their affiliated secretions passively leak into extra-intestinal sites. Under normal circumstances, gut damage is rapidly repaired by intestinal stem cells. However, with substantial and deep perturbation to the gut lining and the systemic dissemination of gut contents, we now know that some enteric infections can cause the impairment of host regenerative processes. Although these local and systemic aspects of enteric disease are often studied in isolation, they heavily impact one another. In this Review, by examining the journey of enteric infections from initial establishment to systemic sequelae and how, or if, the host can successfully repair damage, we will tie together these complex interactions to provide a holistic overview of the impact of enteric infections at and beyond the epithelial barrier.
Collapse
Affiliation(s)
- Ashleigh P Rogers
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Steven J Mileto
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia. .,Department of Microbiology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
6
|
Enteropathogenic Escherichia coli Infection Inhibits Intestinal Ascorbic Acid Uptake via Dysregulation of Its Transporter Expression. Dig Dis Sci 2021; 66:2250-2260. [PMID: 32556816 PMCID: PMC7744340 DOI: 10.1007/s10620-020-06389-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/03/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Enteropathogenic Escherichia coli (EPEC) infection causes prolonged, watery diarrhea leading to morbidity and mortality. Although EPEC infection impacts nutrient transporter function and expression in intestinal epithelial cells, the effects of EPEC infection on intestinal absorption of ascorbic acid (AA) have not yet been investigated. AIMS To investigate the effect of EPEC infection on intestinal AA uptake process and expression of both AA transporters. METHODS We used two experimental models: human-derived intestinal epithelial Caco-2 cells and mice. 14C-AA uptake assay, Western blot, RT-qPCR, and promoter assay were performed. RESULTS EPEC (WT) as well as ΔespF and ΔespG/G2 mutant-infected Caco-2 cells showed markedly inhibited AA uptake, while other mutants (ΔescN, ΔespA, ΔespB, and ΔespD) did not affect AA uptake. Infection also reduced protein and mRNA expression levels for both hSVCT1 and hSVCT2. EPEC-infected mice showed marked inhibitory effect on AA uptake and decreased protein and mRNA expression levels for both mSVCT1 and mSVCT2 in jejunum and colon. MicroRNA regulators of SVCT1 and SVCT2 (miR103a, miR141, and miR200a) were upregulated significantly upon EPEC infection in both Caco-2 and mouse jejunum and colon. In addition, expression of the accessory protein glyoxalate reductase/hydroxypyruvate reductase (GRHPR), which regulates SVCT1 function, was markedly decreased by EPEC infection in both models. CONCLUSIONS These findings suggest that EPEC infection causes inhibition in AA uptake through a multifactorial dysregulation of SVCT1 and SVCT2 expression in intestinal epithelial cells.
Collapse
|
7
|
Contribution of Infectious Agents to the Development of Celiac Disease. Microorganisms 2021; 9:microorganisms9030547. [PMID: 33800833 PMCID: PMC8001938 DOI: 10.3390/microorganisms9030547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
The ingestion of wheat gliadin (alcohol-soluble proteins, an integral part of wheat gluten) and related proteins induce, in genetically predisposed individuals, celiac disease (CD), which is characterized by immune-mediated impairment of the small intestinal mucosa. The lifelong omission of gluten and related grain proteins, i.e., a gluten-free diet (GFD), is at present the only therapy for CD. Although a GFD usually reduces CD symptoms, it does not entirely restore the small intestinal mucosa to a fully healthy state. Recently, the participation of microbial components in pathogenetic mechanisms of celiac disease was suggested. The present review provides information on infectious diseases associated with CD and the putative role of infections in CD development. Moreover, the involvement of the microbiota as a factor contributing to pathological changes in the intestine is discussed. Attention is paid to the mechanisms by which microbes and their components affect mucosal immunity, including tolerance to food antigens. Modulation of microbiota composition and function and the potential beneficial effects of probiotics in celiac disease are discussed.
Collapse
|
8
|
Choudhry N, Scott F, Edgar M, Sanger GJ, Kelly P. Reversal of Pathogen-Induced Barrier Defects in Intestinal Epithelial Cells by Contra-pathogenicity Agents. Dig Dis Sci 2021; 66:88-104. [PMID: 32034605 DOI: 10.1007/s10620-020-06121-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 01/29/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Environmental enteropathy (EE) is associated with stunting, impairment of responses to oral vaccines, and other adverse health consequences in young children throughout the developing world. EE is characterized by chronic low-grade intestinal inflammation and disrupted epithelial barrier integrity, partly resulting from dysregulation of tight junction proteins, observed in other enteropathies such as celiac disease. During EE, this dysregulation of tight junction expression amplifies translocation of pathogenic bacteria across the intestinal mucosa. AIMS The aim was to determine whether enteropathogen-mediated epithelial barrier failure can be ameliorated using contra-pathogenicity therapies. METHODS Intestinal epithelial barrier damage was assessed in Caco-2 cells incubated with three important enteropathogens identified in EE patients: Enteropathogenic Escherichia coli (EPEC), Citrobacter rodentium (C. rodentium), and Cryptosporidium parvum (C. parvum). Potential therapeutic molecules were tested to detect effects on transepithelial resistance (TER), bacterial translocation (BT), claudin-4 expression, and regulation of the inflammatory cytokine response. RESULTS All three enteropathogens compared to uninfected cells, reduced TER (EPEC; p < 0.0001, C. rodentium; p < 0.0001, C. parvum; p < 0.0007), reduced claudin-4 expression, and permitted BT (EPEC; p < 0.0001, C. rodentium; p < 0.0001, C. parvum; p < 0.0003) through the monolayer. Zinc, colostrum, epidermal growth factor, trefoil factor 3, resistin-like molecule-β, hydrocortisone, and the myosin light chain kinase inhibitor ML7 (Hexahydro-1-[(5-iodo-1-naphthalenyl)sulfonyl]-1H-1,4-diazepine hydrochloride); ML7) improved TER (up to 70%) and decreased BT (as much as 96%). Only zinc demonstrated modest antimicrobial activity. CONCLUSION The enteropathogens impaired intestinal-epithelial barrier integrity with dysregulation of claudin-4 and increased bacterial translocation. Enteropathogen-mediated damage was reduced using contra-pathogenicity agents which mitigated the effects of pathogens without direct antimicrobial activity.
Collapse
Affiliation(s)
- Naheed Choudhry
- Barts and The London School of Medicine, Queen Mary, University of London, London, E1 2AT, UK.
| | - Flora Scott
- Barts and The London School of Medicine, Queen Mary, University of London, London, E1 2AT, UK
| | - Meghan Edgar
- Gastroenterology Drug Discovery Unit, Takeda California, Inc., 10410 Science Center Drive, San Diego, CA, 92121, USA
| | - Gareth J Sanger
- Barts and The London School of Medicine, Queen Mary, University of London, London, E1 2AT, UK
- Gastroenterology Drug Discovery Unit, Takeda California, Inc., 10410 Science Center Drive, San Diego, CA, 92121, USA
| | - Paul Kelly
- Barts and The London School of Medicine, Queen Mary, University of London, London, E1 2AT, UK
| |
Collapse
|
9
|
Zheng M, Sun S, Zhou J, Liu M. Virulence factors impair epithelial junctions during bacterial infection. J Clin Lab Anal 2020; 35:e23627. [PMID: 33070380 PMCID: PMC7891540 DOI: 10.1002/jcla.23627] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/10/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Epithelial cells are typically connected through different types of cell junctions that are localized from the apical membrane to the basal surface. In this way, epithelium cells form the first barrier against pathogenic microorganisms and prevent their entry into internal organs and the circulatory system. Recent studies demonstrate that bacterial pathogens disrupt epithelial cell junctions through targeting junctional proteins by secreted virulence factors. In this review, we discuss the diverse strategies used by common bacterial pathogens, including Pseudomonas aeruginosa, Helicobacter pylori, and enteropathogenic Escherichia coli, to disrupt epithelial cell junctions during infection. We also discuss the potential of targeting the pathogenic mechanisms in the treatment of pathogen-associated diseases.
Collapse
Affiliation(s)
- Manxi Zheng
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Shuang Sun
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Min Liu
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
10
|
Zhang T, Liu Y, Yan JK, Cai W. Early downregulation of P-glycoprotein facilitates bacterial attachment to intestinal epithelial cells and thereby triggers barrier dysfunction in a rodent model of total parenteral nutrition. FASEB J 2020; 34:4670-4683. [PMID: 32027421 DOI: 10.1096/fj.201902513r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 12/19/2022]
Abstract
Intestinal barrier dysfunction is a major complication of total parenteral nutrition (TPN). Our preliminary study revealed that intestinal P-glycoprotein (P-gp) was significantly downregulated under TPN treatment followed by disruption of barrier function, and thus the significance of early downregulation of P-gp needs to be addressed. Herein, we report a pivotal role of P-gp in the development of intestinal barrier dysfunction under TPN. Functional suppression of P-gp may facilitate bacterial attachment to intestinal epithelial cells (IECs) and thereby induce degradation of tight junctions to trigger barrier dysfunction. By using a rat model of TPN, we found early downregulation of P-gp function in ileum after 3-day TPN, followed by disruption of barrier function after 7-day TPN. By using Escherichia coli (E. coli) k88 and DH5α as type strains, we found significantly increased bacterial attachment to IECs in TPN group compared to sham. By using Caco-2 cells as an IEC model in vitro, we found that functional suppression of P-gp remarkably facilitated bacterial attachment to Caco-2 cells, leading to subsequent disruption of intestinal barrier function. Of note, Occludin was significantly downregulated by bacterial attachment when P-gp was functionally suppressed. Mechanistically, changes on Occludin were attributed to enhanced protein degradation instead of suppressed protein translation. Despite the half-life of Occludin protein being unchanged by DH5α treatment alone, it was decreased by about 40% when P-gp was simultaneously suppressed. Taken together, our findings revealed that early downregulation of intestinal P-gp under TPN may be a potential therapeutic target to prevent the development of barrier dysfunction.
Collapse
Affiliation(s)
- Tian Zhang
- School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Liu
- School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jun-Kai Yan
- School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Wei Cai
- School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, China
| |
Collapse
|
11
|
Enteropathogenic Escherichia coli (EPEC) Recruitment of PAR Polarity Protein Atypical PKCζ to Pedestals and Cell-Cell Contacts Precedes Disruption of Tight Junctions in Intestinal Epithelial Cells. Int J Mol Sci 2020; 21:ijms21020527. [PMID: 31947656 PMCID: PMC7014222 DOI: 10.3390/ijms21020527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/26/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) uses a type three secretion system to inject effector proteins into host intestinal epithelial cells, causing diarrhea. EPEC induces the formation of pedestals underlying attached bacteria, disrupts tight junction (TJ) structure and function, and alters apico-basal polarity by redistributing the polarity proteins Crb3 and Pals1, although the mechanisms are unknown. Here we investigate the temporal relationship of PAR polarity complex and TJ disruption following EPEC infection. EPEC recruits active aPKCζ, a PAR polarity protein, to actin within pedestals and at the plasma membrane prior to disrupting TJ. The EPEC effector EspF binds the endocytic protein sorting nexin 9 (SNX9). This interaction impacts actin pedestal organization, recruitment of active aPKCζ to actin at cell–cell borders, endocytosis of JAM-A S285 and occludin, and TJ barrier function. Collectively, data presented herein support the hypothesis that EPEC-induced perturbation of TJ is a downstream effect of disruption of the PAR complex and that EspF binding to SNX9 contributes to this phenotype. aPKCζ phosphorylates polarity and TJ proteins and participates in actin dynamics. Therefore, the early recruitment of aPKCζ to EPEC pedestals and increased interaction with actin at the membrane may destabilize polarity complexes ultimately resulting in perturbation of TJ.
Collapse
|
12
|
Tapia R, Perez-Yepez EA, Carlino MJ, Karandikar UC, Kralicek SE, Estes MK, Hecht GA. Sperm Flagellar 1 Binds Actin in Intestinal Epithelial Cells and Contributes to Formation of Filopodia and Lamellipodia. Gastroenterology 2019; 157:1544-1555.e3. [PMID: 31473225 PMCID: PMC7016487 DOI: 10.1053/j.gastro.2019.08.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Sperm flagellar 1 (also called CLAMP) is a microtubule-associated protein that regulates microtubule dynamics and planar cell polarity in multi-ciliated cells. We investigated the localization and function of sperm flagellar 1, or CLAMP, in human intestinal epithelia cells (IECs). METHODS We performed studies with SKCO-15 and human intestinal enteroids established from biopsies from different intestinal segments (duodenal, jejunum, ileal, and colon) of a single donor. Enteroids were induced to differentiation after incubation with growth factors. The distribution of endogenous CLAMP in IECs was analyzed by immunofluorescence microscopy using total internal reflection fluorescence-ground state depletion and confocal microscopy. CLAMP localization was followed during the course of intestinal epithelial cell polarization as cells progressed from flat to compact, confluent monolayers. Protein interactions with endogenous CLAMP were determined in SKCO-15 cells using proximity ligation assays and co-immunoprecipitation. CLAMP was knocked down in SKCO-15 monolayers using small hairpin RNAs and cells were analyzed by immunoblot and immunofluorescence microscopy. The impact of CLAMP knock-down in migrating SKCO-15 cells was assessed using scratch-wound assays. RESULTS CLAMP bound to actin and apical junctional complex proteins but not microtubules in IECs. In silico analysis predicted the calponin-homology domain of CLAMP to contain conserved amino acids required for actin binding. During IEC polarization, CLAMP distribution changed from primarily basal stress fibers and cytoplasm in undifferentiated cells to apical membranes and microvilli in differentiated monolayers. CLAMP accumulated in lamellipodia and filopodia at the leading edge of migrating cells in association with actin. CLAMP knock-down reduced the number of filopodia, perturbed filopodia polarity, and altered the organization of actin filaments within lamellipodia. CONCLUSIONS CLAMP is an actin-binding protein, rather than a microtubule-binding protein, in IECs. CLAMP distribution changes during intestinal epithelial cell polarization, regulates the formation of filopodia, and appears to assist in the organization of actin bundles within lamellipodia of migrating IECs. Studies are needed to define the CLAMP domains that interact with actin and whether its loss from IECs affects intestinal function.
Collapse
Affiliation(s)
- Rocio Tapia
- Department of Medicine, Division of Gastroenterology and Nutrition
| | | | | | | | | | - Mary K. Estes
- Department of Molecular Virology and Microbiology,Department of Medicine - Gastroenterology and Hepatology and Infectious Diseases, Baylor College of Medicine, Houston, Texas
| | - Gail A. Hecht
- Department of Medicine, Division of Gastroenterology and Nutrition,Department of Microbiology and Immunology, Loyola University Chicago,Edward Hines Jr. VA Hospital, Hines, Illinois
| |
Collapse
|
13
|
Watson VE, Jacob ME, Bruno-Bárcena JM, Amirsultan S, Stauffer SH, Píqueras VO, Frias R, Gookin JL. Influence of the intestinal microbiota on disease susceptibility in kittens with experimentally-induced carriage of atypical enteropathogenic Escherichia coli. Vet Microbiol 2019; 231:197-206. [PMID: 30955810 PMCID: PMC6532395 DOI: 10.1016/j.vetmic.2019.03.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 01/28/2023]
Abstract
Typical enteropathogenic E. coli (tEPEC) carries the highest hazard of death in children with diarrhea and atypical EPEC (aEPEC) was recently identified as significantly associated with diarrheal mortality in kittens. In both children and kittens there is a significant association between aEPEC burden and diarrheal disease, however the infection can be found in individuals with and without diarrhea. It remains unclear to what extent, under what conditions, or by what mechanisms aEPEC serves as a primary pathogen in individuals with diarrhea. It seems likely that a combination of host and bacterial factors enable aEPEC to cause disease in some individuals and not in others. The purpose of this study was to determine the impact of aEPEC on intestinal function and diarrhea in kittens following experimentally-induced carriage and the influence of a disrupted intestinal microbiota on disease susceptibility. Results of this study identify aEPEC as a potential pathogen in kittens. In the absence of disruption to the intestinal microbiota, kittens are resistant to clinical signs of aEPEC carriage but demonstrate significant occult changes in intestinal absorption and permeability. Antibiotic-induced disruption of the intestinal microbiota prior to infection increases subsequent intestinal water loss as determined by % fecal wet weight. Enrichment of the intestinal microbiota with a commensal member of the feline mucosa-associated microbiota, Enterococcus hirae, ameliorated the effects of aEPEC experimental infection on intestinal function and water loss. These observations begin to unravel the mechanisms by which aEPEC infection may be able to exploit susceptible hosts.
Collapse
Affiliation(s)
| | - Megan E Jacob
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - José M Bruno-Bárcena
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC USA
| | | | | | | | - Rafael Frias
- Faculty of Veterinary Medicine, University of Helsinki, Finland; Comparative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jody L Gookin
- Department of Clinical Sciences, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
14
|
Olivares M, Benítez-Páez A, de Palma G, Capilla A, Nova E, Castillejo G, Varea V, Marcos A, Garrote JA, Polanco I, Donat E, Ribes-Koninckx C, Calvo C, Ortigosa L, Palau F, Sanz Y. Increased prevalence of pathogenic bacteria in the gut microbiota of infants at risk of developing celiac disease: The PROFICEL study. Gut Microbes 2018; 9:551-558. [PMID: 29672211 PMCID: PMC6287676 DOI: 10.1080/19490976.2018.1451276] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Celiac disease (CD) is an immune-mediated enteropathy involving genetic and environmental factors, whose interaction influences disease risk. The intestinal microbiota, including viruses and bacteria, could play a role in the pathological process leading to gluten intolerance. In this study, we investigated the prevalence of pathogens in the intestinal microbiota of infants at familial risk of developing CD. We included 127 full-term newborns with at least one first-degree relative with CD. Infants were classified according to milk-feeding practice (breastfeeding or formula feeding) and HLA-DQ genotype (low, intermediate or high genetic risk). The prevalence of pathogenic bacteria and viruses was assessed in the faeces of the infants at 7 days, 1 month and 4 months of age. The prevalence of Clostridium perfringens was higher in formula-fed infants than in breast-fed over the study period, and that of C. difficile at 4 months. Among breastfed infants, a higher prevalence of enterotoxigenic E. coli (ETEC) was found in infants with the highest genetic risk compared either to those with a low or intermediate risk. Among formula-fed infants, a higher prevalence of ETEC was also found in infants with a high genetic risk compared to those of intermediate risk. Our results show that specific factors, such as formula feeding and the HLA-DQ2 genotype, previously linked to a higher risk of developing CD, influence the presence of pathogenic bacteria differently in the intestinal microbiota in early life. Further studies are warranted to establish whether these associations are related to CD onset later in life.
Collapse
Affiliation(s)
- Marta Olivares
- Microbial Ecology, Nutrition & Health Research Unit. Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain,CONTACT Marta Olivares IATA-CSIC, C/Catedrático Agustín Escardino, 7. 46980, Paterna, Valencia, Spain
| | - Alfonso Benítez-Páez
- Microbial Ecology, Nutrition & Health Research Unit. Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Giada de Palma
- Microbial Ecology, Nutrition & Health Research Unit. Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Amalia Capilla
- Genetics and Molecular Medicine Unit. Institute of Biomedicine of Valencia, Spanish National Research Council (IBV-CSIC), Valencia, Spain
| | - Esther Nova
- Institute of Food Science, Technology and Nutrition, Spanish National Research Council (ICTAN-CSIC), Madrid, Spain
| | - Gemma Castillejo
- Universitary Hospital Sant Joan of Reus, URV, IISPV, Tarragona, Spain
| | - Vicente Varea
- Gastroenterología, Nutrición y Hepatología Pediátrica, Hospital Universitario Sant Joan de Deu, and Instituto de Gastroeneterología y Nutrición Pediátrica de Barcelona, Barcelona, Spain
| | - Ascensión Marcos
- Institute of Food Science, Technology and Nutrition, Spanish National Research Council (ICTAN-CSIC), Madrid, Spain
| | - José Antonio Garrote
- Research Unit and Paediatric Service, Hospital Clínico Universitario, Valladolid, Spain
| | - Isabel Polanco
- Servicio de Gastroenterología y Nutrición Pediátrica, Hospital Universitario La Paz, Madrid, Spain
| | - Ester Donat
- Unidad de Gastroenterología, Hospital Infantil Universitario La Fe, Valencia, Spain
| | | | - Carmen Calvo
- Research Unit and Paediatric Service, Hospital Clínico Universitario, Valladolid, Spain
| | - Luis Ortigosa
- Unidad de Gastroenterologia, Hepatología y Nutrición Pediátrica, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Canary Islands, Spain
| | - Francesc Palau
- Genetics and Molecular Medicine Unit. Institute of Biomedicine of Valencia, Spanish National Research Council (IBV-CSIC), Valencia, Spain
| | - Yolanda Sanz
- Microbial Ecology, Nutrition & Health Research Unit. Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain,Yolanda Sanz IATA-CSIC, C/Catedrático Agustín Escardino, 7. 46980, Paterna, Valencia, Spain
| |
Collapse
|
15
|
Nickerson KP, Senger S, Zhang Y, Lima R, Patel S, Ingano L, Flavahan WA, Kumar DKV, Fraser CM, Faherty CS, Sztein MB, Fiorentino M, Fasano A. Salmonella Typhi Colonization Provokes Extensive Transcriptional Changes Aimed at Evading Host Mucosal Immune Defense During Early Infection of Human Intestinal Tissue. EBioMedicine 2018; 31:92-109. [PMID: 29735417 PMCID: PMC6013756 DOI: 10.1016/j.ebiom.2018.04.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 12/29/2022] Open
Abstract
Commensal microorganisms influence a variety of host functions in the gut, including immune response, glucose homeostasis, metabolic pathways and oxidative stress, among others. This study describes how Salmonella Typhi, the pathogen responsible for typhoid fever, uses similar strategies to escape immune defense responses and survive within its human host. To elucidate the early mechanisms of typhoid fever, we performed studies using healthy human intestinal tissue samples and "mini-guts," organoids grown from intestinal tissue taken from biopsy specimens. We analyzed gene expression changes in human intestinal specimens and bacterial cells both separately and after colonization. Our results showed mechanistic strategies that S. Typhi uses to rearrange the cellular machinery of the host cytoskeleton to successfully invade the intestinal epithelium, promote polarized cytokine release and evade immune system activation by downregulating genes involved in antigen sampling and presentation during infection. This work adds novel information regarding S. Typhi infection pathogenesis in humans, by replicating work shown in traditional cell models, and providing new data that can be applied to future vaccine development strategies.
Collapse
Affiliation(s)
- K P Nickerson
- Department of Pediatric Gastroenterology, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, United States.
| | - S Senger
- Department of Pediatric Gastroenterology, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Y Zhang
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - R Lima
- Department of Pediatric Gastroenterology, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - S Patel
- Department of Pediatric Gastroenterology, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - L Ingano
- Department of Pediatric Gastroenterology, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - W A Flavahan
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States
| | - D K V Kumar
- Department for the Neuroscience of Genetics and Aging, Massachusetts General Hospital, Boston, MA, United States
| | - C M Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - C S Faherty
- Department of Pediatric Gastroenterology, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, United States
| | - M B Sztein
- Center for Vaccine Development, Department of Pediatrics, University of Maryland, Baltimore, MD, United States
| | - M Fiorentino
- Department of Pediatric Gastroenterology, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, United States
| | - A Fasano
- Department of Pediatric Gastroenterology, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, United States.
| |
Collapse
|
16
|
Abstract
The passive and regulated movement of ions, solutes, and water via spaces between cells of the epithelial monolayer plays a critical role in the normal intestinal functioning. This paracellular pathway displays a high level of structural and functional specialization, with the membrane-spanning complexes of the tight junctions, adherens junctions, and desmosomes ensuring its integrity. Tight junction proteins, like occludin, tricellulin, and the claudin family isoforms, play prominent roles as barriers to unrestricted paracellular transport. The past decade has witnessed major advances in our understanding of the architecture and function of epithelial tight junctions. While it has been long appreciated that microbes, notably bacterial and viral pathogens, target and disrupt junctional complexes and alter paracellular permeability, the precise mechanisms remain to be defined. Notably, renewed efforts will be required to interpret the available data on pathogen-mediated barrier disruption in the context of the most recent findings on tight junction structure and function. While much of the focus has been on pathogen-induced dysregulation of junctional complexes, commensal microbiota and their products may influence paracellular permeability and contribute to the normal physiology of the gut. Finally, microbes and their products have become important tools in exploring host systems, including the junctional properties of epithelial cells. © 2018 American Physiological Society. Compr Physiol 8:823-842, 2018.
Collapse
Affiliation(s)
- Jennifer Lising Roxas
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - V.K. Viswanathan
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
17
|
Singh AP, Sharma S, Pagarware K, Siraji RA, Ansari I, Mandal A, Walling P, Aijaz S. Enteropathogenic E. coli effectors EspF and Map independently disrupt tight junctions through distinct mechanisms involving transcriptional and post-transcriptional regulation. Sci Rep 2018; 8:3719. [PMID: 29487356 PMCID: PMC5829253 DOI: 10.1038/s41598-018-22017-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/14/2018] [Indexed: 01/05/2023] Open
Abstract
Enteropathogenic E. coli infection is characterized by rapid onset of diarrhea but the underlying mechanisms are not well defined. EPEC targets the tight junctions which selectively regulate the permeability of charged and uncharged molecules. Cooperative actions of the EPEC effectors EspF and Map have been reported to mediate tight junction disruption. To analyze the individual contributions of EspF and Map, we generated in vitro models where EspF and Map, derived from the EPEC strain E2348/69, were constitutively expressed in epithelial cells. Here we report that tight junction disruption by EspF and Map is caused by the inhibition of the junctional recruitment of proteins during tight junction assembly. Constitutive expression of EspF and Map depleted the levels of tight junction proteins. EspF down-regulated the transcript levels of claudin-1, occludin and ZO-1, while Map down-regulated only claudin-1 transcripts. Both effectors also caused lysosomal degradation of existing tight junction proteins. We also identified a novel interaction of Map with non-muscle myosin II. Consistent with earlier studies, EspF was found to interact with ZO-1 while actin was the common interacting partner for both effectors. Our data provides evidence for the distinct roles of Map and EspF in tight junction disruption through non-synergistic functions.
Collapse
Affiliation(s)
- Anand Prakash Singh
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Swati Sharma
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kirti Pagarware
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rafay Anwar Siraji
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Imran Ansari
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anupam Mandal
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pangertoshi Walling
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Saima Aijaz
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
18
|
Shenoy AR, Furniss RCD, Goddard PJ, Clements A. Modulation of Host Cell Processes by T3SS Effectors. Curr Top Microbiol Immunol 2018; 416:73-115. [PMID: 30178263 DOI: 10.1007/82_2018_106] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two of the enteric Escherichia coli pathotypes-enteropathogenic E. coli (EPEC) and enterohaemorrhagic E. coli (EHEC)-have a conserved type 3 secretion system which is essential for virulence. The T3SS is used to translocate between 25 and 50 bacterial proteins directly into the host cytosol where they manipulate a variety of host cell processes to establish a successful infection. In this chapter, we discuss effectors from EPEC/EHEC in the context of the host proteins and processes that they target-the actin cytoskeleton, small guanosine triphosphatases and innate immune signalling pathways that regulate inflammation and cell death. Many of these translocated proteins have been extensively characterised, which has helped obtain insights into the mechanisms of pathogenesis of these bacteria and also understand the host pathways they target in more detail. With increasing knowledge of the positive and negative regulation of host signalling pathways by different effectors, a future challenge is to investigate how the specific effector repertoire of each strain cooperates over the course of an infection.
Collapse
Affiliation(s)
- Avinash R Shenoy
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, SW7 2AZ, London, UK
| | - R Christopher D Furniss
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, SW7 2AZ, London, UK
| | - Philippa J Goddard
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, SW7 2AZ, London, UK
| | - Abigail Clements
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, SW7 2AZ, London, UK.
| |
Collapse
|
19
|
Attaching and effacing (A/E) lesion formation by enteropathogenic E. coli on human intestinal mucosa is dependent on non-LEE effectors. PLoS Pathog 2017; 13:e1006706. [PMID: 29084270 PMCID: PMC5685641 DOI: 10.1371/journal.ppat.1006706] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 11/14/2017] [Accepted: 10/20/2017] [Indexed: 01/31/2023] Open
Abstract
Enteropathogenic E. coli (EPEC) is a human pathogen that causes acute and chronic pediatric diarrhea. The hallmark of EPEC infection is the formation of attaching and effacing (A/E) lesions in the intestinal epithelium. Formation of A/E lesions is mediated by genes located on the pathogenicity island locus of enterocyte effacement (LEE), which encode the adhesin intimin, a type III secretion system (T3SS) and six effectors, including the essential translocated intimin receptor (Tir). Seventeen additional effectors are encoded by genes located outside the LEE, in insertion elements and prophages. Here, using a stepwise approach, we generated an EPEC mutant lacking the entire effector genes (EPEC0) and intermediate mutants. We show that EPEC0 contains a functional T3SS. An EPEC mutant expressing intimin but lacking all the LEE effectors but Tir (EPEC1) was able to trigger robust actin polymerization in HeLa cells and mucin-producing intestinal LS174T cells. However, EPEC1 was unable to form A/E lesions on human intestinal in vitro organ cultures (IVOC). Screening the intermediate mutants for genes involved in A/E lesion formation on IVOC revealed that strains lacking non-LEE effector/s have a marginal ability to form A/E lesions. Furthermore, we found that Efa1/LifA proteins are important for A/E lesion formation efficiency in EPEC strains lacking multiple effectors. Taken together, these results demonstrate the intricate relationships between T3SS effectors and the essential role non-LEE effectors play in A/E lesion formation on mucosal surfaces. Enteropathogenic E. coli (EPEC) causes diarrhea and generates the attaching and effacing (A/E) lesion in human gut epithelium. A/E lesion formation requires the locus of enterocyte effacement (LEE) in the bacterial genome, which encodes a protein injection system delivering the translocated intimin receptor (Tir), which binds to intimin on the bacterial surface. Intimin-Tir interaction is sufficient for bacterial attachment to epithelial cells in vitro but additional effectors may be needed for A/E lesion formation in the human gut. By generating deletion mutants lacking combinations or the whole repertoire of protein effectors encoded by EPEC, we show that intimin-Tir interaction is not sufficient and reveal an additive role of non-LEE effectors for A/E lesion formation in human intestinal tissue.
Collapse
|
20
|
Tapia R, Kralicek SE, Hecht GA. EPEC effector EspF promotes Crumbs3 endocytosis and disrupts epithelial cell polarity. Cell Microbiol 2017; 19. [PMID: 28618099 DOI: 10.1111/cmi.12757] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/19/2017] [Accepted: 06/09/2017] [Indexed: 12/12/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) uses a type III secretion system to inject effector proteins into host intestinal epithelial cells causing diarrhoea. EPEC infection redistributes basolateral proteins β1-integrin and Na+ /K+ ATPase to the apical membrane of host cells. The Crumbs (Crb) polarity complex (Crb3/Pals1/Patj) is essential for epithelial cell polarisation and tight junction (TJ) assembly. Here, we demonstrate that EPEC displaces Crb3 and Pals1 from the apical membrane to the cytoplasm of cultured intestinal epithelial cells and colonocytes of infected mice. In vitro studies show that EspF, but not Map, alters Crb3, whereas both effectors modulate Pals1. EspF perturbs polarity formation in cyst morphogenesis assays and induces endocytosis and apical redistribution of Na+ /K+ ATPase. EspF binds to sorting nexin 9 (SNX9) causing membrane remodelling in host cells. Infection with ΔespF/pespFD3, a mutant strain that ablates EspF binding to SNX9, or inhibition of dynamin, attenuates Crb3 endocytosis caused by EPEC. In addition, infection with ΔespF/pespFD3 has no impact on Na+ /K+ ATPase endocytosis. These data support the hypothesis that EPEC perturbs apical-basal polarity in an EspF-dependent manner, which would contribute to EPEC-associated diarrhoea by disruption of TJ and altering the crucial positioning of membrane transporters involved in the absorption of ions and solutes.
Collapse
Affiliation(s)
- Rocio Tapia
- Department of Medicine and Division of Gastroenterology and Nutrition, Loyola University Chicago, Chicago, IL, USA
| | - Sarah E Kralicek
- Department of Medicine and Division of Gastroenterology and Nutrition, Loyola University Chicago, Chicago, IL, USA
| | - Gail A Hecht
- Department of Medicine and Division of Gastroenterology and Nutrition, Loyola University Chicago, Chicago, IL, USA.,Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA.,Edward Hines Jr. VA Hospital, Hines, IL, USA
| |
Collapse
|
21
|
Tapia R, Kralicek SE, Hecht GA. Modulation of epithelial cell polarity by bacterial pathogens. Ann N Y Acad Sci 2017. [PMID: 28628193 DOI: 10.1111/nyas.13388] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epithelial cells constitute a physical barrier that aids in protecting the host from microbial pathogens. Polarized epithelial cells contain distinct apical and basolateral membrane domains separated by intercellular junctions, including tight junctions (TJs), which contribute to the maintenance of apical-basal polarity. Polarity complexes also contribute to the establishment of TJ formation. Several pathogens perturb epithelial TJ barrier function and structure in addition to causing a loss of apical-basal polarity. Here, we review the impact of pathogenic bacteria on the disruption of cell-cell junctions and epithelial polarity.
Collapse
Affiliation(s)
- Rocio Tapia
- Division of Gastroenterology and Nutrition, Department of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Sarah E Kralicek
- Division of Gastroenterology and Nutrition, Department of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Gail A Hecht
- Division of Gastroenterology and Nutrition, Department of Medicine, Loyola University Chicago, Maywood, Illinois.,Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois.,Edward Hines Jr. VA Hospital, Hines, Illinois
| |
Collapse
|
22
|
Tricellular Tight Junction Protein Tricellulin Is Targeted by the Enteropathogenic Escherichia coli Effector EspG1, Leading to Epithelial Barrier Disruption. Infect Immun 2016; 85:IAI.00700-16. [PMID: 27795363 DOI: 10.1128/iai.00700-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/16/2016] [Indexed: 12/31/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC)-induced diarrhea is often associated with disruption of intestinal epithelial tight junctions. Although studies have shown alterations in the expression and localization of bicellular tight junction proteins during EPEC infections, little is known about whether tricellular tight junction proteins (tTJs) are affected. Using Caco-2 cell monolayers, we investigated if EPEC is capable of targeting the tTJ protein tricellulin. Our results demonstrated that at 4 h postinfection, EPEC induced a significant reduction in tricellulin levels, accompanied by a significant loss of transepithelial resistance (TEER) and a corresponding increase in paracellular permeability. Conversely, cells overexpressing tricellulin were highly resistant to EPEC-induced barrier disruption. Confocal microscopy revealed the distribution of tricellulin into the plasma membrane of infected epithelial cells and confirmed the localization of EPEC aggregates in close proximity to tTJs. Moreover, infections with EPEC strains lacking genes encoding specific type III secreted effector proteins demonstrated a crucial role for the effector EspG1 in modulating tricellulin expression. Complementation studies suggest that the EspG-induced depletion of tricellulin is microtubule dependent. Overall, our results show that EPEC-induced epithelial barrier dysfunction is mediated in part by EspG1-induced microtubule-dependent depletion of tricellulin.
Collapse
|
23
|
Ugalde-Silva P, Gonzalez-Lugo O, Navarro-Garcia F. Tight Junction Disruption Induced by Type 3 Secretion System Effectors Injected by Enteropathogenic and Enterohemorrhagic Escherichia coli. Front Cell Infect Microbiol 2016; 6:87. [PMID: 27606286 PMCID: PMC4995211 DOI: 10.3389/fcimb.2016.00087] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/10/2016] [Indexed: 12/18/2022] Open
Abstract
The intestinal epithelium consists of a single cell layer, which is a critical selectively permeable barrier to both absorb nutrients and avoid the entry of potentially harmful entities, including microorganisms. Epithelial cells are held together by the apical junctional complexes, consisting of adherens junctions, and tight junctions (TJs), and by underlying desmosomes. TJs lay in the apical domain of epithelial cells and are mainly composed by transmembrane proteins such as occludin, claudins, JAMs, and tricellulin, that are associated with the cytoplasmic plaque formed by proteins from the MAGUK family, such as ZO-1/2/3, connecting TJ to the actin cytoskeleton, and cingulin and paracingulin connecting TJ to the microtubule network. Extracellular bacteria such as EPEC and EHEC living in the intestinal lumen inject effectors proteins directly from the bacterial cytoplasm to the host cell cytoplasm, where they play a relevant role in the manipulation of the eukaryotic cell functions by modifying or blocking cell signaling pathways. TJ integrity depends on various cell functions such as actin cytoskeleton, microtubule network for vesicular trafficking, membrane integrity, inflammation, and cell survival. EPEC and EHEC effectors target most of these functions. Effectors encoded inside or outside of locus of enterocyte effacement (LEE) disrupt the TJ strands. EPEC and EHEC exploit the TJ dynamics to open this structure, for causing diarrhea. EPEC and EHEC secrete effectors that mimic host proteins to manipulate the signaling pathways, including those related to TJ dynamics. In this review, we focus on the known mechanisms exploited by EPEC and EHEC effectors for causing TJ disruption.
Collapse
Affiliation(s)
- Paul Ugalde-Silva
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, Mexico
| | - Octavio Gonzalez-Lugo
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, Mexico
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, Mexico
| |
Collapse
|
24
|
Enterohaemorrhagic E. coli modulates an ARF6:Rab35 signaling axis to prevent recycling endosome maturation during infection. J Mol Biol 2016; 428:3399-407. [PMID: 27261256 PMCID: PMC5013874 DOI: 10.1016/j.jmb.2016.05.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 02/06/2023]
Abstract
Enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC/EHEC) manipulate a plethora of host cell processes to establish infection of the gut mucosa. This manipulation is achieved via the injection of bacterial effector proteins into host cells using a Type III secretion system. We have previously reported that the conserved EHEC and EPEC effector EspG disrupts recycling endosome function, reducing cell surface levels of host receptors through accumulation of recycling cargo within the host cell. Here we report that EspG interacts specifically with the small GTPases ARF6 and Rab35 during infection. These interactions target EspG to endosomes and prevent Rab35-mediated recycling of cargo to the host cell surface. Furthermore, we show that EspG has no effect on Rab35-mediated uncoating of newly formed endosomes, and instead leads to the formation of enlarged EspG/TfR/Rab11 positive, EEA1/Clathrin negative stalled recycling structures. Thus, this paper provides a molecular framework to explain how EspG disrupts recycling whilst also reporting the first known simultaneous targeting of ARF6 and Rab35 by a bacterial pathogen. EHEC delivers effector proteins into host cells to establish infection in the gut The effector EspG interacts with GTP-ARF6 confining EspG to recycling endosomes During infection EspG interacts preferentially with Rab35, not Rab1 Spatial restriction of bacterial effectors during infection determines their function
Collapse
|
25
|
Gujral T, Kumar A, Priyamvada S, Saksena S, Gill RK, Hodges K, Alrefai WA, Hecht GA, Dudeja PK. Mechanisms of DRA recycling in intestinal epithelial cells: effect of enteropathogenic E. coli. Am J Physiol Cell Physiol 2015; 309:C835-46. [PMID: 26447204 DOI: 10.1152/ajpcell.00107.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/01/2015] [Indexed: 11/22/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) is a food-borne pathogen that causes infantile diarrhea worldwide. EPEC decreases the activity and surface expression of the key intestinal Cl(-)/HCO3(-) exchanger SLC26A3 [downregulated in adenoma (DRA)], contributing to the pathophysiology of early diarrhea. Little is known about the mechanisms governing membrane recycling of DRA. In the current study, Caco-2 cells were used to investigate DRA trafficking under basal conditions and in response to EPEC. Apical Cl(-)/HCO3(-) exchange activity was measured as DIDS-sensitive (125)I(-) uptake. Cell surface biotinylation was performed to assess DRA endocytosis and exocytosis. Inhibition of clathrin-mediated endocytosis by chlorpromazine (60 μM) increased apical Cl(-)/HCO3(-) exchange activity. Dynasore, a dynamin inhibitor, also increased function and surface levels of DRA via decreased endocytosis. Perturbation of microtubules by nocodazole revealed that intact microtubules are essential for basal exocytic (but not endocytic) DRA recycling. Mice treated with colchicine showed a decrease in DRA surface levels as visualized by confocal microscopy. In response to EPEC infection, DRA surface expression was reduced partly via an increase in DRA endocytosis and a decrease in exocytosis. These effects were dependent on the EPEC virulence genes espG1 and espG2. Intriguingly, the EPEC-induced decrease in DRA function was unaltered in the presence of dynasore, suggesting a clathrin-independent internalization of surface DRA. In conclusion, these studies establish the role of clathrin-mediated endocytosis and microtubules in the basal surface expression of DRA and demonstrate that the EPEC-mediated decrease in DRA function and apical expression in Caco-2 cells involves decreased exocytosis.
Collapse
Affiliation(s)
- Tarunmeet Gujral
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Department of Physiology, University of Illinois at Chicago, Chicago, Illinois
| | - Anoop Kumar
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Shubha Priyamvada
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Seema Saksena
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Ravinder K Gill
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Kim Hodges
- Gastroenterology and Nutrition, Department of Medicine, Loyola University, Maywood, Illinois
| | - Waddah A Alrefai
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois; and
| | - Gail A Hecht
- Gastroenterology and Nutrition, Department of Medicine, Loyola University, Maywood, Illinois
| | - Pradeep K Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois; and
| |
Collapse
|
26
|
Zhang K, Hornef MW, Dupont A. The intestinal epithelium as guardian of gut barrier integrity. Cell Microbiol 2015; 17:1561-9. [PMID: 26294173 DOI: 10.1111/cmi.12501] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 12/14/2022]
Abstract
A single layer of epithelial cells separates the intestinal lumen from the underlying sterile tissue. It is exposed to a multitude of nutrients and a large number of commensal bacteria. Although the presence of commensal bacteria significantly contributes to nutrient digestion, vitamin synthesis and tissue maturation, their high number represents a permanent challenge to the integrity of the epithelial surface keeping the local immune system constantly on alert. In addition, the intestinal mucosa is challenged by a variety of enteropathogenic microorganisms. In both circumstances, the epithelium actively contributes to maintaining host-microbial homeostasis and antimicrobial host defence. It deploys a variety of mechanisms to restrict the presence of commensal bacteria to the intestinal lumen and to prevent translocation of commensal and pathogenic microorganisms to the underlying tissue. Enteropathogenic microorganisms in turn have learnt to evade the host's immune system and circumvent the antimicrobial host response. In the present article, we review recent advances that illustrate the intense and intimate host-microbial interaction at the epithelial level and improve our understanding of the mechanisms that maintain the integrity of the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Kaiyi Zhang
- Institute for Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Mathias W Hornef
- Institute for Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Aline Dupont
- Institute for Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
27
|
Abstract
Enteropathogenic
E. coli (EPEC) causes acute intestinal infections in infants in the developing world. Infection typically spreads through contaminated food and water and leads to severe, watery diarrhea. EPEC attaches to the intestinal epithelial cells and directly injects virulence factors which modulate multiple signaling pathways leading to host cell dysfunction. However, the molecular mechanisms that regulate the onset of diarrhea are poorly defined. A major target of EPEC is the host cell tight junction complex which acts as a barrier and regulates the passage of water and solutes through the paracellular space. In this review, we focus on the EPEC effectors that target the epithelial barrier, alter its functions and contribute to leakage through the tight junctions.
Collapse
Affiliation(s)
- Anand Prakash Singh
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Saima Aijaz
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
28
|
Wei J, Jiang H, Gao H, Wang G. Activation of toll like receptor-3 induces corneal epithelial barrier dysfunction. Biochem Biophys Res Commun 2015; 461:555-9. [PMID: 25912142 DOI: 10.1016/j.bbrc.2015.04.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 04/16/2015] [Indexed: 02/07/2023]
Abstract
The epithelial barrier is critical in the maintenance of the homeostasis of the cornea. A number of eye disorders are associated with the corneal epithelial barrier dysfunction. Viral infection is one common eye disease type. This study aims to elucidate the mechanism by which the activation of toll like receptor 3 (TLR3) in the disruption of the corneal epithelial barrier. In this study, HCE cells (a human corneal epithelial cell line) were cultured into epithelial layers using as an in vitro model of the corneal epithelial barrier. PolyI:C was used as a ligand of TLR3. The transepithelial electric resistance (TER) and permeability of the HCE epithelial layer were assessed using as the parameters to evaluate the corneal epithelial barrier integrity. The results showed that exposure to PolyI:C markedly decreased the TER and increased the permeability of the HCE epithelial layers; the levels of cell junction protein, E-cadherin, were repressed by PolyI:C via increasing histone deacetylase-1 (HDAC1), the latter binding to the promoter of E-cadherin and repressed the transcription of E-cadherin. The addition of butyrate (an inhibitor of HDAC1) to the culture blocked the corneal epithelial barrier dysfunction caused by PolyI:C. In conclusion, activation of TLR3 can disrupt the corneal epithelial barrier, which can be blocked by the inhibitor of HDAC1.
Collapse
Affiliation(s)
- Jie Wei
- Department of Ophthalmology, General Hospital of Jinan Military Command, Jinan 250031, China
| | - Hua Jiang
- Department of Ophthalmology, General Hospital of Jinan Military Command, Jinan 250031, China.
| | - Hongrui Gao
- Department of Ophthalmology, General Hospital of Jinan Military Command, Jinan 250031, China
| | - Guangjie Wang
- Department of Ophthalmology, General Hospital of Jinan Military Command, Jinan 250031, China
| |
Collapse
|