1
|
Aguirre-Botero MC, Pacios O, Celli S, Aliprandini E, Gladston A, Thiberge JM, Formaglio P, Amino R. Late killing of Plasmodium berghei sporozoites in the liver by an anti-circumsporozoite protein antibody. eLife 2025; 14:RP105291. [PMID: 39951341 PMCID: PMC11828480 DOI: 10.7554/elife.105291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025] Open
Abstract
Plasmodium sporozoites are inoculated into the skin during the bite of an infected mosquito. This motile stage invades cutaneous blood vessels to reach the liver and infect hepatocytes. The circumsporozoite protein (CSP) on the sporozoite surface is an important antigen targeted by protective antibodies (Abs) in immunoprophylaxis or elicited by vaccination. Antibody-mediated protection mainly unfolds during parasite skin migration, but rare and potent protective Abs additionally neutralize sporozoite in the liver. Here, using a rodent malaria model, microscopy and bioluminescence imaging, we show a late-neutralizing effect of 3D11 anti-CSP monoclonal antibody (mAb) in the liver. The need for several hours to eliminate parasites in the liver was associated with an accumulation of 3D11 effects, starting with the inhibition of sporozoite motility, sinusoidal extravasation, cell invasion, and terminating with the parasite killing inside the invaded cell. This late-neutralizing activity could be helpful to identify more potent therapeutic mAbs with stronger activity in the liver.
Collapse
Affiliation(s)
| | - Olga Pacios
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity, BioSPCParisFrance
| | - Susanna Celli
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity, BioSPCParisFrance
| | - Eduardo Aliprandini
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity, BioSPCParisFrance
| | - Anisha Gladston
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity, BioSPCParisFrance
- Department of Life Sciences, Imperial College LondonLondonUnited Kingdom
| | - Jean-Michel Thiberge
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity, BioSPCParisFrance
| | - Pauline Formaglio
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity, BioSPCParisFrance
| | - Rogerio Amino
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity, BioSPCParisFrance
| |
Collapse
|
2
|
Sattler JM, Keiber L, Abdelrahim A, Zheng X, Jäcklin M, Zechel L, Moreau CA, Steinbrück S, Fischer M, Janse CJ, Hoffmann A, Hentzschel F, Frischknecht F. Experimental vaccination by single dose sporozoite injection of blood-stage attenuated malaria parasites. EMBO Mol Med 2024; 16:2060-2079. [PMID: 39103697 PMCID: PMC11392930 DOI: 10.1038/s44321-024-00101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Malaria vaccination approaches using live Plasmodium parasites are currently explored, with either attenuated mosquito-derived sporozoites or attenuated blood-stage parasites. Both approaches would profit from the availability of attenuated and avirulent parasites with a reduced blood-stage multiplication rate. Here we screened gene-deletion mutants of the rodent parasite P. berghei and the human parasite P. falciparum for slow growth. Furthermore, we tested the P. berghei mutants for avirulence and resolving blood-stage infections, while preserving sporozoite formation and liver infection. Targeting 51 genes yielded 18 P. berghei gene-deletion mutants with several mutants causing mild infections. Infections with the two most attenuated mutants either by blood stages or by sporozoites were cleared by the immune response. Immunization of mice led to protection from disease after challenge with wild-type sporozoites. Two of six generated P. falciparum gene-deletion mutants showed a slow growth rate. Slow-growing, avirulent P. falciparum mutants will constitute valuable tools to inform on the induction of immune responses and will aid in developing new as well as safeguarding existing attenuated parasite vaccines.
Collapse
Affiliation(s)
- Julia M Sattler
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Lukas Keiber
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Aiman Abdelrahim
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Xinyu Zheng
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Martin Jäcklin
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Luisa Zechel
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Catherine A Moreau
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
| | - Smilla Steinbrück
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Manuel Fischer
- Department of Neuroradiology, Heidelberg University Medical School, 69120, Heidelberg, Germany
| | - Chris J Janse
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Angelika Hoffmann
- Department of Neuroradiology, Heidelberg University Medical School, 69120, Heidelberg, Germany
- Department of Neuroradiology, University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, 3010, Bern, Switzerland
| | - Franziska Hentzschel
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany.
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
3
|
Lin L, Liu Y, Liang R, Guo Y, Xu R, Fan R, Jiao Z, Zhao W, Yue L, Lu M, Liu S, Su XZ, Li J. Size-dependent enhancement of gene expression by Plasmodium 5'UTR introns. Parasit Vectors 2024; 17:238. [PMID: 38802937 PMCID: PMC11131223 DOI: 10.1186/s13071-024-06319-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Eukaryotic genes contain introns that are removed by the spliceosomal machinery during mRNA maturation. Introns impose a huge energetic burden on a cell; therefore, they must play an essential role in maintaining genome stability and/or regulating gene expression. Many genes (> 50%) in Plasmodium parasites contain predicted introns, including introns in 5' and 3' untranslated regions (UTR). However, the roles of UTR introns in the gene expression of malaria parasites remain unknown. METHODS In this study, an episomal dual-luciferase assay was developed to evaluate gene expression driven by promoters with or without a 5'UTR intron from four Plasmodium yoelii genes. To investigate the effect of the 5'UTR intron on endogenous gene expression, the pytctp gene was tagged with 3xHA at the N-terminal of the coding region, and parasites with or without the 5'UTR intron were generated using the CRISPR/Cas9 system. RESULTS We showed that promoters with 5'UTR introns had higher activities in driving gene expression than those without 5'UTR introns. The results were confirmed in recombinant parasites expressing an HA-tagged gene (pytctp) driven by promoter with or without 5'UTR intron. The enhancement of gene expression was intron size dependent, but not the DNA sequence, e.g. the longer the intron, the higher levels of expression. Similar results were observed when a promoter from one strain of P. yoelii was introduced into different parasite strains. Finally, the 5'UTR introns were alternatively spliced in different parasite development stages, suggesting an active mechanism employed by the parasites to regulate gene expression in various developmental stages. CONCLUSIONS Plasmodium 5'UTR introns enhance gene expression in a size-dependent manner; the presence of alternatively spliced mRNAs in different parasite developmental stages suggests that alternative slicing of 5'UTR introns is one of the key mechanisms in regulating parasite gene expression and differentiation.
Collapse
Affiliation(s)
- Lirong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yanjing Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Rui Liang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yue Guo
- School of Medicine, Huzhou University, Huzhou, 313000, Zhejiang, China
| | - Ruixue Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Ruoxi Fan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Zhiwei Jiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Wenting Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Lixia Yue
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Mingke Lu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Shengfa Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20850, USA.
| | - Jian Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
4
|
Uribe-Querol E, Rosales C. Neutrophils versus Protozoan Parasites: Plasmodium, Trichomonas, Leishmania, Trypanosoma, and Entameoba. Microorganisms 2024; 12:827. [PMID: 38674770 PMCID: PMC11051968 DOI: 10.3390/microorganisms12040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Neutrophils are the most abundant polymorphonuclear granular leukocytes in human blood and are an essential part of the innate immune system. Neutrophils are efficient cells that eliminate pathogenic bacteria and fungi, but their role in dealing with protozoan parasitic infections remains controversial. At sites of protozoan parasite infections, a large number of infiltrating neutrophils is observed, suggesting that neutrophils are important cells for controlling the infection. Yet, in most cases, there is also a strong inflammatory response that can provoke tissue damage. Diseases like malaria, trichomoniasis, leishmaniasis, Chagas disease, and amoebiasis affect millions of people globally. In this review, we summarize these protozoan diseases and describe the novel view on how neutrophils are involved in protection from these parasites. Also, we present recent evidence that neutrophils play a double role in these infections participating both in control of the parasite and in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- Laboratorio de Biología del Desarrollo, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
5
|
Patel H, Minkah NK, Kumar S, Zanghi G, Schepis A, Goswami D, Armstrong J, Abatiyow BA, Betz W, Reynolds L, Camargo N, Sheikh AA, Kappe SHI. Malaria blood stage infection suppresses liver stage infection via host-induced interferons but not hepcidin. Nat Commun 2024; 15:2104. [PMID: 38453916 PMCID: PMC10920859 DOI: 10.1038/s41467-024-46270-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024] Open
Abstract
Malaria-causing Plasmodium parasites first replicate as liver stages (LS), which then seed symptomatic blood stage (BS) infection. Emerging evidence suggests that these stages impact each other via perturbation of host responses, and this influences the outcome of natural infection. We sought to understand whether the parasite stage interplay would affect live-attenuated whole parasite vaccination, since the efficacy of whole parasite vaccines strongly correlates with their extend of development in the liver. We thus investigated the impact of BS infection on LS development of genetically attenuated and wildtype parasites in female rodent malaria models and observed that for both, LS infection suffered severe suppression during concurrent BS infection. Strikingly and in contrast to previously published studies, we find that the BS-induced iron-regulating hormone hepcidin is not mediating suppression of LS development. Instead, we demonstrate that BS-induced host interferons are the main mediators of LS developmental suppression. The type of interferon involved depended on the BS-causing parasite species. Our study provides important mechanistic insights into the BS-mediated suppression of LS development. This has direct implications for understanding the outcomes of live-attenuated Plasmodium parasite vaccination in malaria-endemic areas and might impact the epidemiology of natural malaria infection.
Collapse
Affiliation(s)
- Hardik Patel
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nana K Minkah
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Gigliola Zanghi
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Antonino Schepis
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Debashree Goswami
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Janna Armstrong
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Biley A Abatiyow
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Will Betz
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Laura Reynolds
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Amina A Sheikh
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
6
|
Douradinha B. Does hydrogen peroxide contribute to the immunity against Malaria induced by whole attenuated plasmodial sporozoites? Mol Biochem Parasitol 2023; 256:111589. [PMID: 37604406 DOI: 10.1016/j.molbiopara.2023.111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Plasmodium sporozoites can block apoptotic pathways within host hepatocytes, ensuring the survival of the parasite. However, attenuated plasmodial sporozoites are unable to prevent apoptosis, which provides many parasite antigens to immune cells. This exposure leads to protection against Malaria in both human and animal models. If these hosts are later inoculated with infectious sporozoites, apoptosis of infected hepatocytes will occur, preventing parasite development. Considering that hydrogen peroxide can induce apoptosis, it is plausible that it plays a role in the mechanisms associated with the protection mediated by attenuated plasmodial sporozoites. Based on published results that describe the relationship between Plasmodium, hydrogen peroxide, and apoptosis, a rational explanation can be provided for this hypothesis.
Collapse
Affiliation(s)
- Bruno Douradinha
- Nykode Therapeutics ASA, Oslo Science Park, Gaustadalléen 21, Oslo 0349, Norway.
| |
Collapse
|
7
|
Belhimeur S, Briquet S, Peronet R, Pham J, Commere PH, Formaglio P, Amino R, Scherf A, Silvie O, Mecheri S. Plasmodium-encoded murine IL-6 impairs liver stage infection and elicits long-lasting sterilizing immunity. Front Immunol 2023; 14:1143012. [PMID: 37143657 PMCID: PMC10152192 DOI: 10.3389/fimmu.2023.1143012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Plasmodium sporozoites (SPZ) inoculated by Anopheles mosquitoes into the skin of the mammalian host migrate to the liver before infecting hepatocytes. Previous work demonstrated that early production of IL-6 in the liver is detrimental for the parasite growth, contributing to the acquisition of a long-lasting immune protection after immunization with live attenuated parasites. Methods Considering that IL-6 as a critical pro-inflammatory signal, we explored a novel approach whereby the parasite itself encodes for the murine IL-6 gene. We generated transgenic P. berghei parasites that express murine IL-6 during liver stage development. Results and Discussion Though IL-6 transgenic SPZ developed into exo-erythrocytic forms in hepatocytes in vitro and in vivo, these parasites were not capable of inducing a blood stage infection in mice. Furthermore, immunization of mice with transgenic IL-6-expressing P. berghei SPZ elicited a long-lasting CD8+ T cell-mediated protective immunity against a subsequent infectious SPZ challenge. Collectively, this study demonstrates that parasite-encoded IL-6 attenuates parasite virulence with abortive liver stage of Plasmodium infection, forming the basis of a novel suicide vaccine strategy to elicit protective antimalarial immunity.
Collapse
Affiliation(s)
- Selma Belhimeur
- Institut Pasteur, Université Paris Cité, CNRS ERL9195 and Inserm U1201, Unité de Biologie des Interactions Hôte Parasites, Paris, France
| | - Sylvie Briquet
- Sorbonne Université, Inserm U1135, CNRS ERL 8255, Paris, France
| | - Roger Peronet
- Institut Pasteur, Université Paris Cité, CNRS ERL9195 and Inserm U1201, Unité de Biologie des Interactions Hôte Parasites, Paris, France
| | - Jennifer Pham
- Institut Pasteur, Université Paris Cité, Centre d’élevage et de production des anophèles (CEPIA), Paris, France
| | | | - Pauline Formaglio
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity Unit, Paris, France
| | - Rogerio Amino
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity Unit, Paris, France
| | - Artur Scherf
- Institut Pasteur, Université Paris Cité, CNRS ERL9195 and Inserm U1201, Unité de Biologie des Interactions Hôte Parasites, Paris, France
| | - Olivier Silvie
- Sorbonne Université, Inserm U1135, CNRS ERL 8255, Paris, France
| | - Salaheddine Mecheri
- Institut Pasteur, Université Paris Cité, CNRS ERL9195 and Inserm U1201, Unité de Biologie des Interactions Hôte Parasites, Paris, France
- *Correspondence: Salaheddine Mecheri,
| |
Collapse
|
8
|
Grand M, Waqasi M, Demarta-Gatsi C, Wei Y, Peronet R, Commere PH, Puig A, Axelrod J, Caldelari R, Heussler V, Amino R, Mecheri S. Hepatic Inflammation Confers Protective Immunity Against Liver Stages of Malaria Parasite. Front Immunol 2020; 11:585502. [PMID: 33329563 PMCID: PMC7710885 DOI: 10.3389/fimmu.2020.585502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Deciphering the mechanisms by which Plasmodium parasites develop inside hepatocytes is an important step toward the understanding of malaria pathogenesis. We propose that the nature and the magnitude of the inflammatory response in the liver are key for the establishment of the infection. Here, we used mice deficient in the multidrug resistance-2 gene (Mdr2-/-)-encoded phospholipid flippase leading to the development of liver inflammation. Infection of Mdr2-/- mice with Plasmodium berghei ANKA (PbANKA) sporozoites (SPZ) resulted in the blockade of hepatic exo-erythrocytic forms (EEFs) with no further development into blood stage parasites. Interestingly, cultured primary hepatocytes from mutant and wild-type mice are equally effective in supporting EEF development. The abortive infection resulted in a long-lasting immunity in Mdr2-/- mice against infectious SPZ where neutrophils and IL-6 appear as key effector components along with CD8+ and CD4+ effector and central memory T cells. Inflammation-induced breakdown of liver tolerance promotes anti-parasite immunity and provides new approaches for the design of effective vaccines against malaria disease.
Collapse
Affiliation(s)
- Morgane Grand
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France
- CNRS ERL9195, Paris, France
- INSERM U1201, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Mishelle Waqasi
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France
- CNRS ERL9195, Paris, France
- INSERM U1201, Paris, France
| | - Claudia Demarta-Gatsi
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France
- CNRS ERL9195, Paris, France
- INSERM U1201, Paris, France
| | - Yu Wei
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai, China
- Institut Pasteur, Unité de Virologie Moléculaire et Vaccinologie, Paris, France
| | - Roger Peronet
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France
- CNRS ERL9195, Paris, France
- INSERM U1201, Paris, France
| | | | - Amandine Puig
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France
- CNRS ERL9195, Paris, France
- INSERM U1201, Paris, France
| | - Jonathan Axelrod
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Organization, Jerusalem, Israel
| | - Reto Caldelari
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Volker Heussler
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Rogerio Amino
- Institut Pasteur, Malaria Infection and Immunity Unit, Paris, France
| | - Salaheddine Mecheri
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France
- CNRS ERL9195, Paris, France
- INSERM U1201, Paris, France
| |
Collapse
|
9
|
Demarta‐Gatsi C, Rivkin A, Di Bartolo V, Peronet R, Ding S, Commere P, Guillonneau F, Bellalou J, Brûlé S, Abou Karam P, Cohen SR, Lagache T, Janse CJ, Regev‐Rudzki N, Mécheri S. Histamine releasing factor and elongation factor 1 alpha secreted via malaria parasites extracellular vesicles promote immune evasion by inhibiting specific T cell responses. Cell Microbiol 2019; 21:e13021. [DOI: 10.1111/cmi.13021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Claudia Demarta‐Gatsi
- Institut PasteurUnité de Biologie des Interactions Hôte Parasites Paris France
- Department of Parasites and Insect vectors, Institut PasteurCNRS ERL9195 Paris France
- Department of Parasites and Insect vectors, Institut PasteurINSERM U1201 Paris France
| | - Anna Rivkin
- Department of Biomolecular SciencesWeizmann Institute of Science Rehovot Israel
| | - Vincenzo Di Bartolo
- Institut Pasteur, Lymphocyte Cell Biology Unit, Department of ImmunologyINSERM U1221 Paris France
| | - Roger Peronet
- Institut PasteurUnité de Biologie des Interactions Hôte Parasites Paris France
- Department of Parasites and Insect vectors, Institut PasteurCNRS ERL9195 Paris France
- Department of Parasites and Insect vectors, Institut PasteurINSERM U1201 Paris France
| | - Shuai Ding
- Institut PasteurUnité de Biologie des Interactions Hôte Parasites Paris France
- Department of Parasites and Insect vectors, Institut PasteurCNRS ERL9195 Paris France
- Department of Parasites and Insect vectors, Institut PasteurINSERM U1201 Paris France
| | | | - François Guillonneau
- 3P5 proteomics Facility of the Université Paris DescartesInstitut Cochin Paris France
| | - Jacques Bellalou
- Platform of Recombinant ProteinsC2RT—Institut Pasteur Paris France
| | - Sébastien Brûlé
- Platform of Molecular BiophysicsInstitut Pasteur Paris France
| | - Paula Abou Karam
- Department of Biomolecular SciencesWeizmann Institute of Science Rehovot Israel
| | - Sidney R. Cohen
- Department of Chemical Research SupportWeizmann Institute of Science Rehovot Israel
| | - Thibault Lagache
- Department of Biological SciencesColumbia University New York New York
| | - Chris J. Janse
- Leiden Malaria Research Group, ParasitologyLeiden University Medical Center (LUMC) Leiden The Netherlands
| | - Neta Regev‐Rudzki
- Department of Biomolecular SciencesWeizmann Institute of Science Rehovot Israel
| | - Salaheddine Mécheri
- Institut PasteurUnité de Biologie des Interactions Hôte Parasites Paris France
- Department of Parasites and Insect vectors, Institut PasteurCNRS ERL9195 Paris France
- Department of Parasites and Insect vectors, Institut PasteurINSERM U1201 Paris France
| |
Collapse
|
10
|
Cui A, Li Y, Zhou X, Wang L, Luo E. Characterization of Plasmodium berghei Homologues of T-cell Immunomodulatory Protein as a New Potential Candidate for Protecting against Experimental Cerebral Malaria. THE KOREAN JOURNAL OF PARASITOLOGY 2019; 57:101-115. [PMID: 31104402 PMCID: PMC6526220 DOI: 10.3347/kjp.2019.57.2.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 11/27/2022]
Abstract
The pathogenesis of cerebral malaria is biologically complex and involves multi-factorial mechanisms such as microvascular congestion, immunopathology by the pro-inflammatory cytokine and endothelial dysfunction. Recent data have suggested that a pleiotropic T-cell immunomodulatory protein (TIP) could effectively mediate inflammatory cytokines of mammalian immune response against acute graft-versus-host disease in animal models. In this study, we identified a conserved homologue of TIP in Plasmodium berghei (PbTIP) as a membrane protein in Plasmodium asexual stage. Compared with PBS control group, the pathology of experimental cerebral malaria (ECM) in rPbTIP intravenous injection (i.v.) group was alleviated by the downregulation of pro-inflammatory responses, and rPbTIP i.v. group elicited an expansion of regulatory T-cell response. Therefore, rPbTIP i.v. group displayed less severe brain pathology and feverish mice in rPbTIP i.v. group died from ECM. This study suggested that PbTIP may be a novel promising target to alleviate the severity of ECM.
Collapse
Affiliation(s)
- Ai Cui
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yucen Li
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xia Zhou
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Lin Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Enjie Luo
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
11
|
Abstract
Neutrophils are abundant in the circulation and are one of the immune system's first lines of defense against infection. There has been substantial work carried out investigating the role of neutrophils in malaria and it is clear that during infection neutrophils are activated and are capable of clearing malaria parasites by a number of mechanisms. This review focuses on neutrophil responses to human malarias, summarizing evidence which helps us understand where neutrophils are, what they are doing, how they interact with parasites as well as their potential role in vaccine mediated immunity. We also outline future research priorities for these, the most abundant of leukocytes.
Collapse
Affiliation(s)
- Elizabeth H Aitken
- Department of Medicine at Royal Melbourne Hospital, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Agersew Alemu
- Department of Medicine at Royal Melbourne Hospital, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Rogerson
- Department of Medicine at Royal Melbourne Hospital, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
12
|
The Glycosylphosphatidylinositol Transamidase Complex Subunit PbGPI16 of Plasmodium berghei Is Important for Inducing Experimental Cerebral Malaria. Infect Immun 2018; 86:IAI.00929-17. [PMID: 29784863 DOI: 10.1128/iai.00929-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/18/2018] [Indexed: 02/07/2023] Open
Abstract
In animal models of experimental cerebral malaria (ECM), the glycosylphosphatidylinositols (GPIs) and GPI anchors are the major factors that induce nuclear factor kappa B (NF-κB) activation and proinflammatory responses, which contribute to malaria pathogenesis. GPIs and GPI anchors are transported to the cell surface via a process called GPI transamidation, which involves the GPI transamidase (GPI-T) complex. In this study, we showed that GPI16, one of the GPI-T subunits, is highly conserved among Plasmodium species. Genetic knockout of pbgpi16 (Δpbgpi16) in the rodent malaria parasite Plasmodium berghei strain ANKA led to a significant reduction of the amounts of GPIs in the membranes of merozoites, as well as surface display of several GPI-anchored merozoite surface proteins. Compared with the wild-type parasites, Δpbgpi16 parasites in C57BL/6 mice caused much less NF-κB activation and elicited a substantially attenuated T helper type 1 response. As a result, Δpbgpi16 mutant-infected mice displayed much less severe brain pathology, and considerably fewer Δpbgpi16 mutant-infected mice died from ECM. This study corroborated the GPI toxin as a significant inducer of ECM and further suggested that vaccines against parasite GPIs may be a promising strategy to limit the severity of malaria.
Collapse
|
13
|
Silvie O, Amino R, Hafalla JC. Tissue-specific cellular immune responses to malaria pre-erythrocytic stages. Curr Opin Microbiol 2017; 40:160-167. [PMID: 29217460 DOI: 10.1016/j.mib.2017.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 11/30/2022]
Abstract
Complete and long-lasting protective immunity against malaria can be achieved through vaccination with invasive live attenuated Plasmodium sporozoites, the motile stage inoculated in the host skin during a mosquito bite. Protective immunity relies primarily on effector CD8+ T cells targeting the parasite in the liver. Understanding the tissue-specific features of the immune response is emerging as a vital requirement for understanding protective immunity. The small parasite inoculum, the scarcity of infected cells and the tolerogenic properties of the liver represent hurdles for the establishment of protective immunity in endemic areas. In this review, we discuss recent advances on liver-specific features of immunity including innate recognition of malaria pre-erythrocytic stages, CD8+ T cell interactions with infected hepatocytes, antigen presentation for effective CD8+ T cell responses and generation of liver-resident memory CD8+ T cells. A better understanding of the factors involved in the induction and maintenance of effector CD8+ T cell immunity against malaria pre-erythrocytic stages is crucial for the development of an effective vaccine targeting the initial phase of malaria infection.
Collapse
Affiliation(s)
- Olivier Silvie
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France.
| | - Rogerio Amino
- Unit of Malaria Infection and Immunity, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.
| | - Julius Clemence Hafalla
- Immunology and Infection Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom.
| |
Collapse
|
14
|
Demarta-Gatsi C, Peronet R, Smith L, Thiberge S, Ménard R, Mécheri S. Immunological memory to blood-stage malaria infection is controlled by the histamine releasing factor (HRF) of the parasite. Sci Rep 2017; 7:9129. [PMID: 28831137 PMCID: PMC5567273 DOI: 10.1038/s41598-017-09684-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/28/2017] [Indexed: 02/07/2023] Open
Abstract
While most subunit malaria vaccines provide only limited efficacy, pre-erythrocytic and erythrocytic genetically attenuated parasites (GAP) have been shown to confer complete sterilizing immunity. We recently generated a Plasmodium berghei (PbNK65) parasite that lacks a secreted factor, the histamine releasing factor (HRF) (PbNK65 hrfΔ), and induces in infected mice a self-resolving blood stage infection accompanied by a long lasting immunity. Here, we explore the immunological mechanisms underlying the anti-parasite protective properties of the mutant PbNK65 hrfΔ and demonstrate that in addition to an up-regulation of IL-6 production, CD4+ but not CD8+ T effector lymphocytes are indispensable for the clearance of malaria infection. Maintenance of T cell-associated protection is associated with the reduction in CD4+PD-1+ and CD8+PD-1+ T cell numbers. A higher number of central and effector memory B cells in mutant-infected mice also plays a pivotal role in protection. Importantly, we also demonstrate that prior infection with WT parasites followed by a drug cure does not prevent the induction of PbNK65 hrfΔ-induced protection, suggesting that such protection in humans may be efficient even in individuals that have been infected and who repeatedly received antimalarial drugs.
Collapse
Affiliation(s)
- Claudia Demarta-Gatsi
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, F-75015, France.,CNRS ERL9195, Paris, F-75015, France.,INSERM U1201, Paris, F-75015, France
| | - Roger Peronet
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, F-75015, France.,CNRS ERL9195, Paris, F-75015, France.,INSERM U1201, Paris, F-75015, France
| | - Leanna Smith
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, F-75015, France.,CNRS ERL9195, Paris, F-75015, France.,INSERM U1201, Paris, F-75015, France
| | - Sabine Thiberge
- Institut Pasteur, Unité de Biologie et Génétique du Paludisme, F-75015, Paris, France
| | - Robert Ménard
- Institut Pasteur, Unité de Biologie et Génétique du Paludisme, F-75015, Paris, France
| | - Salaheddine Mécheri
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, F-75015, France. .,CNRS ERL9195, Paris, F-75015, France. .,INSERM U1201, Paris, F-75015, France.
| |
Collapse
|
15
|
Roussilhon C, Bang G, Bastaert F, Solhonne B, Garcia-Verdugo I, Peronet R, Druilhe P, Sakuntabhai A, Mecheri S, Sallenave JM. The antimicrobial molecule trappin-2/elafin has anti-parasitic properties and is protective in vivo in a murine model of cerebral malaria. Sci Rep 2017; 7:42243. [PMID: 28181563 PMCID: PMC5299836 DOI: 10.1038/srep42243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/05/2017] [Indexed: 11/18/2022] Open
Abstract
According to the WHO, and despite reduction in mortality rates, there were an estimated 438 000 malaria deaths in 2015. Therefore new antimalarials capable of limiting organ damage are still required. We show that systemic and lung adenovirus (Ad)-mediated over-expression of trappin-2 (T-2) an antibacterial molecule with anti-inflammatory activity, increased mice survival following infection with the cerebral malaria-inducing Plasmodium berghei ANKA (PbANKA) strain. Systemically, T-2 reduced PbANKA sequestration in spleen, lung, liver and brain, associated with a decrease in pro-inflammatory cytokines (eg TNF-α in spleen and lung) and an increase in IL-10 production in the lung. Similarly, local lung instillation of Ad-T-2 resulted in a reduced organ parasite sequestration and a shift towards an anti-inflammatory/repair response, potentially implicating monocytes in the protective phenotype. Relatedly, we demonstrated in vitro that human monocytes incubated with Plasmodium falciparum-infected red blood cells (Pf-iRBCs) and IgGs from hyper-immune African human sera produced T-2 and that the latter colocalized with merozoites and inhibited Pf multiplication. This array of data argues for the first time for the potential therapeutic usefulness of this host defense peptide in human malaria patients, with the aim to limit acute lung injury and respiratory distress syndrom often observed during malaria episodes.
Collapse
Affiliation(s)
- Christian Roussilhon
- Unité de génétique fonctionnelle des maladies infectieuses and CNRS Unité de recherche associée 3012; Paris, 75015, France
| | - Gilles Bang
- Unité de génétique fonctionnelle des maladies infectieuses and CNRS Unité de recherche associée 3012; Paris, 75015, France
| | - Fabien Bastaert
- Unité de Défense Innée et Inflammation, Institut Pasteur, 25 rue du Dr Roux, Paris, 75015, France
- INSERM U874, Institut Pasteur
- INSERM U1152, Faculté de Médicine site Bichat, Université Paris Diderot, Université Sorbonne Paris-Cité, 16, rue Henri Huchard, Paris, 75018, France
| | - Brigitte Solhonne
- Unité de Défense Innée et Inflammation, Institut Pasteur, 25 rue du Dr Roux, Paris, 75015, France
- INSERM U874, Institut Pasteur
- INSERM U1152, Faculté de Médicine site Bichat, Université Paris Diderot, Université Sorbonne Paris-Cité, 16, rue Henri Huchard, Paris, 75018, France
| | - Ignacio Garcia-Verdugo
- Unité de Défense Innée et Inflammation, Institut Pasteur, 25 rue du Dr Roux, Paris, 75015, France
- INSERM U874, Institut Pasteur
- INSERM U1152, Faculté de Médicine site Bichat, Université Paris Diderot, Université Sorbonne Paris-Cité, 16, rue Henri Huchard, Paris, 75018, France
| | - Roger Peronet
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, CNRS ERL9195 and INSERM U1201, Paris F-75015, France
- CNRS ERL9195 and INSERM U1201, Paris F-75015, France
- INSERM U1201, Paris F-75015, France
| | | | - Anavaj Sakuntabhai
- Unité de génétique fonctionnelle des maladies infectieuses and CNRS Unité de recherche associée 3012; Paris, 75015, France
| | - Salaheddine Mecheri
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, CNRS ERL9195 and INSERM U1201, Paris F-75015, France
- CNRS ERL9195 and INSERM U1201, Paris F-75015, France
- INSERM U1201, Paris F-75015, France
| | - Jean-Michel Sallenave
- Unité de Défense Innée et Inflammation, Institut Pasteur, 25 rue du Dr Roux, Paris, 75015, France
- INSERM U874, Institut Pasteur
- INSERM U1152, Faculté de Médicine site Bichat, Université Paris Diderot, Université Sorbonne Paris-Cité, 16, rue Henri Huchard, Paris, 75018, France
| |
Collapse
|
16
|
Abstract
The translationally controlled tumor protein (TCTP) is a small, multifunctional protein found in most, if not all, eukaryotic lineages, involved in a myriad of key regulatory processes. Among these, the control of proliferation and inhibition of cell death, as well as differentiation, are the most important, and it is probable that other responses are derived from the ability of TCTP to influence them in both unicellular and multicellular organisms. In the latter, an additional function for TCTP stems from its capacity to be secreted via a nonclassical pathway and function in a non-cell autonomous (paracrine) manner, thus affecting the responses of neighboring or distant cells to developmental or environmental stimuli (as in the case of serum TCTP/histamine-releasing factor in mammals and phloem TCTP in Arabidopsis). The additional ability to traverse membranes without a requirement for transmembrane receptors adds to its functional flexibility. The long-distance transport of TCTP mRNA and protein in plants via the vascular system supports the notion that an important aspect of TCTP function is its ability to influence the response of neighboring and distant cells to endogenous and exogenous signals in a supracellular manner. The predicted tridimensional structure of TCTPs indicates a high degree of conservation, more than its amino acid sequence similarity could suggest. However, subtle differences in structure could lead to different activities, as evidenced by TCTPs secreted by Plasmodium spp. Similar structural variations in animal and plant TCTPs, likely the result of convergent evolution, could lead to deviations from the canonical function of this group of proteins, which could have an impact from a biomedical and agricultural perspectives.
Collapse
Affiliation(s)
| | - Roberto Ruiz-Medrano
- Department of Biotechnology and Bioengineering, Center for Research and Advanced Studies of the National Polytechnic Institute, Avenida IPN 2508, Colonia San Pedro Zacatenco, México City, 07360, México.
| |
Collapse
|
17
|
Singer M, Frischknecht F. Time for Genome Editing: Next-Generation Attenuated Malaria Parasites. Trends Parasitol 2016; 33:202-213. [PMID: 27793562 DOI: 10.1016/j.pt.2016.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 12/20/2022]
Abstract
Immunization with malaria parasites that developmentally arrest in or immediately after the liver stage is the only way currently known to confer sterilizing immunity in both humans and rodent models. There are various ways to attenuate parasite development resulting in different timings of arrest, which has a significant impact on vaccination efficiency. To understand what most impacts vaccination efficiency, newly developed gain-of-function methods can now be used to generate a wide array of differently attenuated parasites. The combination of multiple attenuation approaches offers the potential to engineer efficiently attenuated Plasmodium parasites and learn about their fascinating biology at the same time. Here we discuss recent studies and the potential of targeted parasite manipulation using genome editing to develop live attenuated malaria vaccines.
Collapse
Affiliation(s)
- Mirko Singer
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| |
Collapse
|
18
|
Demarta-Gatsi C, Smith L, Thiberge S, Peronet R, Commere PH, Matondo M, Apetoh L, Bruhns P, Ménard R, Mécheri S. Protection against malaria in mice is induced by blood stage-arresting histamine-releasing factor (HRF)-deficient parasites. J Exp Med 2016; 213:1419-28. [PMID: 27432939 PMCID: PMC4986535 DOI: 10.1084/jem.20151976] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/26/2016] [Indexed: 11/04/2022] Open
Abstract
Although most vaccines against blood stage malaria in development today use subunit preparations, live attenuated parasites confer significantly broader and more lasting protection. In recent years, Plasmodium genetically attenuated parasites (GAPs) have been generated in rodent models that cause self-resolving blood stage infections and induce strong protection. All such GAPs generated so far bear mutations in housekeeping genes important for parasite development in red blood cells. In this study, using a Plasmodium berghei model compatible with tracking anti-blood stage immune responses over time, we report a novel blood stage GAP that lacks a secreted factor related to histamine-releasing factor (HRF). Lack of HRF causes an IL-6 increase, which boosts T and B cell responses to resolve infection and leave a cross-stage, cross-species, and lasting immunity. Mutant-induced protection involves a combination of antiparasite IgG2c antibodies and FcγR(+) CD11b(+) cell phagocytes, especially neutrophils, which are sufficient to confer protection. This immune-boosting GAP highlights an important role of opsonized parasite-mediated phagocytosis, which may be central to protection induced by all self-resolving blood stage GAP infections.
Collapse
Affiliation(s)
- Claudia Demarta-Gatsi
- Unité de Biologie des Interactions Hôte Parasites, Centre National de la Recherche Scientifique ERL9195, Institut National de la Santé et de la Recherche Médicale U1201, Institut Pasteur, F-75015 Paris, France
| | - Leanna Smith
- Unité de Biologie des Interactions Hôte Parasites, Centre National de la Recherche Scientifique ERL9195, Institut National de la Santé et de la Recherche Médicale U1201, Institut Pasteur, F-75015 Paris, France
| | - Sabine Thiberge
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, F-75015 Paris, France
| | - Roger Peronet
- Unité de Biologie des Interactions Hôte Parasites, Centre National de la Recherche Scientifique ERL9195, Institut National de la Santé et de la Recherche Médicale U1201, Institut Pasteur, F-75015 Paris, France
| | | | - Mariette Matondo
- Spectrométrie de Masse Structurale et Protéomique, Institut Pasteur, F-75015 Paris, France
| | - Lionel Apetoh
- Institut National de la Santé et de la Recherche Médicale U866, Université Bourgogne Franche-Comté et Centre Georges François Leclerc, 21000 Dijon, France
| | - Pierre Bruhns
- Anticorps en Thérapie et Pathologie, Institut National de la Santé et de la Recherche Médicale U1222, Institut Pasteur, F-75015 Paris, France
| | - Robert Ménard
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, F-75015 Paris, France
| | - Salaheddine Mécheri
- Unité de Biologie des Interactions Hôte Parasites, Centre National de la Recherche Scientifique ERL9195, Institut National de la Santé et de la Recherche Médicale U1201, Institut Pasteur, F-75015 Paris, France
| |
Collapse
|
19
|
Mita T, Tachibana SI, Hashimoto M, Hirai M. Plasmodium falciparum kelch 13: a potential molecular marker for tackling artemisinin-resistant malaria parasites. Expert Rev Anti Infect Ther 2015; 14:125-35. [PMID: 26535806 DOI: 10.1586/14787210.2016.1106938] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although artemisinin combination therapies have been deployed as a first-line treatment for uncomplicated malaria in almost all endemic countries, artemisinin-resistant parasites have emerged and have gradually spread across the Greater Mekong subregions. There is growing concern that the resistant parasites may migrate to or emerge indigenously in sub-Saharan Africa, which might provoke a global increase in malaria-associated morbidity and mortality. Therefore, development of molecular markers that enable identification of artemisinin resistance with high sensitivity is urgently required to combat this issue. In 2014, a potential artemisinin-resistance responsible gene, Plasmodium falciparum kelch13, was discovered. Here, we review the genetic features of P. falciparum kelch13 and discuss its related resistant mechanisms and potential as a molecular marker.
Collapse
Affiliation(s)
- Toshihiro Mita
- a Department of Molecular and Cellular Parasitology , Juntendo University School of Medicine , Tokyo , Japan
| | - Shin-Ichiro Tachibana
- a Department of Molecular and Cellular Parasitology , Juntendo University School of Medicine , Tokyo , Japan
| | - Muneaki Hashimoto
- a Department of Molecular and Cellular Parasitology , Juntendo University School of Medicine , Tokyo , Japan
| | - Makoto Hirai
- a Department of Molecular and Cellular Parasitology , Juntendo University School of Medicine , Tokyo , Japan
| |
Collapse
|