1
|
Greene J, Snyder RA, Cotten KL, Huiszoon RC, Chu S, Braza RED, Chapin AA, Stine JM, Bentley WE, Ghodssi R, Davis KM. Yersinia pseudotuberculosis growth arrest during type-III secretion system expression is associated with altered ribosomal protein expression and decreased gentamicin susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610769. [PMID: 39282321 PMCID: PMC11398311 DOI: 10.1101/2024.09.02.610769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
It has been long appreciated that expression of the Yersinia type-III secretion system (T3SS) in culture is associated with growth arrest. Here we sought to understand whether this impacts expression of ribosomal protein genes, which were among the most highly abundant transcripts in exponential phase Yersinia pseudotuberculosis based on RNA-seq analysis. To visualize changes in ribosomal protein expression, we generated a fluorescent transcriptional reporter with the promoter upstream of rpsJ/S10 fused to a destabilized gfp variant. We confirmed reporter expression significantly increases in exponential phase and decreases as cells transition to stationary phase. We then utilized a mouse model of systemic Y. pseudotuberculosis infection to compare T3SS and S10 reporter expression during clustered bacterial growth in the spleen, and found that cells expressing high levels of the T3SS had decreased S10 levels, while cells with lower T3SS expression retained higher S10 expression. In bacteriological media, growth inhibition with T3SS induction and a reduction in S10 expression were observed in subsets of cells, while cells with high expression of both T3SS and S10 were also observed. Loss of T3SS genes resulted in rescued growth and heightened S10 expression. To understand if clustered growth impacted bacterial gene expression, we utilized droplet-based microfluidics to encapsulate bacteria in spherical agarose droplets, and also observed growth inhibition with high expression of T3SS and reduced S10 levels that better mirrored phenotypes observed in the mouse spleen. Finally, we show that T3SS expression is sufficient to promote tolerance to the ribosome-targeting antibiotic, gentamicin. Collectively, these data indicate that the growth arrest associated with T3SS induction leads to decreased expression of ribosomal protein genes, and this results in reduced antibiotic susceptibility.
Collapse
Affiliation(s)
- Justin Greene
- W. Harry Feinstone Department of Molecular Microbiology and Immunology Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Rhett A. Snyder
- W. Harry Feinstone Department of Molecular Microbiology and Immunology Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Katherine L. Cotten
- W. Harry Feinstone Department of Molecular Microbiology and Immunology Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ryan C. Huiszoon
- Institute for Systems Research, University of Maryland, College Park, MD, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
| | - Sangwook Chu
- Institute for Systems Research, University of Maryland, College Park, MD, USA
| | - Rezia Era D. Braza
- W. Harry Feinstone Department of Molecular Microbiology and Immunology Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ashley A. Chapin
- Institute for Systems Research, University of Maryland, College Park, MD, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
| | - Justin M. Stine
- Institute for Systems Research, University of Maryland, College Park, MD, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
| | - William E. Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
| | - Reza Ghodssi
- Institute for Systems Research, University of Maryland, College Park, MD, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
| | - Kimberly M. Davis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
2
|
Kravitz A, Liao M, Morota G, Tyler R, Cockrum R, Manohar BM, Ronald BSM, Collins MT, Sriranganathan N. Retrospective Single Nucleotide Polymorphism Analysis of Host Resistance and Susceptibility to Ovine Johne's Disease Using Restored FFPE DNA. Int J Mol Sci 2024; 25:7748. [PMID: 39062990 PMCID: PMC11276633 DOI: 10.3390/ijms25147748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Johne's disease (JD), also known as paratuberculosis, is a chronic, untreatable gastroenteritis of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP) infection. Evidence for host genetic resistance to disease progression exists, although it is limited due to the extended incubation period (years) and diagnostic challenges. To overcome this, previously restored formalin-fixed paraffin embedded tissue (FFPE) DNA from archived FFPE tissue cassettes was utilized for a novel retrospective case-control genome-wide association study (GWAS) on ovine JD. Samples from known MAP-infected flocks with ante- and postmortem diagnostic data were used. Cases (N = 9) had evidence of tissue infection, compared to controls (N = 25) without evidence of tissue infection despite positive antemortem diagnostics. A genome-wide efficient mixed model analysis (GEMMA) to conduct a GWAS using restored FFPE DNA SNP results from the Illumina Ovine SNP50 Bead Chip, identified 10 SNPs reaching genome-wide significance of p < 1 × 10-6 on chromosomes 1, 3, 4, 24, and 26. Pathway analysis using PANTHER and the Kyoto Encyclopedia of Genes and Genomes (KEGG) was completed on 45 genes found within 1 Mb of significant SNPs. Our work provides a framework for the novel use of archived FFPE tissues for animal genetic studies in complex diseases and further evidence for a genetic association in JD.
Collapse
Affiliation(s)
- Amanda Kravitz
- Center for One Health Research, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Mingsi Liao
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Gota Morota
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Ron Tyler
- Center for One Health Research, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Rebecca Cockrum
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - B. Murali Manohar
- Department of Veterinary Pathology, Tamilnadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, Chennai 600051, Tamil Nadu India, India
| | - B. Samuel Masilamoni Ronald
- Department of Veterinary Pathology, Tamilnadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, Chennai 600051, Tamil Nadu India, India
| | - Michael T. Collins
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nammalwar Sriranganathan
- Center for One Health Research, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
3
|
Aguilera MO, Delgui LR, Reggiori F, Romano PS, Colombo MI. Autophagy as an innate immunity response against pathogens: a Tango dance. FEBS Lett 2024; 598:140-166. [PMID: 38101809 DOI: 10.1002/1873-3468.14788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 12/17/2023]
Abstract
Intracellular infections as well as changes in the cell nutritional environment are main events that trigger cellular stress responses. One crucial cell response to stress conditions is autophagy. During the last 30 years, several scenarios involving autophagy induction or inhibition over the course of an intracellular invasion by pathogens have been uncovered. In this review, we will present how this knowledge was gained by studying different microorganisms. We intend to discuss how the cell, via autophagy, tries to repel these attacks with the objective of destroying the intruder, but also how some pathogens have developed strategies to subvert this. These two fates can be compared with a Tango, a dance originated in Buenos Aires, Argentina, in which the partner dancers are in close connection. One of them is the leader, embracing and involving the partner, but the follower may respond escaping from the leader. This joint dance is indeed highly synchronized and controlled, perfectly reflecting the interaction between autophagy and microorganism.
Collapse
Affiliation(s)
- Milton O Aguilera
- Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia-Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Facultad de Odontología, Microbiología, Parasitología e Inmunología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Laura R Delgui
- Instituto de Histología y Embriología de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Denmark
| | - Patricia S Romano
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora - Instituto de Histología y Embriología de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
- Facultad de Ciencias Médicas, Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - María I Colombo
- Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia-Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Facultad de Ciencias Médicas, Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| |
Collapse
|
4
|
Berneking L, Bekere I, Rob S, Schnapp M, Huang J, Ruckdeschel K, Aepfelbacher M. A bacterial effector protein promotes nuclear translocation of Stat3 to induce IL-10. Eur J Cell Biol 2023; 102:151364. [PMID: 37806297 DOI: 10.1016/j.ejcb.2023.151364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/22/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023] Open
Abstract
The multifunctional Yersinia effector YopM inhibits effector triggered immunity and increases production of the anti-inflammatory cytokine Interleukin-10 (IL-10) to suppress the host immune response. Previously it was shown that YopM induces IL-10 gene expression by elevating phosphorylation of the serine-threonine kinase RSK1 in the nucleus of human macrophages. Using transcriptomics, we found that YopM strongly affects expression of genes belonging to the JAK-STAT signaling pathway. Further analysis revealed that YopM mediates nuclear translocation of the transcription factor Stat3 in Y. enterocolitica infected macrophages and that knockdown of Stat3 inhibited YopM-induced IL-10 gene expression. YopM-induced Stat3 translocation did not depend on autocrine IL-10, activation of RSK1 or tyrosine phosphorylation of Stat3. Thus, besides activation of RSK1, stimulation of nuclear translocation of Stat3 is another mechanism by which YopM increases IL-10 gene expression in macrophages.
Collapse
Affiliation(s)
- Laura Berneking
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Indra Bekere
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Sören Rob
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Marie Schnapp
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jiabin Huang
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Klaus Ruckdeschel
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
5
|
Chaukimath P, Frankel G, Visweswariah SS. The metabolic impact of bacterial infection in the gut. FEBS J 2023; 290:3928-3945. [PMID: 35731686 DOI: 10.1111/febs.16562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 08/17/2023]
Abstract
Bacterial infections of the gut are one of the major causes of morbidity and mortality worldwide. The interplay between the pathogen and the host is finely balanced, with the bacteria evolving to proliferate and establish infection. In contrast, the host mounts a response to first restrict and then eliminate the infection. The intestine is a rapidly proliferating tissue, and metabolism is tuned to cater to the demands of proliferation and differentiation along the crypt-villus axis (CVA) in the gut. As bacterial pathogens encounter the intestinal epithelium, they elicit changes in the host cell, and core metabolic pathways such as the tricarboxylic acid (TCA) cycle, lipid metabolism and glycolysis are affected. This review highlights the mechanisms utilized by diverse gut bacterial pathogens to subvert host metabolism and describes host responses to the infection.
Collapse
Affiliation(s)
- Pooja Chaukimath
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Gad Frankel
- Centre for Molecular Bacteriology and Infection and Department of Life Sciences, Imperial College, London, UK
| | - Sandhya S Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
6
|
Karthikeyan R, Gayathri P, Ramasamy S, Suvekbala V, Jagannadham MV, Rajendhran J. Transcriptome responses of intestinal epithelial cells induced by membrane vesicles of Listeria monocytogenes. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 4:100185. [PMID: 36942003 PMCID: PMC10023947 DOI: 10.1016/j.crmicr.2023.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Membrane vesicles (MVs) serve as an essential virulence factor in several pathogenic bacteria. The release of MVs by Listeria monocytogenes is only recently recognized; still, the enigmatic role of MVs in pathogenesis is yet to be established. We report the transcriptome response of Caco-2 cells upon exposure to MVs and the L. monocytogenes that leads to observe the up-regulation of autophagy-related genes in the early phase of exposure to MVs. Transcription of inflammatory cytokines is to the peak at the fourth hour of exposure. An array of differentially expressed genes was associated with actin cytoskeleton rearrangement, autophagy, cell cycle arrest, and induction of oxidative stress. At a later time point, transcriptional programs are generated upon interaction with MVs to evade innate immune signals, by modulating the expression of anti-inflammatory genes. KEGG pathway analysis is palpably confirming that MVs appear principally responsible for the induction of immune signaling pathways. Besides, MVs induced the expression of cell cycle regulatory genes, likely responsible for the ability to prolong host cell survival, thus protecting the replicative niche for L. monocytogenes. Notably, we identified several non-coding RNAs (ncRNAs), possibly involved in the regulation of early manipulation of the host gene expression, essential for the persistence of L. monocytogenes.
Collapse
Affiliation(s)
- Raman Karthikeyan
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Pratapa Gayathri
- CSIR - Centre for Cellular and Molecular Biology, Tarnaka, Hyderabad 500007, India
| | - Subbiah Ramasamy
- Department of Biochemistry, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Vemparthan Suvekbala
- EDII-Anna Business Incubation Research Foundation, University College of Engineering, BIT Campus, Anna University, Tiruchirappalli 620024, India
| | - Medicharla V. Jagannadham
- CSIR - Centre for Cellular and Molecular Biology, Tarnaka, Hyderabad 500007, India
- Corresponding authors.
| | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
- Corresponding authors.
| |
Collapse
|
7
|
Aljghami ME, Barghash MM, Majaesic E, Bhandari V, Houry WA. Cellular functions of the ClpP protease impacting bacterial virulence. Front Mol Biosci 2022; 9:1054408. [PMID: 36533084 PMCID: PMC9753991 DOI: 10.3389/fmolb.2022.1054408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/15/2022] [Indexed: 09/28/2023] Open
Abstract
Proteostasis mechanisms significantly contribute to the sculpting of the proteomes of all living organisms. ClpXP is a central AAA+ chaperone-protease complex present in both prokaryotes and eukaryotes that facilitates the unfolding and subsequent degradation of target substrates. ClpX is a hexameric unfoldase ATPase, while ClpP is a tetradecameric serine protease. Substrates of ClpXP belong to many cellular pathways such as DNA damage response, metabolism, and transcriptional regulation. Crucially, disruption of this proteolytic complex in microbes has been shown to impact the virulence and infectivity of various human pathogenic bacteria. Loss of ClpXP impacts stress responses, biofilm formation, and virulence effector protein production, leading to decreased pathogenicity in cell and animal infection models. Here, we provide an overview of the multiple critical functions of ClpXP and its substrates that modulate bacterial virulence with examples from several important human pathogens.
Collapse
Affiliation(s)
- Mazen E. Aljghami
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Marim M. Barghash
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Emily Majaesic
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Vaibhav Bhandari
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Walid A. Houry
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
5′ Untranslated mRNA Regions Allow Bypass of Host Cell Translation Inhibition by Legionella pneumophila. Infect Immun 2022; 90:e0017922. [DOI: 10.1128/iai.00179-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Legionella pneumophila
grows within membrane-bound vacuoles in alveolar macrophages during human disease. Pathogen manipulation of the host cell is driven by bacterial proteins translocated through a type IV secretion system (T4SS).
Collapse
|
9
|
Wang L, Zhang W, Wu X, Liang X, Cao L, Zhai J, Yang Y, Chen Q, Liu H, Zhang J, Ding Y, Zhu F, Tang J. MIAOME: Human Microbiome Affect The Host Epigenome. Comput Struct Biotechnol J 2022; 20:2455-2463. [PMID: 35664224 PMCID: PMC9136154 DOI: 10.1016/j.csbj.2022.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/10/2023] Open
Abstract
Besides the genetic factors having tremendous influences on the regulations of the epigenome, the microenvironmental factors have recently gained extensive attention for their roles in affecting the host epigenome. There are three major types of microenvironmental factors: microbiota-derived metabolites (MDM), microbiota-derived components (MDC) and microbiota-secreted proteins (MSP). These factors can regulate host physiology by modifying host gene expression through the three highly interconnected epigenetic mechanisms (e.g. histone modifications, DNA modifications, and non-coding RNAs). However, no database was available to provide the comprehensive factors of these types. Herein, a database entitled 'Human Microbiome Affect The Host Epigenome (MIAOME)' was constructed. Based on the types of epigenetic modifications confirmed in the literature review, the MIAOME database captures 1068 (63 genus, 281 species, 707 strains, etc.) human microbes, 91 unique microbiota-derived metabolites & components (16 fatty acids, 10 bile acids, 10 phenolic compounds, 10 vitamins, 9 tryptophan metabolites, etc.) derived from 967 microbes; 50 microbes that secreted 40 proteins; 98 microbes that directly influence the host epigenetic modification, and provides 3 classifications of the epigenome, including (1) 4 types of DNA modifications, (2) 20 histone modifications and (3) 490 ncRNAs regulations, involved in 160 human diseases. All in all, MIAOME has compiled the information on the microenvironmental factors influence host epigenome through the scientific literature and biochemical databases, and allows the collective considerations among the different types of factors. It can be freely assessed without login requirement by all users at: http://miaome.idrblab.net/ttd/
Collapse
Affiliation(s)
- Lidan Wang
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Wei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianglu Wu
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Xiao Liang
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lijie Cao
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jincheng Zhai
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yiyang Yang
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Qiuxiao Chen
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hongqing Liu
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jun Zhang
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yubin Ding
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
- Corresponding authors at: School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China (J. Tang).
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Corresponding authors at: School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China (J. Tang).
| | - Jing Tang
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
- Corresponding authors at: School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China (J. Tang).
| |
Collapse
|
10
|
Amaro F, Martín-González A. Microbial warfare in the wild-the impact of protists on the evolution and virulence of bacterial pathogens. Int Microbiol 2021; 24:559-571. [PMID: 34365574 DOI: 10.1007/s10123-021-00192-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/03/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023]
Abstract
During the long history of co-evolution with protists, bacteria have evolved defense strategies to avoid grazing and survive phagocytosis. These mechanisms allow bacteria to exploit phagocytic cells as a protective niche in which to escape from environmental stress and even replicate. Importantly, these anti-grazing mechanisms can function as virulence factors when bacteria infect humans. Here, we discuss how protozoan predation exerts a selective pressure driving bacterial virulence and shaping their genomes, and how bacteria-protist interactions might contribute to the spread of antibiotic resistance as well. We provide examples to demonstrate that besides being voracious bacterial predators, protozoa can serve as melting pots where intracellular organisms exchange genetic information, or even "training grounds" where some pathogens become hypervirulent after passing through. In this special issue, we would like to emphasize the tremendous impact of bacteria-protist interactions on human health and the potential of amoebae as model systems to study biology and evolution of a variety of pathogens. Besides, a better understanding of bacteria-protist relationships will help us expand our current understanding of bacterial virulence and, likely, how pathogens emerge.
Collapse
Affiliation(s)
- Francisco Amaro
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University of Madrid, 28040, Madrid, Spain.
| | - Ana Martín-González
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University of Madrid, 28040, Madrid, Spain
| |
Collapse
|
11
|
Extracellular Proteome Analysis Shows the Abundance of Histidine Kinase Sensor Protein, DNA Helicase, Putative Lipoprotein Containing Peptidase M75 Domain and Peptidase C39 Domain Protein in Leptospira interrogans Grown in EMJH Medium. Pathogens 2021; 10:pathogens10070852. [PMID: 34358002 PMCID: PMC8308593 DOI: 10.3390/pathogens10070852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 01/01/2023] Open
Abstract
Leptospirosis is a re-emerging form of zoonosis that is caused by the spirochete pathogen Leptospira. Extracellular proteins play critical roles in the pathogenicity and survival of this pathogen in the host and environment. Extraction and analysis of extracellular proteins is a difficult task due to the abundance of enrichments like serum and bovine serum albumin in the culture medium, as is distinguishing them from the cellular proteins that may reach the analyte during extraction. In this study, extracellular proteins were separated as secretory proteins from the culture supernatant and surface proteins were separated during the washing of the cell pellet. The proteins identified were sorted based on the proportion of the cellular fractions and the extracellular fractions. The results showed the identification of 56 extracellular proteins, out of which 19 were exclusively extracellular. For those proteins, the difference in quantity with respect to their presence within the cell was found to be up to 1770-fold. Further, bioinformatics analysis elucidated characteristics and functions of the identified proteins. Orthologs of extracellular proteins in various Leptospira species were found to be closely related among different pathogenic forms. In addition to the identification of extracellular proteins, this study put forward a method for the extraction and identification of extracellular proteins.
Collapse
|
12
|
Prevalence, Risk Factors, and Antibiogram of Nontyphoidal Salmonella from Beef in Ambo and Holeta Towns, Oromia Region, Ethiopia. Int J Microbiol 2021; 2021:6626373. [PMID: 33833809 PMCID: PMC8012149 DOI: 10.1155/2021/6626373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/02/2021] [Accepted: 03/17/2021] [Indexed: 11/17/2022] Open
Abstract
Background Salmonella has been recognized as a major cause of food-borne illness associated with the consumption of food of animal origin. The present cross-sectional study was conducted from December 2017 to May 2018 in Ambo and Holeta towns to assess the prevalence, risk factors, and antimicrobial susceptibility patterns of nontyphoidal Salmonella isolates from raw beef samples from abattoirs, butchers, and restaurants in Ambo and Holeta towns, Oromia region, Ethiopia. Methods A total of 354 beef samples were collected from abattoirs, butchers, and restaurants. Salmonella isolation and identification were carried out using standard bacteriological methods recommended by the International Organization for Standardization. Antimicrobial susceptibility testing was performed using the disk diffusion method. Besides, a structured questionnaire was used to collect sociodemographic data and potential risk factors for contamination of meat. Chi-square tests and logistic regression were used for data analyses. Results Of the total 354 meat samples examined, 20 (5.7%, 95% confidence interval (CI): 3.5–8.6) were positive for Salmonella. Two serotypes belonging to S. typhimurium (11 isolates) and I:4,5,12: i:- (9 isolates) were identified. The Salmonella detection rate in abattoirs, butchers, and restaurants was 4.2% (5/118), 8.5% (10/118), and 4.2% (5/118), respectively. The antimicrobial susceptibility test showed that 40%, 30%, and 20% of the Salmonella isolates were resistant to azithromycin, amoxicillin, and ceftriaxone, respectively. The odds of Salmonella isolation when meat handlers are illiterate were 7.8 times higher than those when they are educated to the level of secondary and above (P=0.032). Similarly, the likelihood of Salmonella isolation was 6.3 and 7.6 times higher among workers of butcher and restaurants, respectively, who had no training (P=0.003) and no knowledge (P=0.010) on food safety and hygiene. Conclusions The study showed widespread multidrug-resistant Salmonella isolates in the study areas. Therefore, raw meat consumption and indiscriminate use of antimicrobial drugs should be discouraged. Provision of food safety education for meat handlers and further surveillance of antimicrobial-resistant isolates are suggested.
Collapse
|
13
|
Fol M, Włodarczyk M, Druszczyńska M. Host Epigenetics in Intracellular Pathogen Infections. Int J Mol Sci 2020; 21:ijms21134573. [PMID: 32605029 PMCID: PMC7369821 DOI: 10.3390/ijms21134573] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022] Open
Abstract
Some intracellular pathogens are able to avoid the defense mechanisms contributing to host epigenetic modifications. These changes trigger alterations tothe chromatin structure and on the transcriptional level of genes involved in the pathogenesis of many bacterial diseases. In this way, pathogens manipulate the host cell for their own survival. The better understanding of epigenetic consequences in bacterial infection may open the door for designing new vaccine approaches and therapeutic implications. This article characterizes selected intracellular bacterial pathogens, including Mycobacterium spp., Listeria spp., Chlamydia spp., Mycoplasma spp., Rickettsia spp., Legionella spp. and Yersinia spp., which can modulate and reprogram of defense genes in host innate immune cells.
Collapse
Affiliation(s)
- Marek Fol
- Correspondence: ; Tel.: +48-42-635-44-72
| | | | | |
Collapse
|
14
|
Kuss-Duerkop SK, Keestra-Gounder AM. NOD1 and NOD2 Activation by Diverse Stimuli: a Possible Role for Sensing Pathogen-Induced Endoplasmic Reticulum Stress. Infect Immun 2020; 88:e00898-19. [PMID: 32229616 PMCID: PMC7309630 DOI: 10.1128/iai.00898-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prompt recognition of microbes by cells is critical to eliminate invading pathogens. Some cell-associated pattern recognition receptors (PRRs) recognize and respond to microbial ligands. However, others can respond to cellular perturbations, such as damage-associated molecular patterns (DAMPs). Nucleotide oligomerization domains 1 and 2 (NOD1/2) are PRRs that recognize and respond to multiple stimuli of microbial and cellular origin, such as bacterial peptidoglycan, viral infections, parasitic infections, activated Rho GTPases, and endoplasmic reticulum (ER) stress. How NOD1/2 are stimulated by such diverse stimuli is not fully understood but may partly rely on cellular changes during infection that result in ER stress. NOD1/2 are ER stress sensors that facilitate proinflammatory responses for pathogen clearance; thus, NOD1/2 may help mount broad antimicrobial responses through detection of ER stress, which is often induced during a variety of infections. Some pathogens may subvert this response to promote infection through manipulation of NOD1/2 responses to ER stress that lead to apoptosis. Here, we review NOD1/2 stimuli and cellular responses. Furthermore, we discuss pathogen-induced ER stress and how it might potentiate NOD1/2 signaling.
Collapse
Affiliation(s)
- Sharon K Kuss-Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - A Marijke Keestra-Gounder
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
15
|
Burette M, Allombert J, Lambou K, Maarifi G, Nisole S, Di Russo Case E, Blanchet FP, Hassen-Khodja C, Cabantous S, Samuel J, Martinez E, Bonazzi M. Modulation of innate immune signaling by a Coxiella burnetii eukaryotic-like effector protein. Proc Natl Acad Sci U S A 2020; 117:13708-13718. [PMID: 32482853 PMCID: PMC7306807 DOI: 10.1073/pnas.1914892117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Q fever agent Coxiella burnetii uses a defect in organelle trafficking/intracellular multiplication (Dot/Icm) type 4b secretion system (T4SS) to silence the host innate immune response during infection. By investigating C. burnetii effector proteins containing eukaryotic-like domains, here we identify NopA (nucleolar protein A), which displays four regulator of chromosome condensation (RCC) repeats, homologous to those found in the eukaryotic Ras-related nuclear protein (Ran) guanine nucleotide exchange factor (GEF) RCC1. Accordingly, NopA is found associated with the chromatin nuclear fraction of cells and uses the RCC-like domain to interact with Ran. Interestingly, NopA triggers an accumulation of Ran-GTP, which accumulates at nucleoli of transfected or infected cells, thus perturbing the nuclear import of transcription factors of the innate immune signaling pathway. Accordingly, qRT-PCR analysis on a panel of cytokines shows that cells exposed to the C. burnetii nopA::Tn or a Dot/Icm-defective dotA::Tn mutant strain present a functional innate immune response, as opposed to cells exposed to wild-type C. burnetii or the corresponding nopA complemented strain. Thus, NopA is an important regulator of the innate immune response allowing Coxiella to behave as a stealth pathogen.
Collapse
Affiliation(s)
- Melanie Burette
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004, CNRS, Université de Montpellier, 34293 Montpellier, France
| | - Julie Allombert
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004, CNRS, Université de Montpellier, 34293 Montpellier, France
| | - Karine Lambou
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004, CNRS, Université de Montpellier, 34293 Montpellier, France
| | - Ghizlane Maarifi
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004, CNRS, Université de Montpellier, 34293 Montpellier, France
| | - Sébastien Nisole
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004, CNRS, Université de Montpellier, 34293 Montpellier, France
| | - Elizabeth Di Russo Case
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center College of Medicine, Bryan, TX 77807-3260
| | - Fabien P Blanchet
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004, CNRS, Université de Montpellier, 34293 Montpellier, France
| | - Cedric Hassen-Khodja
- Montpellier Ressources Imagerie (MRI), BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, 34293 Montpellier, France
| | - Stéphanie Cabantous
- Centre de Recherche en Cancérologie de Toulouse, INSERM, Université Paul Sabatier-Toulouse III, CNRS, 31037 Toulouse, France
| | - James Samuel
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center College of Medicine, Bryan, TX 77807-3260
| | - Eric Martinez
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004, CNRS, Université de Montpellier, 34293 Montpellier, France
| | - Matteo Bonazzi
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004, CNRS, Université de Montpellier, 34293 Montpellier, France;
| |
Collapse
|
16
|
Christensen LM, Sule P, Cirillo SLG, Strain M, Plumlee Q, Adams LG, Cirillo JD. Legionnaires' Disease Mortality in Guinea Pigs Involves the p45 Mobile Genomic Element. J Infect Dis 2020; 220:1700-1710. [PMID: 31268152 PMCID: PMC6782102 DOI: 10.1093/infdis/jiz340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/01/2019] [Indexed: 12/21/2022] Open
Abstract
Background Legionella can cause Legionnaires’ disease, a potentially fatal form of pneumonia that occurs as sporadic epidemics. Not all strains display the same propensity to cause disease in humans. Because Legionella pneumophila serogroup 1 is responsible for >85% of infections, the majority of studies have examined this serogroup, but there are 3 commonly used laboratory strains: L pneumophila serogroup 1 Philadelphia (Phil-1)-derived strains JR32 and Lp01 and 130b-derived strain AA100. Methods We evaluated the ability of Phil-1, JR32, Lp01, and AA100 to cause disease in guinea pigs. Results We found that, although Phil-1, JR32, and AA100 cause an acute pneumonia and death by 4 days postinfection (100%), strain Lp01 does not cause mortality (0%). We also noted that Lp01 lacks a mobile element, designated p45, whose presence correlates with virulence. Transfer of p45 into Lp01 results in recovery of the ability of this strain to cause mortality, leads to more pronounced disease, and correlates with increased interferon-γ levels in the lungs and spleens before death. Conclusions These observations suggest a mechanism of Legionnaires’ disease pathogenesis due to the presence of type IVA secretion systems that cause higher mortality due to overinduction of a proinflammatory response in the host.
Collapse
Affiliation(s)
- Lanette M Christensen
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan
| | - Preeti Sule
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan
| | - Suat L G Cirillo
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan
| | - Madison Strain
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan
| | - Quinci Plumlee
- Department of Veterinary Pathobiology, Texas A&M University, College Station
| | - L Garry Adams
- Department of Veterinary Pathobiology, Texas A&M University, College Station
| | - Jeffrey D Cirillo
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan
| |
Collapse
|
17
|
Paradoxical Pro-inflammatory Responses by Human Macrophages to an Amoebae Host-Adapted Legionella Effector. Cell Host Microbe 2020; 27:571-584.e7. [PMID: 32220647 DOI: 10.1016/j.chom.2020.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 08/08/2019] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Abstract
Legionella pneumophila has co-evolved with amoebae, their natural hosts. Upon transmission to humans, the bacteria proliferate within alveolar macrophages causing pneumonia. Here, we show L. pneumophila injects the effector LamA, an amylase, into the cytosol of human macrophage (hMDMs) and amoebae to rapidly degrade glycogen to generate cytosolic hyper-glucose. In response, hMDMs shift their metabolism to aerobic glycolysis, which directly triggers an M1-like pro-inflammatory differentiation and nutritional innate immunity through enhanced tryptophan degradation. This leads to a modest restriction of bacterial proliferation in hMDMs. In contrast, LamA-mediated glycogenolysis in amoebae deprives the natural host from the main building blocks for synthesis of the cellulose-rich cyst wall, leading to subversion of amoeba encystation. This is non-permissive for bacterial proliferation. Therefore, LamA of L. pneumophila is an amoebae host-adapted effector that subverts encystation of the amoebae natural host, and the paradoxical hMDMs' pro-inflammatory response is likely an evolutionary accident.
Collapse
|
18
|
The vacuole guard hypothesis: how intravacuolar pathogens fight to maintain the integrity of their beloved home. Curr Opin Microbiol 2020; 54:51-58. [PMID: 32044688 DOI: 10.1016/j.mib.2020.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/09/2020] [Indexed: 12/16/2022]
Abstract
Intravacuolar bacterial pathogens establish intracellular niches by constructing membrane-encompassed compartments. The vacuoles surrounding the bacteria are remarkably stable, facilitating microbial replication and preventing exposure to host cytoplasmically localized innate immune sensing mechanisms. To maintain integrity of the membrane compartment, the pathogen is armed with defensive weapons that prevent loss of vacuole integrity and potential exposure to host innate signaling. In some cases, the microbial components that maintain vacuolar integrity have been identified, but the basis for why the compartment degrades in their absence is unclear. In this review, we point out that lessons from the microbial-programmed degradation of the vacuole by the cytoplasmically localized Shigella flexneri provide crucial insights into how degradation of pathogen vacuoles occurs. We propose that in the absence of bacterial-encoded guard proteins, aberrant trafficking of host membrane-associated components results in a dysfunctional pathogen compartment. As a consequence, the vacuole is poisoned and replication is terminated.
Collapse
|
19
|
Matsuda S, Hiyoshi H, Tandhavanant S, Kodama T. Advances on
Vibrio parahaemolyticus
research in the postgenomic era. Microbiol Immunol 2020; 64:167-181. [DOI: 10.1111/1348-0421.12767] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/08/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Shigeaki Matsuda
- Department of Bacterial Infections, Research Institute for Microbial DiseasesOsaka University Suita Osaka Japan
| | - Hirotaka Hiyoshi
- Department of Bacterial Infections, Research Institute for Microbial DiseasesOsaka University Suita Osaka Japan
- Department of Medical Microbiology and Immunology, School of MedicineUniversity of California Davis California, USA
| | - Sarunporn Tandhavanant
- Department of Bacterial Infections, Research Institute for Microbial DiseasesOsaka University Suita Osaka Japan
- Department of Microbiology and Immunology, Faculty of Tropical MedicineMahidol University Bangkok Thailand
| | - Toshio Kodama
- Department of Bacterial Infections, Research Institute for Microbial DiseasesOsaka University Suita Osaka Japan
| |
Collapse
|
20
|
Christie PJ, Gomez Valero L, Buchrieser C. Biological Diversity and Evolution of Type IV Secretion Systems. Curr Top Microbiol Immunol 2019; 413:1-30. [PMID: 29536353 PMCID: PMC5912172 DOI: 10.1007/978-3-319-75241-9_1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The bacterial type IV secretion systems (T4SSs) are a highly functionally and structurally diverse superfamily of secretion systems found in many species of Gram-negative and -positive bacteria. Collectively, the T4SSs can translocate DNA and monomeric and multimeric protein substrates to a variety of bacterial and eukaryotic cell types. Detailed phylogenomics analyses have established that the T4SSs evolved from ancient conjugation machines whose original functions were to disseminate mobile DNA elements within and between bacterial species. How members of the T4SS superfamily evolved to recognize and translocate specific substrate repertoires to prokaryotic or eukaryotic target cells is a fascinating question from evolutionary, biological, and structural perspectives. In this chapter, we will summarize recent findings that have shaped our current view of the biological diversity of the T4SSs. We focus mainly on two subtypes, designated as the types IVA (T4ASS) and IVB (T4BSS) systems that respectively are represented by the paradigmatic Agrobacterium tumefaciens VirB/VirD4 and Legionella pneumophila Dot/Icm T4SSs. We present current information about the composition and architectures of these representative systems. We also describe how these and a few related T4ASS and T4BSS members evolved as specialized nanomachines through acquisition of novel domains or subunits, a process that ultimately generated extensive genetic and structural mosaicism among this secretion superfamily. Finally, we present new phylogenomics information establishing that the T4BSSs are much more broadly distributed than initially envisioned.
Collapse
Affiliation(s)
- Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA.
| | - Laura Gomez Valero
- Institut Pasteur, Biologie des Bactéries Intracellulaires, 75724, Paris, France
- CNRS, UMR 3525, 75724, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires, 75724, Paris, France
- CNRS, UMR 3525, 75724, Paris, France
| |
Collapse
|
21
|
Curto P, Riley SP, Simões I, Martinez JJ. Macrophages Infected by a Pathogen and a Non-pathogen Spotted Fever Group Rickettsia Reveal Differential Reprogramming Signatures Early in Infection. Front Cell Infect Microbiol 2019; 9:97. [PMID: 31024862 PMCID: PMC6467950 DOI: 10.3389/fcimb.2019.00097] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/22/2019] [Indexed: 12/22/2022] Open
Abstract
Despite their high degree of genomic similarity, different spotted fever group (SFG) Rickettsia are often associated with very different clinical presentations. For example, Rickettsia conorii causes Mediterranean spotted fever, a life-threatening disease for humans, whereas Rickettsia montanensis is associated with limited or no pathogenicity to humans. However, the molecular basis responsible for the different pathogenicity attributes are still not understood. Although killing microbes is a critical function of macrophages, the ability to survive and/or proliferate within phagocytic cells seems to be a phenotypic feature of several intracellular pathogens. We have previously shown that R. conorii and R. montanensis exhibit different intracellular fates within macrophage-like cells. By evaluating early macrophage responses upon insult with each of these rickettsial species, herein we demonstrate that infection with R. conorii results in a profound reprogramming of host gene expression profiles. Transcriptional programs generated upon infection with this pathogenic bacteria point toward a sophisticated ability to evade innate immune signals, by modulating the expression of several anti-inflammatory molecules. Moreover, R. conorii induce the expression of several pro-survival genes, which may result in the ability to prolong host cell survival, thus protecting its replicative niche. Remarkably, R. conorii-infection promoted a robust modulation of different transcription factors, suggesting that an early manipulation of the host gene expression machinery may be key to R. conorii proliferation in THP-1 macrophages. This work provides new insights into the early molecular processes hijacked by a pathogenic SFG Rickettsia to establish a replicative niche in macrophages, opening several avenues of research in host-rickettsiae interactions.
Collapse
Affiliation(s)
- Pedro Curto
- Ph.D. Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal
- Vector Borne Disease Laboratories, Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Sean P. Riley
- Vector Borne Disease Laboratories, Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Isaura Simões
- CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal
- Vector Borne Disease Laboratories, Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Juan J. Martinez
- Vector Borne Disease Laboratories, Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Baton Rouge, LA, United States
| |
Collapse
|
22
|
Chakraborty N, Gautam A, Muhie S, Miller SA, Moyler C, Jett M, Hammamieh R. The responses of lungs and adjacent lymph nodes in responding to Yersinia pestis infection: A transcriptomic study using a non-human primate model. PLoS One 2019; 14:e0209592. [PMID: 30789917 PMCID: PMC6383991 DOI: 10.1371/journal.pone.0209592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/08/2018] [Indexed: 01/08/2023] Open
Abstract
Initiation of treatment during the pre-symptomatic phase of Yersinia pestis (Y. pestis) infection is particularly critical. The rapid proliferation of Y. pestis typically couples with the manifestation of common flu-like early symptoms that often misguides the medical intervention. Our study used African green monkeys (AGM) that did not exhibit clear clinical symptoms for nearly two days after intranasal challenge with Y. pestis and succumbed within a day after showing the first signs of clinical symptoms. The lung, and mediastinal and submandibular lymph nodes (LN) accumulated significant Y. pestis colonization immediately after the intranasal challenge. Hence, organ-specific molecular investigations are deemed to be the key to elucidating mechanisms of the initial host response. Our previous study focused on the whole blood of AGM, and we found early perturbations in the ubiquitin-microtubule-mediated host defense. Altered expression of the genes present in ubiquitin and microtubule networks indicated an early suppression of these networks in the submandibular lymph nodes. In concert, the upstream toll-like receptor signaling and downstream NFκB signaling were inhibited at the multi-omics level. The inflammatory response was suppressed in the lungs, submandibular lymph nodes and mediastinal lymph nodes. We posited a causal chain of molecular mechanisms that indicated Y. pestis was probably able to impair host-mediated proteolysis activities and evade autophagosome capture by dysregulating both ubiquitin and microtubule networks in submandibular lymph nodes. Targeting these networks in a submandibular LN-specific and time-resolved fashion could be essential for development of the next generation therapeutics for pneumonic plague.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- The Geneva Foundation, US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Aarti Gautam
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Seid Muhie
- The Geneva Foundation, US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Stacy-Ann Miller
- ORISE, US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Candace Moyler
- ORISE, US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Marti Jett
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Rasha Hammamieh
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| |
Collapse
|
23
|
Legionella pneumophila translocated translation inhibitors are required for bacterial-induced host cell cycle arrest. Proc Natl Acad Sci U S A 2019; 116:3221-3228. [PMID: 30718423 PMCID: PMC6386690 DOI: 10.1073/pnas.1820093116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The cell cycle machinery controls diverse cellular pathways and is tightly regulated. Misregulation of cell division plays a central role in the pathogenesis of many disease processes. Various microbial pathogens interfere with the cell cycle machinery to promote host cell colonization. Although cell cycle modulation is a common theme among pathogens, the role this interference plays in promoting diseases is unclear. Previously, we demonstrated that the G1 and G2/M phases of the host cell cycle are permissive for Legionella pneumophila replication, whereas S phase provides a toxic environment for bacterial replication. In this study, we show that L. pneumophila avoids host S phase by blocking host DNA synthesis and preventing cell cycle progression into S phase. Cell cycle arrest upon Legionella contact is dependent on the Icm/Dot secretion system. In particular, we found that cell cycle arrest is dependent on the intact enzymatic activity of translocated substrates that inhibits host translation. Moreover, we show that, early in infection, the presence of these translation inhibitors is crucial to induce the degradation of the master regulator cyclin D1. Our results demonstrate that the bacterial effectors that inhibit translation are associated with preventing entry of host cells into a phase associated with restriction of L. pneumophila Furthermore, control of cyclin D1 may be a common strategy used by intracellular pathogens to manipulate the host cell cycle and promote bacterial replication.
Collapse
|
24
|
Oyama N, Winek K, Bäcker-Koduah P, Zhang T, Dames C, Werich M, Kershaw O, Meisel C, Meisel A, Dirnagl U. Exploratory Investigation of Intestinal Function and Bacterial Translocation After Focal Cerebral Ischemia in the Mouse. Front Neurol 2018; 9:937. [PMID: 30510535 PMCID: PMC6254134 DOI: 10.3389/fneur.2018.00937] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022] Open
Abstract
Background and Purpose: The gut communicates with the brain bidirectionally via neural, humoral and immune pathways. All these pathways are affected by acute brain lesions, such as stroke. Brain-gut communication may therefore impact on the overall outcome after CNS-injury. Until now, contradictory reports on intestinal function and translocation of gut bacteria after experimental stroke have been published. Accordingly, we aimed to specifically investigate the effects of transient focal cerebral ischemia on intestinal permeability, gut associated lymphoid tissue and bacterial translocation in an exploratory study using a well-characterized murine stroke model. Methods: After 60 min of middle cerebral artery occlusion (MCAO) we assessed intestinal morphology (time points after surgery day 0, 3, 5, 14, 21) and tight junction protein expression (occludin and claudin-1 at day 1 and 3) in 12-week-old male C57Bl/6J mice. Lactulose/mannitol/sucralose test was performed to assess intestinal permeability 24–72 h after surgery. To investigate the influence of cerebral ischemia on the local immune system of the gut, main immune cell populations in Peyer's patches (PP) were quantified by flow cytometry. Finally, we evaluated bacterial translocation to extraintestinal organs 24 and 72 h after MCAO by microbiological culture and fluorescence in situ hybridization targeting bacterial 16S rRNA. Results: Transient MCAO decreased claudin-1 expression in the ileum but not in the colon. Intestinal morphology (assessed by light microscopy) and permeability did not change measurably after MCAO. After MCAO, animals had significantly fewer B cells in PP compared to naïve mice. Conclusions: In a murine model of stroke, which leads to large brain infarctions in the middle cerebral artery territory, we did not find evidence for overt alterations neither in gut morphology, barrier proteins and permeability nor presence of intestinal bacterial translocation.
Collapse
Affiliation(s)
- Naoki Oyama
- Department of Experimental Neurology, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universitäts zu Berlin and Berlin Institute of Health, Berlin, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universitäts zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Katarzyna Winek
- Department of Experimental Neurology, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universitäts zu Berlin and Berlin Institute of Health, Berlin, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universitäts zu Berlin and Berlin Institute of Health, Berlin, Germany.,Neurocure Cluster of Excellence, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universitäts zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Priscilla Bäcker-Koduah
- Department of Experimental Neurology, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universitäts zu Berlin and Berlin Institute of Health, Berlin, Germany.,Neurocure Cluster of Excellence, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universitäts zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Tian Zhang
- Department of Experimental Neurology, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universitäts zu Berlin and Berlin Institute of Health, Berlin, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universitäts zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Claudia Dames
- Institute for Medical Immunology, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universitäts zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Martina Werich
- Medical Department, Division of Hepatology and Gastroenterology, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universitäts zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Olivia Kershaw
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Christian Meisel
- Institute for Medical Immunology, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universitäts zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Andreas Meisel
- Department of Experimental Neurology, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universitäts zu Berlin and Berlin Institute of Health, Berlin, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universitäts zu Berlin and Berlin Institute of Health, Berlin, Germany.,Neurocure Cluster of Excellence, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universitäts zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universitäts zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Ulrich Dirnagl
- Department of Experimental Neurology, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universitäts zu Berlin and Berlin Institute of Health, Berlin, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universitäts zu Berlin and Berlin Institute of Health, Berlin, Germany.,Neurocure Cluster of Excellence, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universitäts zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universitäts zu Berlin and Berlin Institute of Health, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Partner Site Berlin, Berlin, Germany.,QUEST - Center for Transforming Biomedical Research, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
25
|
Rüter C, Lubos ML, Norkowski S, Schmidt MA. All in—Multiple parallel strategies for intracellular delivery by bacterial pathogens. Int J Med Microbiol 2018; 308:872-881. [PMID: 29936031 DOI: 10.1016/j.ijmm.2018.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/01/2018] [Accepted: 06/16/2018] [Indexed: 02/06/2023] Open
|
26
|
Abstract
PURPOSE OF REVIEW We wished to overview recent data on a subset of epigenetic changes elicited by intracellular bacteria in human cells. Reprogramming the gene expression pattern of various host cells may facilitate bacterial growth, survival, and spread. RECENT FINDINGS DNA-(cytosine C5)-methyltransferases of Mycoplasma hyorhinis targeting cytosine-phosphate-guanine (CpG) dinucleotides and a Mycobacterium tuberculosis methyltransferase targeting non-CpG sites methylated the host cell DNA and altered the pattern of gene expression. Gene silencing by CpG methylation and histone deacetylation, mediated by cellular enzymes, also occurred in M. tuberculosis-infected macrophages. M. tuberculosis elicited cell type-specific epigenetic changes: it caused increased DNA methylation in macrophages, but induced demethylation, deposition of euchromatic histone marks and activation of immune-related genes in dendritic cells. A secreted transposase of Acinetobacter baumannii silenced a cellular gene, whereas Mycobacterium leprae altered the epigenotype, phenotype, and fate of infected Schwann cells. The 'keystone pathogen' oral bacterium Porphyromonas gingivalis induced local DNA methylation and increased the level of histone acetylation in host cells. These epigenetic changes at the biofilm-gingiva interface may contribute to the development of periodontitis. SUMMARY Epigenetic regulators produced by intracellular bacteria alter the epigenotype and gene expression pattern of host cells and play an important role in pathogenesis.
Collapse
|
27
|
Abstract
Escherichia coli and other Gram-negative and -positive bacteria employ type IV secretion systems (T4SSs) to translocate DNA and protein substrates, generally by contact-dependent mechanisms, to other cells. The T4SSs functionally encompass two major subfamilies, the conjugation systems and the effector translocators. The conjugation systems are responsible for interbacterial transfer of antibiotic resistance genes, virulence determinants, and genes encoding other traits of potential benefit to the bacterial host. The effector translocators are used by many Gram-negative pathogens for delivery of potentially hundreds of virulence proteins termed effectors to eukaryotic cells during infection. In E. coli and other species of Enterobacteriaceae, T4SSs identified to date function exclusively in conjugative DNA transfer. In these species, the plasmid-encoded systems can be classified as the P, F, and I types. The P-type systems are the simplest in terms of subunit composition and architecture, and members of this subfamily share features in common with the paradigmatic Agrobacterium tumefaciens VirB/VirD4 T4SS. This review will summarize our current knowledge of the E. coli systems and the A. tumefaciens P-type system, with emphasis on the structural diversity of the T4SSs. Ancestral P-, F-, and I-type systems were adapted throughout evolution to yield the extant effector translocators, and information about well-characterized effector translocators also is included to further illustrate the adaptive and mosaic nature of these highly versatile machines.
Collapse
|
28
|
He X, Jiang HW, Chen H, Zhang HN, Liu Y, Xu ZW, Wu FL, Guo SJ, Hou JL, Yang MK, Yan W, Deng JY, Bi LJ, Zhang XE, Tao SC. Systematic Identification of Mycobacterium tuberculosis Effectors Reveals that BfrB Suppresses Innate Immunity. Mol Cell Proteomics 2017; 16:2243-2253. [PMID: 29018126 DOI: 10.1074/mcp.ra117.000296] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) has evolved multiple strategies to counter the human immune system. The effectors of Mtb play important roles in the interactions with the host. However, because of the lack of highly efficient strategies, there are only a handful of known Mtb effectors, thus hampering our understanding of Mtb pathogenesis. In this study, we probed Mtb proteome microarray with biotinylated whole-cell lysates of human macrophages, identifying 26 Mtb membrane proteins and secreted proteins that bind to macrophage proteins. Combining GST pull-down with mass spectroscopy then enabled the specific identification of all binders. We refer to this proteome microarray-based strategy as SOPHIE (Systematic unlOcking of Pathogen and Host Interacting Effectors). Detailed investigation of a novel effector identified here, the iron storage protein BfrB (Rv3841), revealed that BfrB inhibits NF-κB-dependent transcription through binding and reducing the nuclear abundance of the ribosomal protein S3 (RPS3), which is a functional subunit of NF- κB. The importance of this interaction was evidenced by the promotion of survival in macrophages of the mycobacteria, Mycobacterium smegmatis, by overexpression of BfrB. Thus, beyond demonstrating the power of SOPHIE in the discovery of novel effectors of human pathogens, we expect that the set of Mtb effectors identified in this work will greatly facilitate the understanding of the pathogenesis of Mtb, possibly leading to additional potential molecular targets in the battle against tuberculosis.
Collapse
Affiliation(s)
- Xiang He
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.,§School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - He-Wei Jiang
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong Chen
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hai-Nan Zhang
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yin Liu
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhao-Wei Xu
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan-Lin Wu
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shu-Juan Guo
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing-Li Hou
- ¶Instrumental Analysis Center of Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ming-Kun Yang
- ‖Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Yan
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiao-Yu Deng
- **State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Li-Jun Bi
- ‡‡National Key Laboratory of Biomacromolecules, Key Laboratory of Non-Coding; RNA and Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,§§School of Stomatology and Medicine, Foshan University, Foshan 528000, Guangdong Province, China
| | - Xian-En Zhang
- ‡‡National Key Laboratory of Biomacromolecules, Key Laboratory of Non-Coding; RNA and Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sheng-Ce Tao
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China; .,§School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,¶¶State Key Laboratory of Oncogenes and Related Genes, Shanghai 200240, China
| |
Collapse
|
29
|
Seshadri S, Allan DSJ, Carlyle JR, Zenewicz LA. Bacillus anthracis lethal toxin negatively modulates ILC3 function through perturbation of IL-23-mediated MAPK signaling. PLoS Pathog 2017; 13:e1006690. [PMID: 29059238 PMCID: PMC5695638 DOI: 10.1371/journal.ppat.1006690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 11/02/2017] [Accepted: 10/10/2017] [Indexed: 12/30/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, secretes lethal toxin that down-regulates immune functions. Translocation of B. anthracis across mucosal epithelia is key for its dissemination and pathogenesis. Group 3 innate lymphocytes (ILC3s) are important in mucosal barrier maintenance due to their expression of the cytokine IL-22, a critical regulator of tissue responses and repair during homeostasis and inflammation. We found that B. anthracis lethal toxin perturbed ILC3 function in vitro and in vivo, revealing an unknown IL-23-mediated MAPK signaling pathway. Lethal toxin had no effects on the canonical STAT3-mediated IL-23 signaling pathway. Rather lethal toxin triggered the loss of several MAP2K kinases, which correlated with reduced activation of downstream ERK1/2 and p38, respectively. Inhibition studies showed the importance of MAPK signaling in IL-23-mediated production of IL-22. Our finding that MAPK signaling is required for optimal IL-22 production in ILC3s may lead to new approaches for targeting IL-22 biology.
Collapse
Affiliation(s)
- Sudarshan Seshadri
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - David S. J. Allan
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - James R. Carlyle
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Lauren A. Zenewicz
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
30
|
Guanylate Binding Proteins Regulate Inflammasome Activation in Response to Hyperinjected Yersinia Translocon Components. Infect Immun 2017; 85:IAI.00778-16. [PMID: 28784930 DOI: 10.1128/iai.00778-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 07/31/2017] [Indexed: 01/25/2023] Open
Abstract
Gram-negative bacterial pathogens utilize virulence-associated secretion systems to inject, or translocate, effector proteins into host cells to manipulate cellular processes and promote bacterial replication. However, translocated bacterial products are sensed by nucleotide binding domain and leucine-rich repeat-containing proteins (NLRs), which trigger the formation of a multiprotein complex called the inflammasome, leading to secretion of interleukin-1 (IL-1) family cytokines, pyroptosis, and control of pathogen replication. Pathogenic Yersinia bacteria inject effector proteins termed Yops, as well as pore-forming proteins that comprise the translocon itself, into target cells. The Yersinia translocation regulatory protein YopK promotes bacterial virulence by limiting hyperinjection of the translocon proteins YopD and YopB into cells, thereby limiting cellular detection of Yersinia virulence activity. How hyperinjection of translocon proteins leads to inflammasome activation is currently unknown. We found that translocated YopB and YopD colocalized with the late endosomal/lysosomal protein LAMP1 and that the frequency of YopD and LAMP1 association correlated with the level of caspase-1 activation in individual cells. We also observed colocalization between YopD and Galectin-3, an indicator of endosomal membrane damage. Intriguingly, YopK limited the colocalization of Galectin-3 with YopD, suggesting that YopK limits the induction or sensing of endosomal membrane damage by components of the type III secretion system (T3SS) translocon. Furthermore, guanylate binding proteins (GBPs) encoded on chromosome 3 (GbpChr3 ), which respond to pathogen-induced damage or alteration of host membranes, were necessary for inflammasome activation in response to hyperinjected YopB/-D. Our findings indicate that lysosomal damage by Yersinia translocon proteins promotes inflammasome activation and implicate GBPs as key regulators of this process.
Collapse
|
31
|
Stolle AS, Norkowski S, Körner B, Schmitz J, Lüken L, Frankenberg M, Rüter C, Schmidt MA. T3SS-Independent Uptake of the Short-Trip Toxin-Related Recombinant NleC Effector of Enteropathogenic Escherichia coli Leads to NF-κB p65 Cleavage. Front Cell Infect Microbiol 2017; 7:119. [PMID: 28451521 PMCID: PMC5390045 DOI: 10.3389/fcimb.2017.00119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/23/2017] [Indexed: 12/15/2022] Open
Abstract
Effector proteins secreted by the type 3 secretion system (T3SS) of pathogenic bacteria have been shown to precisely modulate important signaling cascades of the host for the benefit of the pathogens. Among others, the non-LEE encoded T3SS effector protein NleC of enteropathogenic Escherichia coli (EPEC) is a Zn-dependent metalloprotease and suppresses innate immune responses by directly targeting the NF-κB signaling pathway. Many pathogenic bacteria release potent bacterial toxins of the A-B type, which-in contrast to the direct cytoplasmic injection of T3SS effector proteins-are released first into the environment. In this study, we found that NleC displays characteristics of bacterial A-B toxins, when applied to eukaryotic cells as a recombinant protein. Although lacking a B subunit, that typically mediates the uptake of toxins, recombinant NleC (rNleC) induces endocytosis via lipid rafts and follows the endosomal-lysosomal pathway. The conformation of rNleC is altered by low pH to facilitate its escape from acidified endosomes. This is reminiscent of the homologous A-B toxin AIP56 of the fish pathogen Photobacterium damselae piscicida (Phdp). The recombinant protease NleC is functional inside eukaryotic cells and cleaves p65 of the NF-κB pathway. Here, we describe the endocytic uptake mechanism of rNleC, characterize its intracellular trafficking and demonstrate that its specific activity of cleaving p65 requires activation of host cells e.g., by IL1β. Further, we propose an evolutionary link between some T3SS effector proteins and bacterial toxins from apparently unrelated bacteria. In summary, these properties might suggest rNleC as an interesting candidate for future applications as a potential therapeutic against immune disorders.
Collapse
Affiliation(s)
- Anne-Sophie Stolle
- Institute of Infectiology, Center for Molecular Biology of Inflammation, University of MünsterMünster, Germany
| | - Stefanie Norkowski
- Institute of Infectiology, Center for Molecular Biology of Inflammation, University of MünsterMünster, Germany
| | - Britta Körner
- Institute of Infectiology, Center for Molecular Biology of Inflammation, University of MünsterMünster, Germany
| | - Jürgen Schmitz
- Institute of Experimental Pathology, Center for Molecular Biology of Inflammation, University of MünsterMünster, Germany
| | - Lena Lüken
- Institute of Infectiology, Center for Molecular Biology of Inflammation, University of MünsterMünster, Germany
| | - Maj Frankenberg
- Institute of Infectiology, Center for Molecular Biology of Inflammation, University of MünsterMünster, Germany
| | - Christian Rüter
- Institute of Infectiology, Center for Molecular Biology of Inflammation, University of MünsterMünster, Germany
| | - M Alexander Schmidt
- Institute of Infectiology, Center for Molecular Biology of Inflammation, University of MünsterMünster, Germany
| |
Collapse
|
32
|
The Type II Secretion System of Legionella pneumophila Dampens the MyD88 and Toll-Like Receptor 2 Signaling Pathway in Infected Human Macrophages. Infect Immun 2017; 85:IAI.00897-16. [PMID: 28138020 DOI: 10.1128/iai.00897-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/24/2017] [Indexed: 12/25/2022] Open
Abstract
Previously, we reported that mutants of Legionella pneumophila lacking a type II secretion (T2S) system elicit higher levels of cytokines (e.g., interleukin-6 [IL-6]) following infection of U937 cells, a human macrophage-like cell line. We now show that this effect of T2S is also manifest upon infection of human THP-1 macrophages and peripheral blood monocytes but does not occur during infection of murine macrophages. Supporting the hypothesis that T2S acts to dampen the triggering of an innate immune response, we observed that the mitogen-activated protein kinase (MAPK) and nuclear transcription factor kappa B (NF-κB) pathways are more highly stimulated upon infection with the T2S mutant than upon infection with the wild type. By using short hairpin RNA to deplete proteins involved in specific pathogen-associated molecular pattern (PAMP) recognition pathways, we determined that the dampening effect of the T2S system was not dependent on nucleotide binding oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible protein I (RIG-I)-like receptors (RLRs), double-stranded RNA (dsRNA)-dependent protein kinase receptor (PKR), or TIR domain-containing adaptor inducing interferon beta (TRIF) signaling or an apoptosis-associated speck-like protein containing a CARD (ASC)- or caspase-4-dependent inflammasome. However, the dampening effect of T2S on IL-6 production was significantly reduced upon gene knockdown of myeloid differentiation primary response 88 (MyD88), TANK binding kinase 1 (TBK1), or Toll-like receptor 2 (TLR2). These data indicate that the L. pneumophila T2S system dampens the signaling of the TLR2 pathway in infected human macrophages. We also document the importance of PKR, TRIF, and TBK1 in cytokine secretion during L. pneumophila infection of macrophages.
Collapse
|
33
|
Xin XF, Nomura K, Aung K, Velásquez AC, Yao J, Boutrot F, Chang JH, Zipfel C, He SY. Bacteria establish an aqueous living space in plants crucial for virulence. Nature 2016; 539:524-529. [PMID: 27882964 DOI: 10.1038/nature20166] [Citation(s) in RCA: 275] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/17/2016] [Indexed: 12/26/2022]
Abstract
High humidity has a strong influence on the development of numerous diseases affecting the above-ground parts of plants (the phyllosphere) in crop fields and natural ecosystems, but the molecular basis of this humidity effect is not understood. Previous studies have emphasized immune suppression as a key step in bacterial pathogenesis. Here we show that humidity-dependent, pathogen-driven establishment of an aqueous intercellular space (apoplast) is another important step in bacterial infection of the phyllosphere. Bacterial effectors, such as Pseudomonas syringae HopM1, induce establishment of the aqueous apoplast and are sufficient to transform non-pathogenic P. syringae strains into virulent pathogens in immunodeficient Arabidopsis thaliana under high humidity. Arabidopsis quadruple mutants simultaneously defective in a host target (AtMIN7) of HopM1 and in pattern-triggered immunity could not only be used to reconstitute the basic features of bacterial infection, but also exhibited humidity-dependent dyshomeostasis of the endophytic commensal bacterial community in the phyllosphere. These results highlight a new conceptual framework for understanding diverse phyllosphere-bacterial interactions.
Collapse
Affiliation(s)
- Xiu-Fang Xin
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | - Kinya Nomura
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | - Kyaw Aung
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA.,Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Michigan State University, East Lansing, Michigan 48824, USA
| | - André C Velásquez
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | - Jian Yao
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | - Freddy Boutrot
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jeff H Chang
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331, USA
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - Sheng Yang He
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA.,Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Michigan State University, East Lansing, Michigan 48824, USA.,Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA.,Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
34
|
A Resource Allocation Trade-Off between Virulence and Proliferation Drives Metabolic Versatility in the Plant Pathogen Ralstonia solanacearum. PLoS Pathog 2016; 12:e1005939. [PMID: 27732672 PMCID: PMC5061431 DOI: 10.1371/journal.ppat.1005939] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 09/17/2016] [Indexed: 11/19/2022] Open
Abstract
Bacterial pathogenicity relies on a proficient metabolism and there is increasing evidence that metabolic adaptation to exploit host resources is a key property of infectious organisms. In many cases, colonization by the pathogen also implies an intensive multiplication and the necessity to produce a large array of virulence factors, which may represent a significant cost for the pathogen. We describe here the existence of a resource allocation trade-off mechanism in the plant pathogen R. solanacearum. We generated a genome-scale reconstruction of the metabolic network of R. solanacearum, together with a macromolecule network module accounting for the production and secretion of hundreds of virulence determinants. By using a combination of constraint-based modeling and metabolic flux analyses, we quantified the metabolic cost for production of exopolysaccharides, which are critical for disease symptom production, and other virulence factors. We demonstrated that this trade-off between virulence factor production and bacterial proliferation is controlled by the quorum-sensing-dependent regulatory protein PhcA. A phcA mutant is avirulent but has a better growth rate than the wild-type strain. Moreover, a phcA mutant has an expanded metabolic versatility, being able to metabolize 17 substrates more than the wild-type. Model predictions indicate that metabolic pathways are optimally oriented towards proliferation in a phcA mutant and we show that this enhanced metabolic versatility in phcA mutants is to a large extent a consequence of not paying the cost for virulence. This analysis allowed identifying candidate metabolic substrates having a substantial impact on bacterial growth during infection. Interestingly, the substrates supporting well both production of virulence factors and growth are those found in higher amount within the plant host. These findings also provide an explanatory basis to the well-known emergence of avirulent variants in R. solanacearum populations in planta or in stressful environments. Metabolic versatility is a critical element for pathogen’s virulence and their ability to survive in the host. Beyond the necessity to collect resources during infection, pathogens face a resource allocation dilemma: they have to use nutritional resources to proliferate inside the host, and in the other hand they need to mobilize matter and energy for the production of essential virulence factors. In this study, we provide evidence of that such a trade-off constrains antagonistically bacterial proliferation and virulence in the bacterial plant pathogen Ralstonia solanacearum. We determined the energetic cost required by R. solanacearum to produce and secrete exopolysaccharide, which is a major virulence factor required for wilting symptom appearance. We validated this result by showing that bacterial mutants defective for exopolysaccharide production or other virulence factor indeed have an increased growth rate compared to the wild-type strain. We provide evidence that this trade-off mechanism is orchestrated by the phcA master regulatory gene, which directly connects quorum-sensing regulation to metabolic versatility and virulence. Our results also support the view that R. solanacearum specializes towards a restricted number of substrates used during in planta growth.
Collapse
|
35
|
Rüter C, Schmidt MA. Cell-Penetrating Bacterial Effector Proteins: Better Tools than Targets. Trends Biotechnol 2016; 35:109-120. [PMID: 27592802 DOI: 10.1016/j.tibtech.2016.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 12/20/2022]
Abstract
Bacterial pathogens have developed intriguing virulence mechanisms, including several sophisticated nanomachines, for injecting effector proteins to manipulate host immune signaling pathways for their own benefit. Therefore, bacterial genomes harbor a wealth of information about how to manipulate the defense systems of the host. Current understanding addresses virulence mechanisms mostly as targets for antimicrobials. We propose a change of paradigm by exploiting bacterial effectors not as targets but as tools for the directed manipulation of host signaling - for the benefit of the host. Recently, effector proteins have been identified that autonomously translocate into host cells, representing a novel class of cell-penetrating peptides (CPPs) or effectors (CPEs). Moreover, autonomous cell penetration overcomes a major hurdle in pharmacology by transducing specific therapeutic agents to intracellular targets.
Collapse
Affiliation(s)
- Christian Rüter
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), Westfälische Wilhelms-Universität Münster, Von-Esmarch-Strasse 56, 48149 Münster, Germany.
| | - M Alexander Schmidt
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), Westfälische Wilhelms-Universität Münster, Von-Esmarch-Strasse 56, 48149 Münster, Germany.
| |
Collapse
|
36
|
Outrunning the Red Queen: bystander activation as a means of outpacing innate immune subversion by intracellular pathogens. Cell Mol Immunol 2016; 14:14-21. [PMID: 27545071 PMCID: PMC5214943 DOI: 10.1038/cmi.2016.36] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/01/2016] [Accepted: 06/01/2016] [Indexed: 12/15/2022] Open
Abstract
Originally described by the late evolutionary biologist Leigh Van Valen, the Red Queen hypothesis posits that the evolutionary arms race between hosts and their pathogens selects for discrete, genetically encoded events that lead to competitive advantages over the other species. Examples of immune evasion strategies are seen throughout the co-evolution of the mammalian immune system and pathogens, such as the enzymatic inactivation of nuclear factor-κB signaling or host translation by pathogen-encoded virulence factors. Such immunoevasive maneuvers would be expected to select for the evolution of innate immune counterstrategies. Recent advances in our understanding of host immunity and microbial pathogenesis have provided insight into a particular innate immune adaptation, termed bystander activation. Bystander activation occurs as a consequence of infected cells alerting and instructing neighboring uninfected cells to produce inflammatory mediators, either through direct cell contact or paracrine signals. Thus, bystander activation can allow the immune system to overcome the ability of pathogens to disarm immune signaling in directly infected cells. This review presents an overview of the general hallmarks of bystander activation and their emerging role in innate immunity to intracellular pathogens, as well as examples of recent mechanistic discoveries relating to the bystander activation during infection with specific pathogens relevant to human health and disease.
Collapse
|
37
|
Gonzalez-Rivera C, Bhatty M, Christie PJ. Mechanism and Function of Type IV Secretion During Infection of the Human Host. Microbiol Spectr 2016; 4:10.1128/microbiolspec.VMBF-0024-2015. [PMID: 27337453 PMCID: PMC4920089 DOI: 10.1128/microbiolspec.vmbf-0024-2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Indexed: 02/07/2023] Open
Abstract
Bacterial pathogens employ type IV secretion systems (T4SSs) for various purposes to aid in survival and proliferation in eukaryotic hosts. One large T4SS subfamily, the conjugation systems, confers a selective advantage to the invading pathogen in clinical settings through dissemination of antibiotic resistance genes and virulence traits. Besides their intrinsic importance as principle contributors to the emergence of multiply drug-resistant "superbugs," detailed studies of these highly tractable systems have generated important new insights into the mode of action and architectures of paradigmatic T4SSs as a foundation for future efforts aimed at suppressing T4SS machine function. Over the past decade, extensive work on the second large T4SS subfamily, the effector translocators, has identified a myriad of mechanisms employed by pathogens to subvert, subdue, or bypass cellular processes and signaling pathways of the host cell. An overarching theme in the evolution of many effectors is that of molecular mimicry. These effectors carry domains similar to those of eukaryotic proteins and exert their effects through stealthy interdigitation of cellular pathways, often with the outcome not of inducing irreversible cell damage but rather of reversibly modulating cellular functions. This article summarizes the major developments for the actively studied pathogens with an emphasis on the structural and functional diversity of the T4SSs and the emerging common themes surrounding effector function in the human host.
Collapse
Affiliation(s)
- Christian Gonzalez-Rivera
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St, Houston, Texas 77030, Phone: 713-500-5440 (P. J. Christie); 713-500-5441 (C. Gonzalez-Rivera, M. Bhatty)
| | - Minny Bhatty
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St, Houston, Texas 77030, Phone: 713-500-5440 (P. J. Christie); 713-500-5441 (C. Gonzalez-Rivera, M. Bhatty)
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St, Houston, Texas 77030, Phone: 713-500-5440 (P. J. Christie); 713-500-5441 (C. Gonzalez-Rivera, M. Bhatty)
| |
Collapse
|
38
|
Alugubelly N, Hercik K, Kibler P, Nanduri B, Edelmann MJ. Analysis of differentially expressed proteins in Yersinia enterocolitica-infected HeLa cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:562-9. [PMID: 26854600 DOI: 10.1016/j.bbapap.2016.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/20/2016] [Accepted: 02/03/2016] [Indexed: 12/22/2022]
Abstract
UNLABELLED Yersinia enterocolitica is a facultative intracellular pathogen and a causative agent of yersiniosis, which can be contracted by ingestion of contaminated food. Yersinia secretes virulence factors to subvert critical pathways in the host cell. In this study we utilized shotgun label-free proteomics to study differential protein expression in epithelial cells infected with Y.enterocolitica. We identified a total of 551 proteins, amongst which 42 were downregulated (including Prostaglandin E Synthase 3, POH-1 and Karyopherin alpha) and 22 were upregulated (including Rab1 and RhoA) in infected cells. We validated some of these results by western blot analysis of proteins extracted from Caco-2 and HeLa cells. The proteomic dataset was used to identify host canonical pathways and molecular functions modulated by this infection in the host cells. This study constitutes a proteome of Yersinia-infected cells and can support new discoveries in the area of host-pathogen interactions. STATEMENT OF SIGNIFICANCE OF THE STUDY We describe a proteome of Yersinia enterocolitica-infected HeLa cells, including a description of specific proteins differentially expressed upon infection, molecular functions as well as pathways altered during infection. This proteomic study can lead to a better understanding of Y. enterocolitica pathogenesis in human epithelial cells.
Collapse
Affiliation(s)
- Navatha Alugubelly
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Kamil Hercik
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Peter Kibler
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Bindu Nanduri
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Mariola J Edelmann
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
39
|
Lu P, Hontecillas R, Abedi V, Kale S, Leber A, Heltzel C, Langowski M, Godfrey V, Philipson C, Tubau-Juni N, Carbo A, Girardin S, Uren A, Bassaganya-Riera J. Modeling-Enabled Characterization of Novel NLRX1 Ligands. PLoS One 2015; 10:e0145420. [PMID: 26714018 PMCID: PMC4694766 DOI: 10.1371/journal.pone.0145420] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 12/03/2015] [Indexed: 12/11/2022] Open
Abstract
Nucleotide-binding domain and leucine-rich repeat containing (NLR) family are intracellular sentinels of cytosolic homeostasis that orchestrate immune and inflammatory responses in infectious and immune-mediated diseases. NLRX1 is a mitochondrial-associated NOD-like receptor involved in the modulation of immune and metabolic responses. This study utilizes molecular docking approaches to investigate the structure of NLRX1 and experimentally assesses binding to naturally occurring compounds from several natural product and lipid databases. Screening of compound libraries predicts targeting of NLRX1 by conjugated trienes, polyketides, prenol lipids, sterol lipids, and coenzyme A-containing fatty acids for activating the NLRX1 pathway. The ligands of NLRX1 were identified by docking punicic acid (PUA), eleostearic acid (ESA), and docosahexaenoic acid (DHA) to the C-terminal fragment of the human NLRX1 (cNLRX1). Their binding and that of positive control RNA to cNLRX1 were experimentally determined by surface plasmon resonance (SPR) spectroscopy. In addition, the ligand binding sites of cNLRX1 were predicted in silico and validated experimentally. Target mutagenesis studies demonstrate that mutation of 4 critical residues ASP677, PHE680, PHE681, and GLU684 to alanine resulted in diminished affinity of PUA, ESA, and DHA to NLRX1. Consistent with the regulatory actions of NLRX1 on the NF-κB pathway, treatment of bone marrow derived macrophages (BMDM)s with PUA and DHA suppressed NF-κB activity in a NLRX1 dependent mechanism. In addition, a series of pre-clinical efficacy studies were performed using a mouse model of dextran sodium sulfate (DSS)-induced colitis. Our findings showed that the regulatory function of PUA on colitis is NLRX1 dependent. Thus, we identified novel small molecules that bind to NLRX1 and exert anti-inflammatory actions.
Collapse
Affiliation(s)
- Pinyi Lu
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
| | - Raquel Hontecillas
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
| | - Vida Abedi
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
| | - Shiv Kale
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
| | - Andrew Leber
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
| | - Chase Heltzel
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
| | - Mark Langowski
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
| | - Victoria Godfrey
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
| | - Casandra Philipson
- BioTherapeutics, 1800 Kraft Drive, Suite 200, Blacksburg, Virginia, 24060, United States of America
| | - Nuria Tubau-Juni
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
| | - Adria Carbo
- BioTherapeutics, 1800 Kraft Drive, Suite 200, Blacksburg, Virginia, 24060, United States of America
| | - Stephen Girardin
- Laboratory of Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Aykut Uren
- Georgetown University Medical Center, Washington, District of Columbia, 20057, United States of America
| | - Josep Bassaganya-Riera
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
- * E-mail:
| |
Collapse
|