1
|
Zheng P, Pan C, Zhou C, Liu B, Wang L, Duan S, Ding Y. Contribution of Nischarin/IRAS in CNS development, injury and diseases. J Adv Res 2023; 54:43-57. [PMID: 36716956 DOI: 10.1016/j.jare.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/28/2022] [Accepted: 01/24/2023] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Murine Nischarin and its human homolog IRAS are scaffold proteins highly expressed in the central nervous system (CNS). Nischarin was initially discovered as a tumor suppressor protein, and recent studies have also explored its potential value in the CNS. Research on IRAS has largely focused on its effect on opioid dependence. Although the role of Nischarin/IRAS in the physiological function and pathological process of the CNS has gradually attracted attention and the related research results are expected to be applied in clinical practice, there is no systematic review of the role and mechanisms of Nischarin/IRAS in the CNS so far. AIM OF REVIEW This review will systematically analyze the role and mechanism of Nischarin/IRAS in the CNS, and provide necessary references and possible targets for the treatment of neurological diseases, thereby broadening the direction of Nischarin/IRAS research and facilitating clinical translation. KEY SCIENTIFIC CONCEPTS OF REVIEW The pathophysiological processes affected by dysregulation of Nischarin/IRAS expression in the CNS are mainly introduced, including spinal cord injury (SCI), opioid dependence, anxiety, depression, and autism. The molecular mechanisms such as factors regulating Nischarin/IRAS expression and signal transduction pathways regulated by Nischarin/IRAS are systematically summarized. Finally, the clinical application of Nischarin/IRAS has been prospected.
Collapse
Affiliation(s)
- Peijie Zheng
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Chenshu Pan
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Chuntao Zhou
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Bin Liu
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Linlin Wang
- Department of Basic Medicine Sciences, and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shiwei Duan
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China; Institute of Translational Medicine, Zhejiang University City College, Hangzhou 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Zhejiang University City College, Hangzhou 310015, China.
| | - Yuemin Ding
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China; Institute of Translational Medicine, Zhejiang University City College, Hangzhou 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Zhejiang University City College, Hangzhou 310015, China.
| |
Collapse
|
2
|
Cao DN, Li F, Wu N, Li J. Insights into the mechanisms underlying opioid use disorder and potential treatment strategies. Br J Pharmacol 2023; 180:862-878. [PMID: 34128238 DOI: 10.1111/bph.15592] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/19/2022] Open
Abstract
Opioid use disorder is a worldwide societal problem and public health burden. Strategies for treating opioid use disorder can be divided into those that target the opioid receptor system and those that target non-opioid receptor systems, including the dopamine and glutamate receptor systems. Currently, the clinical drugs used to treat opioid use disorder include the opioid receptor agonists methadone and buprenorphine, which are limited by their abuse liability, and the opioid receptor antagonist naltrexone, which is limited by poor compliance. Therefore, the development of effective medications with lower abuse liability and better potential for compliance is urgently needed. Based on recent advances in the understanding of the neurobiological mechanisms underlying opioid use disorder, potential treatment strategies and targets have emerged. This review focuses on the progress made in identifying potential targets and developing medications to treat opioid use disorder, including progress made by our laboratory, and provides insights for future medication development. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Affiliation(s)
- Dan-Ni Cao
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Fei Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ning Wu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jin Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
3
|
Bennett DF, Goyala A, Statzer C, Beckett CW, Tyshkovskiy A, Gladyshev VN, Ewald CY, de Magalhães JP. Rilmenidine extends lifespan and healthspan in Caenorhabditis elegans via a nischarin I1-imidazoline receptor. Aging Cell 2023; 22:e13774. [PMID: 36670049 PMCID: PMC9924948 DOI: 10.1111/acel.13774] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 01/22/2023] Open
Abstract
Repurposing drugs capable of extending lifespan and health span has a huge untapped potential in translational geroscience. Here, we searched for known compounds that elicit a similar gene expression signature to caloric restriction and identified rilmenidine, an I1-imidazoline receptor agonist and prescription medication for the treatment of hypertension. We then show that treating Caenorhabditis elegans with rilmenidine at young and older ages increases lifespan. We also demonstrate that the stress-resilience, health span, and lifespan benefits of rilmenidine treatment in C. elegans are mediated by the I1-imidazoline receptor nish-1, implicating this receptor as a potential longevity target. Consistent with the shared caloric-restriction-mimicking gene signature, supplementing rilmenidine to calorically restricted C. elegans, genetic reduction of TORC1 function, or rapamycin treatment did not further increase lifespan. The rilmenidine-induced longevity required the transcription factors FOXO/DAF-16 and NRF1,2,3/SKN-1. Furthermore, we find that autophagy, but not AMPK signaling, was needed for rilmenidine-induced longevity. Moreover, transcriptional changes similar to caloric restriction were observed in liver and kidney tissues in mice treated with rilmenidine. Together, these results reveal a geroprotective and potential caloric restriction mimetic effect by rilmenidine that warrant fresh lines of inquiry into this compound.
Collapse
Affiliation(s)
- Dominic F. Bennett
- Integrative Genomics of Ageing GroupInstitute of Ageing and Chronic Disease, University of LiverpoolLiverpoolUK
| | - Anita Goyala
- Department of Health Sciences and Technology, Laboratory of Extracellular Matrix RegenerationInstitute of Translational Medicine, ETH ZürichSchwerzenbachSwitzerland
| | - Cyril Statzer
- Department of Health Sciences and Technology, Laboratory of Extracellular Matrix RegenerationInstitute of Translational Medicine, ETH ZürichSchwerzenbachSwitzerland
| | - Charles W. Beckett
- Integrative Genomics of Ageing GroupInstitute of Ageing and Chronic Disease, University of LiverpoolLiverpoolUK
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA,Belozersky Institute of Physico‐Chemical BiologyMoscow State UniversityMoscowRussia
| | - Vadim N. Gladyshev
- Division of Genetics, Department of MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Collin Y. Ewald
- Department of Health Sciences and Technology, Laboratory of Extracellular Matrix RegenerationInstitute of Translational Medicine, ETH ZürichSchwerzenbachSwitzerland
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing GroupInstitute of Ageing and Chronic Disease, University of LiverpoolLiverpoolUK,Present address:
Institute of Inflammation and AgeingUniversity of Birmingham, Queen Elizabeth HospitalBirminghamUK
| |
Collapse
|
4
|
Li S, Zhang XQ, Liu CC, Wang ZY, Lu GY, Shen HW, Wu N, Li J, Li F. IRAS/Nischarin modulates morphine reward by glutamate receptor activation in the nucleus accumbens of mouse brain. Biomed Pharmacother 2022; 153:113346. [DOI: 10.1016/j.biopha.2022.113346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/02/2022] Open
|
5
|
Okpechi SC, Yousefi H, Nguyen K, Cheng T, Alahari NV, Collins-Burow B, Burow ME, Alahari SK. Role of Nischarin in the pathology of diseases: a special emphasis on breast cancer. Oncogene 2022; 41:1079-1086. [PMID: 35064214 DOI: 10.1038/s41388-021-02150-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 11/09/2022]
Abstract
Nischarin has been demonstrated to have tumor suppressor functions. In this review, we comprehensively discuss up to date information about Nischarin. In addition, this paper aims to report the prognostic value, clinical relevance, and biological significance of the Nischarin gene (NISCH) in breast cancer (BCa) patients using the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and The Cancer Genome Atlas (TCGA) datasets. We evaluated NISCH gene expression and its correlation to patient survival, baseline expression, and expression variation based on age groups, tumor stage, tumor size, tumor grade, and lymph node status in different subtypes of BCa. Since NISCH has been extensively reported to inhibit EMT and cancer cell migration, we also checked for the correlation between NISCH and EMT genes in addition to the correlation between NISCH and cell migration genes. Our results indicate that NISCH is a tumor suppressor that plays a critical role in BCa initiation, progression, and tumor development. We find that there is a higher level of NISCH expression in normal breast tissues compared to breast cancer tissues. Also, aggressive subtypes of breast cancers, such as the triple negative/basal category, have decreased levels of NISCH as the disease progresses. Finally, we report that NISCH is inversely correlated with many EMT and cancer cell migration genes in BCa. Interestingly, we identified a significant negative correlation between NISCH expression and its methylation in breast cancer patients. Overall, the goal of this report is to establish a strong clinical basis for further investigation into the cellular, molecular, and physiological roles of NISCH in BCa. Ultimately, NISCH gene expression might be clinically harnessed as a biomarker or predictor of invasiveness and metastasis in BCa.
Collapse
Affiliation(s)
- Samuel C Okpechi
- Department of Biochemistry and Molecular Biology, Louisiana State University School of Medicine and Health Sciences Center, New Orleans, LA, USA
- Stanley S. Scott Cancer Center, Louisiana State University School of Medicine and Health Sciences Center, New Orleans, LA, USA
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, Louisiana State University School of Medicine and Health Sciences Center, New Orleans, LA, USA
- Stanley S. Scott Cancer Center, Louisiana State University School of Medicine and Health Sciences Center, New Orleans, LA, USA
| | - Khoa Nguyen
- Section of Hematology & Medical Oncology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Thomas Cheng
- Section of Hematology & Medical Oncology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Bridgette Collins-Burow
- Section of Hematology & Medical Oncology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Matthew E Burow
- Section of Hematology & Medical Oncology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, Louisiana State University School of Medicine and Health Sciences Center, New Orleans, LA, USA.
- Stanley S. Scott Cancer Center, Louisiana State University School of Medicine and Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
6
|
Nguyen TH, Yousefi H, Okpechi SC, Lauterboeck L, Dong S, Yang Q, Alahari SK. Nischarin Deletion Reduces Oxidative Metabolism and Overall ATP: A Study Using a Novel NISCHΔ5-6 Knockout Mouse Model. Int J Mol Sci 2022; 23:ijms23031374. [PMID: 35163298 PMCID: PMC8835720 DOI: 10.3390/ijms23031374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
Nischarin (Nisch) is a cytosolic scaffolding protein that harbors tumor-suppressor-like characteristics. Previous studies have shown that Nisch functions as a scaffolding protein and regulates multiple biological activities. In the current study, we prepared a complete Nisch knockout model, for the first time, by deletion of exons 5 and 6. This knockout model was confirmed by Qrt–PCR and Western blotting with products from mouse embryonic fibroblast (MEF) cells. Embryos and adult mice of knockouts are significantly smaller than their wild-type counterparts. Deletion of Nisch enhanced cell migration, as demonstrated by wound type and transwell migration assays. Since the animals were small in size, we investigated Nisch’s effect on metabolism by conducting several assays using the Seahorse analyzer system. These data indicate that Nisch null cells have lower oxygen consumption rates, lower ATP production, and lower levels of proton leak. We examined the expression of 15 genes involved in lipid and fat metabolism, as well as cell growth, and noted a significant increase in expression for many genes in Nischarin null animals. In summary, our results show that Nischarin plays an important physiological role in metabolic homeostasis.
Collapse
Affiliation(s)
- Tina H. Nguyen
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA; (T.H.N.); (H.Y.); (S.C.O.); (S.D.)
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA; (T.H.N.); (H.Y.); (S.C.O.); (S.D.)
| | - Samuel C. Okpechi
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA; (T.H.N.); (H.Y.); (S.C.O.); (S.D.)
| | - Lothar Lauterboeck
- Cardiovascular Center of Excellence, School of Medicine, Louisiana State University Health Science Center, New Orleans, LA 70112, USA; (L.L.); (Q.Y.)
- Department of Pharmacology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| | - Shengli Dong
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA; (T.H.N.); (H.Y.); (S.C.O.); (S.D.)
| | - Qinglin Yang
- Cardiovascular Center of Excellence, School of Medicine, Louisiana State University Health Science Center, New Orleans, LA 70112, USA; (L.L.); (Q.Y.)
- Department of Pharmacology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| | - Suresh K. Alahari
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA; (T.H.N.); (H.Y.); (S.C.O.); (S.D.)
- Correspondence: ; Tel.: +1-504-568-4734
| |
Collapse
|
7
|
Labastida-Ramírez A, Rubio-Beltrán E, Haanes KA, de Vries R, Dammers R, Bogers AJJC, van den Bogaerdt A, Daugherty BL, Danser AHJ, Villalón CM, MaassenVanDenBrink A. Effects of two isometheptene enantiomers in isolated human blood vessels and rat middle meningeal artery - potential antimigraine efficacy. J Headache Pain 2019; 20:47. [PMID: 31053059 PMCID: PMC6734216 DOI: 10.1186/s10194-019-1003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 04/22/2019] [Indexed: 11/17/2022] Open
Abstract
Background Racemic isometheptene [(RS)-isometheptene] is an antimigraine drug that due to its cardiovascular side-effects was separated into its enantiomers, (R)- and (S)-isometheptene. This study set out to characterize the contribution of each enantiomer to its vasoactive profile. Moreover, rat neurogenic dural vasodilatation was used to explore their antimigraine mechanism of action. Methods Human blood vessel segments (middle meningeal artery, proximal and distal coronary arteries, and saphenous vein) were mounted in organ baths and concentration response curves to isometheptene were constructed. Calcitonin gene-related peptide (CGRP)-induced neurogenic dural vasodilation was elicited in the presence of the enantiomers using a rat closed cranial window model. Results The isometheptene enantiomers did not induce any significant contraction in human blood vessels, except in the middle meningeal artery, when they were administered at the highest concentration (100 μM). Interestingly in rats, (S)-isometheptene induced more pronounced vasopressor responses than (R)-isometheptene. However, none of these compounds affected the CGRP-induced vasodilator responses. Conclusion The isometheptene enantiomers displayed a relatively safe peripheral vascular profile, as they failed to constrict the human coronary artery. These compounds do not appear to modulate neurogenic dural CGRP release, therefore, their antimigraine site of action remains to be determined.
Collapse
Affiliation(s)
- Alejandro Labastida-Ramírez
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Dr Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Eloísa Rubio-Beltrán
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Dr Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Kristian A Haanes
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Dr Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - René de Vries
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Dr Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Ruben Dammers
- Department of Neurosurgery, Erasmus MC, Dr Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - A J J C Bogers
- Department of Thoracic surgery, Erasmus MC, Dr Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | | | - Bruce L Daugherty
- Tonix Pharmaceuticals, Inc, 509 Madison Avenue, Suite 306, New York, NY, 10022, USA
| | - Alexander H J Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Dr Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Carlos M Villalón
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda de los Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, C.P, 14330, Ciudad de México, Mexico
| | - Antoinette MaassenVanDenBrink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Dr Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Li S, Wu N, Zhao TY, Lu GY, Wang ZY, Li F, Li J. The role of IRAS/Nischarin involved in the development of morphine tolerance and physical dependence. Biochem Biophys Res Commun 2019; 512:460-466. [PMID: 30902386 DOI: 10.1016/j.bbrc.2019.03.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/09/2019] [Indexed: 01/01/2023]
Abstract
Morphine is a potent opioid analgesic used to alleviate moderate or severe pain, but the development of drug tolerance and dependence limits its use in pain management. Our previous studies showed that the candidate protein for I1 imidazoline receptor, imidazoline receptor antisera-selected (IRAS)/Nischarin, interacts with μ opioid receptor (MOR) and modulates its trafficking. However, there is no report of the effect of IRAS on morphine tolerance and physical dependence. In the present study, we found that IRAS knockout (KO) mice showed exacerbated analgesic tolerance and physical dependence compared to wild-type (WT) mice by chronic morphine treatment. Chronic morphine treatment down-regulated the expression of MOR in spinal cord of IRAS KO mice, while had no significant effect on MOR expression in WT mice. We observed the compensatory increase of cAMP accumulation in spinal cord after morphine tolerance, and this change was more significant in KO mice than WT mice. Furthermore, KO mice showed more elevation in the phosphorylation of AMPA receptor GluR1-S845 than WT mice, while the total expression of GluR1 remained unchanged after morphine dependence. Altogether, these data suggest that IRAS may play an important role in the development of morphine tolerance and physical dependence in vivo through modulating MOR expression, as well as AMPA GluR1-S845 phosphorylation, which might be one of the mechanisms underlying the development of opiate addiction.
Collapse
Affiliation(s)
- Shuo Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Ning Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Tai-Yun Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Guan-Yi Lu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Zhi-Yuan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Fei Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China.
| | - Jin Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China.
| |
Collapse
|
9
|
Development of insulin resistance in Nischarin mutant female mice. Int J Obes (Lond) 2018; 43:1046-1057. [PMID: 30546133 DOI: 10.1038/s41366-018-0241-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/18/2018] [Accepted: 09/16/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND/OBJECTIVES NISCH-STAB1 is a newly identified locus correlated to human waist-hip ratio (WHR), which is a risk indicator of developing obesity-associated diabetes. Our previous studies have shown that Nisch mutant male mice increased glucose tolerance in chow-fed conditions. Thus we hypothesized that Nisch mutant mice will have changes in insulin resistance, adipocytes, hepatic steatosis when mice are fed with high-fat diet (HFD). METHODS Insulin resistance was assessed in Nisch mutant mice and WT mice fed with high-fat diet (60% by kCal) or chow diet. Whole-body energy metabolism was examined using an indirect calorimeter. Adipose depots including inguinal white adipose tissue (WAT), perigonadal WAT, retroperitoneal WAT, and mesenteric WAT were extracted. Area and eqdiameter of each adipocyte were determined, and insulin signaling was examined as well. Paired samples of subcutaneous and omental visceral adipose tissue were obtained from 400 individuals (267 women, 133 men), and examined the expression of Nischarin. RESULTS We found that insulin signaling was impaired in major insulin-sensitive tissues of Nisch mutant female mice. When mice were fed with HFD for 15 weeks, the Nisch mutant female mice not only developed severe insulin resistance and decreased glucose tolerance compared with wild-type control mice, but also accumulated more white fat, had larger adipocytes and developed severe hepatic steatosis than wild-type control mice. To link our animal studies to human diseases, we further analyzed Nischarin expression in the paired human samples of visceral and subcutaneous adipose tissue from Caucasians. In humans, we found that Nischarin expression is attenuated in adipose tissue with obesity. More importantly, we found that Nischarin mRNA inversely correlated with parameters of obesity, fat distribution, lipid and glucose metabolism. CONCLUSIONS Taken together, our data revealed sexual dimorphism of Nischarin in body fat distribution, insulin resistance, and glucose tolerance in mice.
Collapse
|
10
|
Lin MH, Hsu CC, Lin J, Cheng JT, Wu MC. Investigation of morin-induced insulin secretion in cultured pancreatic cells. Clin Exp Pharmacol Physiol 2017; 44:1254-1262. [PMID: 28699234 DOI: 10.1111/1440-1681.12815] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 12/25/2022]
Abstract
Morin is a flavonoid contained in guava that is known to reduce hyperglycemia in diabetes. Insulin secretion has been demonstrated to increase following the administration of morin. The present study is designed to investigate the potential mechanism(s) of morin-induced insulin secretion in the MIN6 cell line. First, we identified that morin induced a dose-dependent increase in insulin secretion and intracellular calcium content in MIN6 cells. Morin potentiated glucose-stimulated insulin secretion (GSIS). Additionally, we used siRNA for the ablation of imidazoline receptor protein (NISCH) expression in MIN6 cells. Interestingly, the effects of increased insulin secretion by morin and canavanine were markedly reduced in Si-NISCH cells. Moreover, we used KU14R to block imidazoline I3 receptor (I-3R) that is known to enhance insulin release from the pancreatic β-cells. Without influence on the basal insulin secretion, KU14R dose-dependently inhibited the increased insulin secretion induced by morin or efaroxan in MIN6 cells. Additionally, effects of increased insulin secretion by morin or efaroxan were reduced by diazoxide at the dose sufficient to open KATP channels and attenuated by nifedipine at the dose used to inhibit L-type calcium channels. Otherwise, phospholipase C (PLC) is introduced to couple with imidazoline receptor (I-R). The PLC inhibitor dose-dependently inhibited the effects of morin in MIN6 cells. Similar blockade was also observed in protein kinase C (PKC) inhibitor-treated cells. Taken together, we found that morin increases insulin secretion via the activation of I-R in pancreatic cells. Therefore, morin would be useful to develop in the research and treatment of diabetic disorders.
Collapse
Affiliation(s)
- Mang Hung Lin
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Chief Secretary's Office, Chiayi Hospital, Ministry of Health and Welfare, Chiayi, Taiwan
| | - Chia-Chen Hsu
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Jenshinn Lin
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Juei Tang Cheng
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan.,Institute of Medical Science, College of Health Science, Chang Jung Christian University, Tainan, Taiwan
| | - Ming Chang Wu
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
11
|
Dong S, Baranwal S, Garcia A, Serrano-Gomez SJ, Eastlack S, Iwakuma T, Mercante D, Mauvais-Jarvis F, Alahari SK. Nischarin inhibition alters energy metabolism by activating AMP-activated protein kinase. J Biol Chem 2017; 292:16833-16846. [PMID: 28842496 DOI: 10.1074/jbc.m117.784256] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/22/2017] [Indexed: 11/06/2022] Open
Abstract
Nischarin (Nisch) is a key protein functioning as a molecular scaffold and thereby hosting interactions with several protein partners. To explore the physiological importance of Nisch, here we generated Nisch loss-of-function mutant mice and analyzed their metabolic phenotype. Nisch-mutant embryos exhibited delayed development, characterized by small size and attenuated weight gain. We uncovered the reason for this phenotype by showing that Nisch binds to and inhibits the activity of AMP-activated protein kinase (AMPK), which regulates energy homeostasis by suppressing anabolic and activating catabolic processes. The Nisch mutations enhanced AMPK activation and inhibited mechanistic target of rapamycin signaling in mouse embryonic fibroblasts as well as in muscle and liver tissues of mutant mice. Nisch-mutant mice also exhibited increased rates of glucose oxidation with increased energy expenditure, despite reduced overall food intake. Moreover, the Nisch-mutant mice had reduced expression of liver markers of gluconeogenesis associated with increased glucose tolerance. As a result, these mice displayed decreased growth and body weight. Taken together, our results indicate that Nisch is an important AMPK inhibitor and a critical regulator of energy homeostasis, including lipid and glucose metabolism.
Collapse
Affiliation(s)
- Shengli Dong
- From the Department of Biochemistry and Molecular Biology, School of Medicine, and
| | - Somesh Baranwal
- From the Department of Biochemistry and Molecular Biology, School of Medicine, and.,the Center for Biochemistry and Microbial Sciences, Central University of Punjab, City Campus Mansa Rd., Bathinda-151001, India
| | - Anapatricia Garcia
- the Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322
| | - Silvia J Serrano-Gomez
- From the Department of Biochemistry and Molecular Biology, School of Medicine, and.,the Pontificia Universidad Javeriana, 11001000 Bogotá, Colombia
| | - Steven Eastlack
- From the Department of Biochemistry and Molecular Biology, School of Medicine, and
| | - Tomoo Iwakuma
- the Department of Cancer Biology, Kansas University Medical Center, Kansas City, Kansas 66160, and
| | - Donald Mercante
- Department of Biostatistics, School of Public Health, Louisiana State University Health Science Center, New Orleans, Louisiana 70112
| | - Franck Mauvais-Jarvis
- the Division of Endocrinology, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Suresh K Alahari
- From the Department of Biochemistry and Molecular Biology, School of Medicine, and
| |
Collapse
|
12
|
Labastida-Ramírez A, Rubio-Beltrán E, Hernández-Abreu O, Daugherty BL, MaassenVanDenBrink A, Villalón CM. Pharmacological analysis of the increases in heart rate and diastolic blood pressure produced by (S)-isometheptene and (R)-isometheptene in pithed rats. J Headache Pain 2017; 18:52. [PMID: 28474252 PMCID: PMC5418177 DOI: 10.1186/s10194-017-0761-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/22/2017] [Indexed: 11/27/2022] Open
Abstract
Background Isometheptene is a sympathomimetic drug effective in acute migraine treatment. It is composed of two enantiomers with diverse pharmacological properties. This study investigated in pithed rats the cardiovascular effects of (S)- isometheptene and (R)-isometheptene, and the pharmacological profile of the more potent enantiomer. Methods The effects of i.v. bolus injections (0.03, 0.1, 0.3, 1 and 3 mg/kg) of isometheptene racemate, (S)-isometheptene or (R)-isometheptene on heart rate and blood pressure were analyzed in control experiments. The enantiomer producing more pronounced tachycardic and/or vasopressor responses was further analyzed in rats receiving i.v. injections of prazosin (0.1 mg/kg), rauwolscine (0.3 mg/kg), propranolol (1 mg/kg) or intraperitoneal reserpine (5 mg/kg, -24 h). Results Compared to (R)-isometheptene, (S)-isometheptene produced greater vasopressor responses, whilst both compounds equipotently increased heart rate. The tachycardic responses to (S)-isometheptene were abolished after propranolol, but remained unaffected by the other antagonists. In contrast, the vasopressor responses to (S)-isometheptene were practically abolished after prazosin. Interestingly, after reserpine, the tachycardic responses to (S)-isometheptene were abolished, whereas its vasopressor responses were attenuated and subsequently abolished by prazosin. Conclusions The different cardiovascular effects of the isometheptene enantiomers are probably due to differences in their mechanism of action, namely: (i) a mixed sympathomimetic action for (S)-isometheptene (a tyramine-like action and a direct stimulation of α1-adrenoceptors); and (ii) exclusively a tyramine like action for (R)-isometheptene. Thus, (R)-isometheptene may represent a superior therapeutic benefit as an antimigraine agent.
Collapse
Affiliation(s)
- Alejandro Labastida-Ramírez
- Department of Pharmacobiology, Cinvestav-Coapa, Czda. Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, 14330, Mexico City, Mexico
| | - Eloísa Rubio-Beltrán
- Department of Pharmacobiology, Cinvestav-Coapa, Czda. Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, 14330, Mexico City, Mexico
| | - Oswaldo Hernández-Abreu
- Department of Pharmacobiology, Cinvestav-Coapa, Czda. Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, 14330, Mexico City, Mexico
| | - Bruce L Daugherty
- Tonix Pharmaceuticals, Inc. 509 Madison Avenue, Suite 306, New York, NY, 10022, USA
| | - Antoinette MaassenVanDenBrink
- Division of Vascular Medicine and Pharmacology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Carlos M Villalón
- Department of Pharmacobiology, Cinvestav-Coapa, Czda. Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, 14330, Mexico City, Mexico.
| |
Collapse
|
13
|
Upregulation of IRAS/nischarin (I 1-imidazoline receptor), a regulatory protein of μ-opioid receptor trafficking, in postmortem prefrontal cortex of long-term opiate and mixed opiate/cocaine abusers. Neurochem Int 2017; 108:282-286. [PMID: 28461172 DOI: 10.1016/j.neuint.2017.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/25/2017] [Accepted: 04/27/2017] [Indexed: 02/06/2023]
Abstract
Imidazoline receptor antisera-selected (IRAS)/nischarin, a putative I1-imidazoline receptor, has recently been shown to regulate μ-opioid receptor (OR) trafficking and resensitisation. To study a possible involvement of this μ-OR regulator in opiate dependence, the present study assessed by Western blot analysis the contents of IRAS/nischarin and μ-OR in total homogenates and subcellular preparations of postmortem human prefrontal cortex (PFC/BA9) of long-term opiate and mixed opiate/cocaine abusers as well as of matched healthy control subjects. In the PFC/BA9 of long-term opiate/cocaine abusers (all subjects together) IRAS/nischarin content was increased (+67%, p < 0.01, n = 11) when compared with matched controls (n = 10). Similar increases were found for the subgroups of opiate (+72%, n = 6) and mixed opiate/cocaine (+61%, n = 5) abusers. IRAS/nischarin immunocontents were also found increased in subcellular membrane preparations (+61%, p < 0.05, n = 10) of PFC/BA9 from opiate addicts. In the same brain samples, the levels of μ-OR were not different to those in control subjects. Based on the increased contents in brains of opiate abusers and the reported function as μ-OR regulator, IRAS/nischarin could represent a new promising target for treatment of opiate use disorder.
Collapse
|
14
|
IRAS Modulates Opioid Tolerance and Dependence by Regulating μ Opioid Receptor Trafficking. Mol Neurobiol 2015; 53:4918-30. [DOI: 10.1007/s12035-015-9417-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/01/2015] [Indexed: 01/25/2023]
|
15
|
Keller B, García-Sevilla JA. Immunodetection and subcellular distribution of imidazoline receptor proteins with three antibodies in mouse and human brains: Effects of treatments with I1- and I2-imidazoline drugs. J Psychopharmacol 2015; 29:996-1012. [PMID: 26038110 DOI: 10.1177/0269881115586936] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Various imidazoline receptor (IR) proteins have been proposed to mediate the effects of selective I1- and I2-IR drugs. However, the association of these IR-binding proteins with classic I1- and I2-radioligand binding sites remains somewhat controversial. In this study, three IR antibodies (anti-NISCH and anti-nischarin for I1-IRs; and anti-IRBP for I1/I2-IRs) were used to immunodetect, characterize and compare IR protein patterns in brain (mouse and human; total homogenate, subcellular fractionation, grey and white matter) and some cell systems (neurones, astrocytes, human platelets). Various immunoreactive IRs (specific molecular weight bands coincidently detected with the different antibodies) were related to I1-IR (167 kDa, 105/115 kDa and 85 kDa proteins) or I2-IR (66 kDa, 45 kDa and 30 kDa proteins) types. The biochemical characterization of cortical 167 kDa protein, localized in the membrane/cytosol but not in the nucleus, indicated that this I1-IR also forms part of higher order nischarin-related complexes. The contents of I1-IR (167 kDa, 105/115 kDa, and 85 kDa) proteins in mouse brain cortex were upregulated by treatment with I1-drugs (moxonidine, efaroxan) but not with I2-drugs (BU-224, LSL 61122). Conversely, the contents of I2-IR (66 kDa, 45 kDa and 30 kDa) proteins in mouse brain cortex were modulated by treatment with I2-drugs (decreases after BU-224 and LSL 61122, and increases after idazoxan) but not with I1-drugs (with the exception of moxonidine). These findings further indicate that brain immunoreactive IR proteins exist in multiple forms that can be grouped in the already known I1- and I2-IR types, which are expressed both in neurones and astrocytes.
Collapse
Affiliation(s)
- Benjamin Keller
- Laboratori de Neurofarmacologia, IUNICS-IdISPa, Universitat de les Illes Balears, Palma de Mallorca, Spain and Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain
| | - Jesús A García-Sevilla
- Laboratori de Neurofarmacologia, IUNICS-IdISPa, Universitat de les Illes Balears, Palma de Mallorca, Spain and Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain
| |
Collapse
|