1
|
Chen YW, Li TJ, Wang LC, Yang BH, Chen YL, Chen CC, Lin HT. Prevention of Muscle Atrophy by Low-Molecular-Weight Fraction from Hirsutella sinensis Mycelium. Curr Issues Mol Biol 2024; 46:14033-14044. [PMID: 39727967 PMCID: PMC11727312 DOI: 10.3390/cimb46120839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Muscle atrophy, an age-related condition, presents a growing healthcare concern within the context of global population aging. While studies have investigated Hirsutella sinensis for its potential antifatigue properties, reports on its active components remain limited. This study evaluated the efficacy of H. sinensis mycelium extract on muscle health, utilizing a 1:1 water-ethanol preparation administered to C57BL/6 mice exhibiting acute hind leg atrophy. The results indicated no adverse effects, with significant improvements in muscle endurance and soleus muscle mass observed over a 14-day period. To further elucidate the mechanisms and effects of H. sinensis mycelium on dexamethasone-induced muscle atrophy, the water extract was fractionated into components of <3.5 kDa, 3.5-10 kDa, and >10 kDa using dialysis membranes. The investigation utilized a C2C12 cell atrophy model, induced by dexamethasone, to analyze the expression of relevant genes via qPCR. The results demonstrated that the <3.5 kDa and >10 kDa fractions significantly upregulated the expression of Myh2 and Myh7 genes while simultaneously downregulating the expression of MuRF-1 and Atrogin-1. It is noteworthy that the <3.5 kDa fraction exclusively enhanced MYHC protein expression and suppressed AMPK expression, as confirmed by Western blot analysis. This comprehensive pilot study suggests that the low-molecular-weight fraction of H. sinensis mycelium exhibits considerable potential for muscle mass preservation and atrophy mitigation. As a result, it offers a promising direction for the development of supplements aimed at addressing fatigue and preventing muscle atrophy.
Collapse
Affiliation(s)
- Yi-Wen Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan City 325, Taiwan; (Y.-W.C.); (T.-J.L.); (B.-H.Y.); (Y.-L.C.)
| | - Tsung-Ju Li
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan City 325, Taiwan; (Y.-W.C.); (T.-J.L.); (B.-H.Y.); (Y.-L.C.)
| | - Li-Ching Wang
- Department of Food Safety, National Chung Hsing University, Taichung City 402, Taiwan;
| | - Bi-Hua Yang
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan City 325, Taiwan; (Y.-W.C.); (T.-J.L.); (B.-H.Y.); (Y.-L.C.)
| | - Yen-Lien Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan City 325, Taiwan; (Y.-W.C.); (T.-J.L.); (B.-H.Y.); (Y.-L.C.)
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan City 325, Taiwan; (Y.-W.C.); (T.-J.L.); (B.-H.Y.); (Y.-L.C.)
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei City 104, Taiwan
- Institute of Food Science and Technology, National Taiwan University, Taipei City 106, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City 320, Taiwan
| | - Hsin-Tang Lin
- Department of Food Safety, National Chung Hsing University, Taichung City 402, Taiwan;
| |
Collapse
|
2
|
Wang X, Li Q, Han D, Xie F, Wang J, Li Y, Cheng C, Chu Y, Liu X, Dong Q, Yu Y, Luo Z, Guo J, Zhang Z, Wang Y. A Hirsutella sinensis Alcohol Extract Exerts Bidirectional Immunoregulatory Effects by Regulating Macrophage Polarization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20432-20443. [PMID: 39253862 DOI: 10.1021/acs.jafc.4c04575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
For background, Hirsutella sinensis, the only anamorphic fungus considered an effective substitute for Cordyceps sinensis, possesses immunoregulatory properties. However, the specific mechanism underlying the immunoregulatory function of Hirsutella sinensis remains unclear. The purpose is to investigate the therapeutic effects of Hirsutella sinensis alcohol extract (HSAE) on immune dysregulation and elucidate the underlying mechanisms involved. For methods, we established inflammatory and immunosuppression models in vitro and in vivo to evaluate the bidirectional immunoregulatory function of HSAE via qRT-PCR and immunoblotting. We also studied its potential mechanism via RNA sequencing and transcriptional analysis. We further established M1 and M2 cell models to explore the effect of HSAE on M1/M2 polarization using qRT-PCR, immunoblotting, and flow cytometry. For results, our data demonstrated enhanced proliferation, phagocytosis, and antipathogenic activities of macrophages. Treatment with HSAE led to increases in the proportions of CD3+ and CD4+ immune cells in cyclophosphamide-induced immunosuppressed mice. Additionally, HSAE reduced the lipopolysaccharide (LPS)-induced expression of Il1b, Il6, Ifnb1, and Cxcl10 by inhibiting the activation of the NF-κB and MAPK pathways in vitro and improved mouse survival by reducing the proportion of M1/M2 macrophages in septic mice. Finally, we found that HSAE inhibited M1 polarization by decreasing the expression of iNOS and CD86 and promoted M2 polarization by increasing the expression of ARG1 and CD206. For conclusions, our study provides evidence that HSAE has the potential to enhance immune responses and suppress excessive inflammation. These effects were realized by modulating macrophage polarization, providing novel insights into the fundamental mechanism underlying the bidirectional immunomodulatory effect of HSAE.
Collapse
Affiliation(s)
- Xuejiao Wang
- Beijing University of Chinese Medicine, 11 North third Ring Eastern Road, Beijing 100029, China
| | - Qiqi Li
- Beijing University of Chinese Medicine, 11 North third Ring Eastern Road, Beijing 100029, China
| | - Dongchen Han
- Beijing University of Chinese Medicine, 11 North third Ring Eastern Road, Beijing 100029, China
| | - Fang Xie
- Beijing University of Chinese Medicine, 11 North third Ring Eastern Road, Beijing 100029, China
| | - Jinyong Wang
- Beijing University of Chinese Medicine, 11 North third Ring Eastern Road, Beijing 100029, China
| | - Yiying Li
- Beijing University of Chinese Medicine, 11 North third Ring Eastern Road, Beijing 100029, China
| | - Cuiqin Cheng
- Beijing University of Chinese Medicine, 11 North third Ring Eastern Road, Beijing 100029, China
| | - Yingjie Chu
- Beijing University of Chinese Medicine, 11 North third Ring Eastern Road, Beijing 100029, China
| | - Xia Liu
- Beijing University of Chinese Medicine, 11 North third Ring Eastern Road, Beijing 100029, China
| | - Qiutong Dong
- Beijing University of Chinese Medicine, 11 North third Ring Eastern Road, Beijing 100029, China
| | - Yanli Yu
- Beijing University of Chinese Medicine, 11 North third Ring Eastern Road, Beijing 100029, China
| | - Zheng Luo
- Beijing University of Chinese Medicine, 11 North third Ring Eastern Road, Beijing 100029, China
| | - Jincheng Guo
- Beijing University of Chinese Medicine, 11 North third Ring Eastern Road, Beijing 100029, China
| | - Zijie Zhang
- State Key Laboratory for Conservation and Utilization of Bio-resource and School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Yao Wang
- Beijing University of Chinese Medicine, 11 North third Ring Eastern Road, Beijing 100029, China
| |
Collapse
|
3
|
Liu CY, Chen CC, Chiang LH, Yang BH, Chang TC, Tsao CW. Hirsutella sinensis intensifies testicular function and spermatogenesis in male mice with high-fat diet-induced obesity. J Chin Med Assoc 2024; 87:765-773. [PMID: 38946025 DOI: 10.1097/jcma.0000000000001128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND Hirsutella sinensis (HS) is a mycelium isolated from the fruiting body of the medicinal mushroom Cordyceps sinensis . This study explored whether HS treatment affects reproductive dysfunction in a high-fat diet (HFD)-induced mouse model and regulates various mechanisms, focusing on oxidative stress, apoptosis, inflammation, and autophagy. METHODS Twenty-four C57BL/6J (B6) mice were randomly divided into a standard chow diet (NCD)- or HFD-fed group for 24 weeks. During the final 8 weeks, half of the HFD-fed mice were orally administered HS (HFD + HS). Biochemical markers, including glucose, insulin, triglycerides, and total cholesterol, were assessed, and hormones, including testosterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH), were analyzed. Liver and testicular histology, as well as sperm quality markers such as sperm motility, sperm count, and percentage of sperm with normal morphology, were observed. The activities of the testicular antioxidants superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx) and the products of lipid peroxidation, such as malondialdehyde (MDA), were measured. The protein expression levels of apoptosis-, autophagy- and inflammation-related markers were measured. RESULTS The HFD-fed mice had abnormal sex hormone levels, poor sperm quality, and a destroyed testicular structure, with increased oxidative stress and apoptosis in the testis. HS supplementation in HFD-fed mice attenuated testicular apoptosis by suppressing the Bax/Bcl-xl ratio and cleaved caspase 3 protein expression. The HS-treated mice exhibited improved reproductive function, possibly due to reduced oxidative stress and apoptosis, suggesting that HS has a protective effect against HFD-induced testicular damage. CONCLUSION Male mice supplemented with HS exhibited attenuated poor semen quality and reduced testosterone levels brought about by HFD-induced obesity by reducing oxidative stress.
Collapse
Affiliation(s)
- Chin-Yu Liu
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan, ROC
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan, Taiwan, ROC
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
- Department of Food Science, Nutrition and Nutraceutical Biotechnology, Shih Chien University, Taipei, Taiwan, ROC
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan, ROC
| | - Lynn-Huey Chiang
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan, Taiwan, ROC
| | - Bi-Hua Yang
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan, Taiwan, ROC
| | - Ting-Chia Chang
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan, ROC
| | - Chih-Wei Tsao
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| |
Collapse
|
4
|
Tsuruta K, Shidara T, Miyagishi H, Nango H, Nakatani Y, Suzuki N, Amano T, Suzuki T, Kosuge Y. Anti-Inflammatory Effects of Miyako Bidens pilosa in a Mouse Model of Amyotrophic Lateral Sclerosis and Lipopolysaccharide-Stimulated BV-2 Microglia. Int J Mol Sci 2023; 24:13698. [PMID: 37762010 PMCID: PMC10530530 DOI: 10.3390/ijms241813698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Neuroinflammation is a fundamental feature in the pathogenesis of amyotrophic lateral sclerosis (ALS) and arises from the activation of astrocytes and microglial cells. Previously, we reported that Miyako Bidens pilosa extract (MBP) inhibited microglial activation and prolonged the life span in a human ALS-linked mutant superoxide dismutase-1 (SOD1G93A) transgenic mouse model of ALS (G93A mice). Herein, we evaluated the effect of MBP on microglial activation in the spinal cord of G93A mice and lipopolysaccharide-stimulated BV-2 microglial cells. The administration of MBP inhibited the upregulation of the M1-microglia/macrophage marker (interferon-γ receptor (IFN-γR)) and pro-inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6) in G93A mice. However, MBP did not affect the increase in the M2-microglia/macrophage marker (IL-13R) and anti-inflammatory cytokines (transforming growth factor (TGF)-β and IL-10) in G93A mice. BV-2 cell exposure to MBP resulted in a decrease in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) reduction activity and bromodeoxyuridine incorporation, without an increase in the number of ethidium homodimer-1-stained dead cells. Moreover, MBP suppressed the production of lipopolysaccharide-induced pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in BV-2 cells. These results suggest that the selective suppression of M1-related pro-inflammatory cytokines is involved in the therapeutic potential of MBP in ALS model mice.
Collapse
Affiliation(s)
- Komugi Tsuruta
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan; (K.T.); (T.S.); (H.M.); (H.N.)
| | - Takato Shidara
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan; (K.T.); (T.S.); (H.M.); (H.N.)
| | - Hiroko Miyagishi
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan; (K.T.); (T.S.); (H.M.); (H.N.)
| | - Hiroshi Nango
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan; (K.T.); (T.S.); (H.M.); (H.N.)
| | - Yoshihiko Nakatani
- Department of Pharmacotherapeutics, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara 324-8501, Tochigi, Japan;
| | - Naoto Suzuki
- Laboratory of Pharmaceutics, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan; (N.S.); (T.S.)
| | - Taku Amano
- Tochigi Prefectural Okamotodai Hospital, 2162 Shimookamotomachi, Utsunomiya 329-1104, Tochigi, Japan;
| | - Toyofumi Suzuki
- Laboratory of Pharmaceutics, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan; (N.S.); (T.S.)
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan; (K.T.); (T.S.); (H.M.); (H.N.)
| |
Collapse
|
5
|
Xu XL, Li S, Zhang R, Le WD. Neuroprotective effects of naturally sourced bioactive polysaccharides: an update. Neural Regen Res 2022; 17:1907-1912. [PMID: 35142666 PMCID: PMC8848587 DOI: 10.4103/1673-5374.335142] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Polysaccharides are macromolecular complexes that have various biological activities. In vivo and in vitro studies have shown that polysaccharides play neuroprotective roles through multiple mechanisms; consequently, they have potential in the prevention and treatment of neurodegenerative diseases. This paper summarizes related research published during 2015-2020 and reviews advances in the understanding of the neuroprotective effects of bioactive polysaccharides. This review focuses on 15 bioactive polysaccharides from plants and fungi that have neuroprotective properties against oxidative stress, apoptosis, neuroinflammation, and excitatory amino acid toxicity mainly through the regulation of nuclear factor kappa-B, phosphatidylinositol-3-kinase/protein kinase B, mitogen-activated protein kinase, nuclear factor-E2-related factor 2/ hemeoxygenase-1, c-jun N-terminal kinase, protein kinase B-mammalian target of rapamycin, and reactive oxygen species-nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 signaling pathways. Natural bioactive polysaccharides have potential in the prevention and treatment of neurodegenerative diseases because of their advantageous characteristics, including multi-targeting, low toxicity, and synergistic effects. However, most of the recent related research has focused on cell and animal models. Future randomized clinical trials involving large sample sizes are needed to validate the therapeutic benefits of these neuroprotective polysaccharides in patients having neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiao-Lan Xu
- Department of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Song Li
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Rong Zhang
- Department of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Wei-Dong Le
- Department of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province; Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
6
|
Xu X, Zhang J, Li S, Al-Nusaif M, Zhou Q, Chen S, Le W. Bone Marrow Stromal Cell Antigen 2: Is a Potential Neuroinflammation Biomarker of SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis in Pre-symptomatic Stage. Front Neurosci 2022; 15:788730. [PMID: 35197819 PMCID: PMC8858987 DOI: 10.3389/fnins.2021.788730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation has long been thought to be associated with amyotrophic lateral sclerosis (ALS) development and progression. However, the exact molecular mechanisms of neuroinflammation underlying ALS remain largely unknown. In the present study, we attempted to elucidate the genetic basis of neuroinflammation in ALS by comparing the transcriptomic profile of the anterior horns of the lumbar spinal cord (AHLSC) between SOD1G93A mice and their wild-type (WT) littermates. Our results revealed that immune-related genes were selectively up-regulated in the AHLSC of pre-symptomatic ALS mice (40 days of age) compared to age-matched WT control mice. Notably, the differential expression level of these immune-related genes became more significant at the symptomatic stage of disease (90 days of age) in the ALS mice. Subsequently, eight genes involved in innate immune response in the AHLSC of ALS mice were further validated by qRT-PCR analysis. Of these genes, bone marrow stromal cell antigen 2 (BST2) was found for the first time to be significantly higher in the AHLSC of pre-symptomatic ALS mice when compared with WT mice. The increasing trend of BST2 expression became more obvious in the symptomatic stage. Immunofluorescent staining further confirmed that BST2 is mainly expressed on microglia in the AHLSC of ALS mice. These findings support the view that immune-related neuroinflammation is involved in the early pathogenesis of ALS, and BST2 may serve as a potential target for ameliorating microglia-mediated neuroinflammation pathologies in ALS.
Collapse
Affiliation(s)
- Xiaojiao Xu
- Institute of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingjing Zhang
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Song Li
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Murad Al-Nusaif
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qinming Zhou
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weidong Le
- Institute of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
- *Correspondence: Weidong Le,
| |
Collapse
|
7
|
Peng G, Gu A, Niu H, Chen L, Chen Y, Zhou M, Zhang Y, Liu J, Cai L, Liang D, Liu X, Liu M. Amyotrophic lateral sclerosis (ALS) linked mutation in Ubiquilin 2 affects stress granule assembly via TIA-1. CNS Neurosci Ther 2021; 28:105-115. [PMID: 34750982 PMCID: PMC8673703 DOI: 10.1111/cns.13757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022] Open
Abstract
Aims The ubiquilin‐like protein ubiquilin 2 (UBQLN2) is associated with amyotrophic lateral sclerosis and frontotemporal degeneration (ALS/FTD). The biological function of UBQLN2 has previously been shown to be related to stress granules (SGs). In this study, we aimed to clarify the regulatory relationship between UBQLN2 and SGs. Methods In this study, we transfected UBQLN2‐WT or UBQLN2‐P497H plasmids into cell lines (HEK293T, HeLa), and observed the process of SG dynamics by immunofluorescence. Meanwhile, immunoblot analyses the protein changes of stress granules related components. Results We observed that ubiquilin 2 colocalizes with the SG component proteins G3BP1, TIA‐1, ATXN2, and PABPC1. In cells expressing WT UBQLN2 or P497H mutants, in the early stages of SG formation under oxidative stress, the percentage of cells with SGs and the number of SGs per cell decreased to varying degrees. Between WT and mutant, there was no significant difference in eIF2α activity after stress treatment. Interestingly, the UBQLN2 P497H mutant downregulates the level of TIA‐1. In addition, the overexpression of the UBQLN2 P497H mutant inhibited the phosphorylation of 4E‐BP1 and affected the nucleoplasmic distribution of TDP‐43. Conclusions Ubiquilin 2 colocalizes with the SG component proteins G3BP1, TIA‐1, ATXN2, and PABPC1. It participates in regulating SG dynamics. And UBQLN2 mutation affects the assembly of stress granules by regulating TIA‐1. In addition, the overexpression of the UBQLN2 P497H mutant inhibited the phosphorylation of 4E‐BP1 and affected the nuclear and cytoplasmic distribution of TDP‐43. These provide new insights into the role of UBQLN2 in oxidative stress and the pathogenesis of ALS.
Collapse
Affiliation(s)
- Guangnan Peng
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Hunan, China
| | - Ao Gu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Hunan, China
| | - Hongyan Niu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Hunan, China
| | - Linlin Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Hunan, China
| | - Yan Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Hunan, China
| | - Miaojin Zhou
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Hunan, China
| | - Yiti Zhang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Hunan, China
| | - Jie Liu
- Center for Regenerative Medicine, The First People's Hospital of Yunnan Province, Kunming, China
| | - Licong Cai
- School of Life Sciences, Central South University, Hunan, China
| | - Desheng Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Hunan, China.,Hunan Key Laboratory of Basic and Applied Hematology, Central South University, Hunan, China
| | - Xionghao Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Hunan, China.,Hunan Key Laboratory of Basic and Applied Hematology, Central South University, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Hunan, China
| | - Mujun Liu
- Hunan Key Laboratory of Basic and Applied Hematology, Central South University, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Hunan, China.,Department of Cell Biology, School of Life Sciences, Central South University, Hunan, China
| |
Collapse
|
8
|
Xue Y, Nie D, Wang LJ, Qiu HC, Ma L, Dong MX, Tu WJ, Zhao J. Microglial Polarization: Novel Therapeutic Strategy against Ischemic Stroke. Aging Dis 2021; 12:466-479. [PMID: 33815877 PMCID: PMC7990355 DOI: 10.14336/ad.2020.0701] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke, which is the second highest cause of death and the leading cause of disability, represents ~71% of all strokes globally. Some studies have found that the key elements of the pathobiology of stroke is immunity and inflammation. Microglia are the first line of defense in the nervous system. After stroke, the activated microglia become a double-edged sword, with distinct phenotypic changes to the deleterious M1 types and neuroprotective M2 types. Therefore, ways to promote microglial polarization toward M2 phenotype after stroke have become the focus of attention in recent years. In this review, we discuss the process of microglial polarization, summarize the alternation of signaling pathways and epigenetic regulation that control microglial polarization in ischemic stroke, aiming to find the potential mechanisms by which microglia can be transformed into the M2 polarized phenotype.
Collapse
Affiliation(s)
- Yimeng Xue
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,2Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Ding Nie
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lin-Jian Wang
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,2Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Han-Cheng Qiu
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Long Ma
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming-Xin Dong
- 3Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Wen-Jun Tu
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,3Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Jizong Zhao
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,2Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,4China National Clinical Research Center for Neurological Diseases, Beijing, China.,5Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,6Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| |
Collapse
|
9
|
Bidens pilosa Extract Administered after Symptom Onset Attenuates Glial Activation, Improves Motor Performance, and Prolongs Survival in a Mouse Model of Amyotrophic Lateral Sclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1020673. [PMID: 32089764 PMCID: PMC7008255 DOI: 10.1155/2020/1020673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/24/2019] [Accepted: 01/04/2020] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative disorder characterized by progressive paralysis resulting from the death of upper and lower motor neurons. There is currently no effective pharmacological treatment for ALS, and the two approved drugs riluzole and edaravone have limited effects on the symptoms and only slightly prolong the life of patients. Therefore, the development of effective therapeutic strategies is of paramount importance. In this study, we investigated whether Miyako Island Bidens pilosa (MBP) can alleviate the neurological deterioration observed in a superoxide dismutase-1 G93A mutant transgenic mouse (G93A mouse) model of ALS. We orally administered 2 g/kg/day of MBP to G93A mice at the onset of symptoms of neurodegeneration (15 weeks old) until death. Treatment with MBP markedly prolonged the life of ALS model mice by approximately 20 days compared to that of vehicle-treated ALS model mice and significantly improved motor performance. MBP treatment prevented the reduction in SMI32 expression, a neuronal marker protein, and attenuated astrocyte (detected by GFAP) and microglia (detected by Iba-1) activation in the spinal cord of G93A mice at the end stage of the disease (18 weeks old). Our results indicate that MBP administered after the onset of ALS symptoms suppressed the inflammatory activation of microglia and astrocytes in the spinal cord of the G93A ALS model mice, thus improving their quality of life. MBP may be a potential therapeutic agent for ALS.
Collapse
|
10
|
Shang HY, Zhang JJ, Fu ZF, Liu YF, Li S, Chen S, Le WD. Therapeutic effects of hirsutella sinensis on the disease onset and progression of amyotrophic lateral sclerosis in SOD1 G93A transgenic mouse model. CNS Neurosci Ther 2019; 26:90-100. [PMID: 31318169 PMCID: PMC6930832 DOI: 10.1111/cns.13182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/10/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022] Open
Abstract
Aims Although the pathophysiology of amyotrophic lateral sclerosis (ALS) is still not completely understood, the deregulated microglia polarization and neuroinflammation have been shown to contribute to the pathogenesis and progression of this disease. In the present study, we aimed to determine whether hirsutella sinensis (HS) could reduce neuroinflammatory and pathological changes in the spinal cord of SOD1G93A model mice of ALS and consequently ameliorate disease onset and progression. Methods SOD1G93A mice were chronically treated with HS by gavage. Their lifespan was recorded, and motor behavior was evaluated by rotarod test. The pathological changes in skeletal muscles and motor neurons in spinal cords were assessed by immunofluorescent staining and hematoxylin‐eosin staining. The microglia activation and neuroinflammation were determined by immunofluorescent staining and RT‐PCR. Results Our data suggested that repeated HS administration prolonged the lifespan and extended disease duration of ALS mice without significant delay on disease onset. HS ameliorated the pathological changes in the motor neurons and gastrocnemius muscles. Moreover, HS promoted the transition of microglia from pro‐inflammatory M1 to anti‐inflammatory M2 phenotype in the spinal cord of ALS mice. Conclusion All these findings indicate that HS may serve as a potential therapeutic candidate for the treatment of ALS.
Collapse
Affiliation(s)
- Hai-Yan Shang
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,General Hospital of Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, China
| | - Jing-Jing Zhang
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,Chifeng Municipal Hospital, Chifeng, China
| | - Zhen-Fa Fu
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yu-Fei Liu
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Song Li
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Sheng Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Dong Le
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|