1
|
Kazmi S, Salehi-Pourmehr H, Sadigh-Eteghad S, Farhoudi M. The efficacy and safety of interleukin-1 receptor antagonist in stroke patients: A systematic review. J Clin Neurosci 2024; 120:120-128. [PMID: 38237490 DOI: 10.1016/j.jocn.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/29/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
Stroke is the leading cause of disability worldwide, yet there is currently no effective treatment available to mitigate its negative consequences. Pro-inflammatory cytokines, such as interleukin-1 (IL-1), are known to play a crucial role in exacerbating the aftermath of stroke. Thus, it is hypothesized that blocking inflammation and administering anti-inflammatory drugs at an optimal time and dosage may improve the long-term quality of life for stroke patients. This systematic review examines the effectiveness and safety of IL-1 receptor antagonist (IL-1Ra), commercially known as "anakinra," in clinical studies involving the treatment of stroke patients. A comprehensive literature search was conducted until October 2023 to identify relevant studies. The search yielded 1403 articles, out of which 598 were removed due to duplication. After a thorough review of 805 titles and abstracts, 797 articles were further excluded, resulting in 8 studies being included in this systematic review. The findings from all the included studies demonstrate that IL-1Ra is safe for use in acute ischemic and hemorrhagic stroke patients, with no significant adverse events reported. Additionally, biomarkers, clinical assessments, serious adverse events (AEs), and non-serious AEs consistently showed more favorable outcomes in IL-1Ra receiving patients. Stroke elevates the levels of several inflammatory cytokines, however, administration of IL-1RA directly or indirectly modulates these markers and improves some clinical outcomes, suggesting a potential therapeutic benefit of this intervention.
Collapse
Affiliation(s)
- Sareh Kazmi
- Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center (NSRC), Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Salehi-Pourmehr
- Research Center for Evidence-Base Medicine, Iranian EBM Centre: A JBI Centre of Excellence, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Medical Philosophy and History Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Xiao Z, Li P, Shen Y, Manaenko A, Yang W, Wang P, Li X, Liu F, Xie P, Li Q. Multi-time point metabolomics reveals key metabolic features from the ultra-early stage of intracerebral hemorrhage in mice. Exp Neurol 2023; 368:114507. [PMID: 37598880 DOI: 10.1016/j.expneurol.2023.114507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
Despite decades of intensive research, there are still very limited options for the effective treatment of intracerebral hemorrhage (ICH). Recently, mounting evidence has indicated that the ultra-early stage (<3 h), serving as the primary phase of ICH, plays a pivotal role and may even surpass other stages in terms of its significance. Therefore, uncovering the metabolic alterations induced by ICH in the ultra-early stage is of crucial importance. To investigate this, the collagenase ICH mouse model was employed in this study. ICH or sham-operated mice were euthanized at the ultra-early stage of 3 h and the acute stage of 24 h and 72 h after the operation. Then, the metabolic changes in the perihematomal tissues were detected by liquid chromatography coupled with tandem mass spectrometry. In total, alterations in the levels of 465 metabolites were detected. A total of 136 metabolites were significantly changed at 3 h. At 24 h and 72 h, the amounts were 132 and 126, respectively. Additionally, the key corresponding metabolic pathways for these time points were analyzed through KEGG. To gather additional information, quantitative real-time transcription polymerase chain reaction, enzyme-linked immunosorbent assay and Western blots were performed to validate the metabolic changes. Overall, ICH significantly alters important physiological functions such as cysteine metabolism, purine metabolism, synaptic alterations, the synaptic vesicle cycle, and the ATP-binding cassette transporter system. These might be the key pathologic mechanisms of the ultra-early stage induced by ICH.
Collapse
Affiliation(s)
- Zhongsong Xiao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peizheng Li
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yiqing Shen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Anatol Manaenko
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wensong Yang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xinhui Li
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Fangyu Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Qi Li
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
3
|
Li F, Chen A, Li Z, Gu L, Pan Q, Wang P, Fan Y, Feng J. Machine learning-based prediction of cerebral hemorrhage in patients with hemodialysis: A multicenter, retrospective study. Front Neurol 2023; 14:1139096. [PMID: 37077571 PMCID: PMC10109449 DOI: 10.3389/fneur.2023.1139096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023] Open
Abstract
BackgroundIntracerebral hemorrhage (ICH) is one of the most serious complications in patients with chronic kidney disease undergoing long-term hemodialysis. It has high mortality and disability rates and imposes a serious economic burden on the patient's family and society. An early prediction of ICH is essential for timely intervention and improving prognosis. This study aims to build an interpretable machine learning-based model to predict the risk of ICH in patients undergoing hemodialysis.MethodsThe clinical data of 393 patients with end-stage kidney disease undergoing hemodialysis at three different centers between August 2014 and August 2022 were retrospectively analyzed. A total of 70% of the samples were randomly selected as the training set, and the remaining 30% were used as the validation set. Five machine learning (ML) algorithms, namely, support vector machine (SVM), extreme gradient boosting (XGB), complement Naïve Bayes (CNB), K-nearest neighbor (KNN), and logistic regression (LR), were used to develop a model to predict the risk of ICH in patients with uremia undergoing long-term hemodialysis. In addition, the area under the curve (AUC) values were evaluated to compare the performance of each algorithmic model. Global and individual interpretive analyses of the model were performed using importance ranking and Shapley additive explanations (SHAP) in the training set.ResultsA total of 73 patients undergoing hemodialysis developed spontaneous ICH among the 393 patients included in the study. The AUC of SVM, CNB, KNN, LR, and XGB models in the validation dataset were 0.725 (95% CI: 0.610 ~ 0.841), 0.797 (95% CI: 0.690 ~ 0.905), 0.675 (95% CI: 0.560 ~ 0.789), 0.922 (95% CI: 0.862 ~ 0.981), and 0.979 (95% CI: 0.953 ~ 1.000), respectively. Therefore, the XGBoost model had the best performance among the five algorithms. SHAP analysis revealed that the levels of LDL, HDL, CRP, and HGB and pre-hemodialysis blood pressure were the most important factors.ConclusionThe XGB model developed in this study can efficiently predict the risk of a cerebral hemorrhage in patients with uremia undergoing long-term hemodialysis and can help clinicians to make more individualized and rational clinical decisions. ICH events in patients undergoing maintenance hemodialysis (MHD) are associated with serum LDL, HDL, CRP, HGB, and pre-hemodialysis SBP levels.
Collapse
Affiliation(s)
- Fengda Li
- Department of Neurosurgery, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Anmin Chen
- Department of Nephrology, The First People's Hospital of Jintan, Changzhou, China
| | - Zeyi Li
- School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Longyuan Gu
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qiyang Pan
- Faculty of Informatics, Università della Svizzera italiana, Lugano, Ticino, Switzerland
| | - Pan Wang
- School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Yuechao Fan
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- *Correspondence: Yuechao Fan
| | - Jinhong Feng
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jinhong Feng
| |
Collapse
|
4
|
Zheng Y, Tan X, Cao S. The Critical Role of Erythrolysis and Microglia/Macrophages in Clot Resolution After Intracerebral Hemorrhage: A Review of the Mechanisms and Potential Therapeutic Targets. Cell Mol Neurobiol 2023; 43:59-67. [PMID: 34981286 DOI: 10.1007/s10571-021-01175-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 11/27/2021] [Indexed: 01/07/2023]
Abstract
Intracerebral hemorrhage (ICH) is a common cerebrovascular disorder with high morbidity and mortality. Secondary brain injury after ICH, which is initiated by multiple hemolytic products during erythrolysis, has been identified as a critical factor accounting for the poor prognosis of ICH patients. Clot resolution and hematoma clearance occur immediately after ICH via erythrolysis and erythrophagocytosis. During this process, erythrolysis after ICH results in the release of hemoglobin and products of degradation along with rapid morphological changes in red blood cells (RBCs). Phagocytosis of deformed erythrocytes and products of degradation by microglia/macrophages accelerates hematoma clearance, which turns out to be neuroprotective. Thus, a better understanding of the mechanism of erythrolysis and the role of microglia/macrophages after ICH is urgently needed. In this review, the current research progresses on the underlying mechanism of erythrolysis and erythrophagocytosis, as well as several useful tools for the quantification of erythrolysis-induced brain injury, are summarized, providing potential intervention targets and possible treatment strategies for ICH patients.
Collapse
Affiliation(s)
- Yonghe Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxiao Tan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shenglong Cao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
5
|
Wu ST, Han JR, Yao N, Li YL, Zhang F, Shi Y, Shi FD, Li ZG. Activation of P2X4 receptor exacerbates acute brain injury after intracerebral hemorrhage. CNS Neurosci Ther 2022; 28:1008-1018. [PMID: 35352488 PMCID: PMC9160453 DOI: 10.1111/cns.13831] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 12/27/2022] Open
Abstract
Introduction Intracerebral hemorrhage (ICH) accounts for 10%–15% of all strokes and culminates in high mortality and disability. After ICH, brain injury is initiated by the mass effect of hematoma, followed by secondary cytotoxic injury from dying brain cells, hematoma disintegration, and cascading brain immune response. However, the molecular mechanism of secondary cytotoxic brain injury in ICH is not completely understood. The sensitive purinergic receptor, P2X4 receptor (P2X4R), was known to recognize extracellular free ATP released by dying cells during tissue injury. Aims In this study, we aim to understand the role of P2X4R in acute brain injury triggered by ICH. Results In this study, we found that the sensitive purinergic receptor, P2X4R, was upregulated in the brain of patients with ICH as well as in a mouse model of ICH induced by collagenase injection. P2X4R blockage with the specific inhibitor 5‐BDBD attenuated brain injury in ICH mice by significantly reducing brain edema, blood–brain barrier leakage, neural death, and ultimately acute neurodeficits. Further study indicated that the protective effect of P2X4R inhibition is related to decreased pro‐inflammatory activity of microglia and recruitment of peripheral immune cells into the hemorrhagic brain. Conclusions These results suggest that the P2X4 receptor is activated by ICH stimuli which worsen brain injury following ICH.
Collapse
Affiliation(s)
- Si-Ting Wu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jin-Rui Han
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Nan Yao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu-Lin Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fang Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yao Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhi-Guo Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
6
|
Zhang Y, Lei L, Zhou H, Lu X, Cai F, Li T. Roles of Micro Ribonucleic Acids in Astrocytes After Cerebral Stroke. Front Cell Neurosci 2022; 16:890762. [PMID: 35755778 PMCID: PMC9218061 DOI: 10.3389/fncel.2022.890762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral stroke is one of the highest-ranking causes of death and the leading cause of disability globally, particularly with an increasing incidence and prevalence in developing countries. Steadily more evidence has indicated that micro ribonucleic acids (miRNAs) have important regulatory functions in gene transcription and translation in the course of cerebral stroke. It is beyond arduous to understand the pathophysiology of cerebral stroke, due in part to the perplexity of influencing the network of the inflammatory response, brain edema, autophagy and neuronal apoptosis. The recent research shows miRNA plays a key role in regulating aquaporin 4 (AQP4), and many essential pathological processes after cerebral stroke. This article reviews the recent knowledge on how miRNA influences the inflammatory response, brain edema, infarction size, and neuronal injury after cerebral stroke. In addition, some miRNAs may serve as potential biomarkers in stroke diagnosis and therapy since the expression of some miRNAs in the blood is stable after cerebral stroke.
Collapse
Affiliation(s)
- Yuansheng Zhang
- Department of Neurosurgery, The Affiliated Hospital of Medical College, Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Li Lei
- Department of Neurosurgery, The Affiliated Hospital of Medical College, Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Hu Zhou
- Department of Neurosurgery, The Affiliated Hospital of Medical College, Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Xiaoyang Lu
- Translational Neurosurgery and Neurobiology, University Hospital Aachen, RWTH Aachen, Aachen, Germany
| | - Feifei Cai
- Department of Radiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Tao Li
- Department of Neurosurgery, The Affiliated Hospital of Medical College, Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
7
|
Hei B, Ouyang J, Zhou J, Wang D, Miao Z, Liu RE. Raddeanin A (RA) reduced acute inflammatory injury in mouse experimental cerebral hemorrhage by suppression of TLR4. Int J Med Sci 2022; 19:1235-1240. [PMID: 35928716 PMCID: PMC9346382 DOI: 10.7150/ijms.73007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) is associated with high mortality and disability rates. The microglia-induced inflammatory response is a critical factor determining brain tissue damage after ICH. Raddeanin A (RA) is a natural triterpenoid compound with anti-inflammatory effects, although its effects on ICH and the underlying molecular mechanism have not been elucidated. In this study, we found that RA reduced the volume of cerebral hematoma and cerebral edema, attenuated neuronal apoptosis and improved the behavioral indices in a murine model of acute cerebral hemorrhage. Mechanistically, RA downregulated the TLR4-mediated pro-inflammatory effectors, reduced infiltration of microglia in peri-intracerebral hemorrhage and inhibited apoptosis of neurons co-cultured with activated microglia. In conclusion, RA can alleviate ICH-related tissue damage and promote the recovery of neuronal function by suppressing microglia-induced inflammation and apoptosis.
Collapse
Affiliation(s)
- Bo Hei
- Department of neurosurgery, Peking University People's Hospital, Peking University, Beijing, China
| | - Jia Ouyang
- Department of neurosurgery, Peking University People's Hospital, Peking University, Beijing, China
| | - Jingru Zhou
- Department of neurosurgery, Peking University People's Hospital, Peking University, Beijing, China
| | - Dongliang Wang
- Department of neurosurgery, Peking University People's Hospital, Peking University, Beijing, China
| | - Zeyu Miao
- Department of neurosurgery, Peking University People's Hospital, Peking University, Beijing, China
| | - Ru-En Liu
- Department of neurosurgery, Peking University People's Hospital, Peking University, Beijing, China
| |
Collapse
|
8
|
Novakovic N, Linzey JR, Chenevert TL, Gemmete JJ, Troost JP, Xi G, Keep RF, Pandey AS, Chaudhary N. White Matter Survival within and around the Hematoma: Quantification by MRI in Patients with Intracerebral Hemorrhage. Biomolecules 2021; 11:910. [PMID: 34207338 PMCID: PMC8234588 DOI: 10.3390/biom11060910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
White matter (WM) injury and survival after intracerebral hemorrhage (ICH) has received insufficient attention. WM disruption surrounding the hematoma has been documented in animal models with histology, but rarely in human ICH with noninvasive means, like magnetic resonance imaging (MRI). A few human MRI studies have investigated changes in long WM tracts after ICH remote from the hematoma, like the corticospinal tract, but have not attempted to obtain an unbiased quantification of WM changes within and around the hematoma over time. This study attempts such quantification from 3 to 30 days post ictus. Thirteen patients with mild to moderate ICH underwent diffusion tensor imaging (DTI) MRI at 3, 14, and 30 days. Fractional anisotropy (FA) maps were used to calculate the volume of tissue with FA > 0.5, both within the hematoma (lesion) and in the perilesional tissue. At day 3, the percentages of both lesional and perilesional tissue with an FA > 0.5 were significantly less than contralateral, unaffected, anatomically identical tissue. This perilesional contralateral difference persisted at day 14, but there was no significant difference at day 30. The loss of perilesional tissue with FA > 0.5 increased with increasing hematoma size at day 3 and day 14. All patients had some tissue within the lesion with FA > 0.5 at all time points. This did not decrease with duration after ictus, suggesting the persistence of white matter within the hematoma/lesion. These results outline an approach to quantify WM injury, both within and surrounding the hematoma, after mild to moderate ICH using DTI MRI. This may be important for monitoring treatment strategies, such as hematoma evacuation, and assessing efficacy noninvasively.
Collapse
Affiliation(s)
- Nemanja Novakovic
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA; (N.N.); (J.R.L.); (J.J.G.); (G.X.); (R.F.K.); (A.S.P.)
| | - Joseph R. Linzey
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA; (N.N.); (J.R.L.); (J.J.G.); (G.X.); (R.F.K.); (A.S.P.)
| | | | - Joseph J. Gemmete
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA; (N.N.); (J.R.L.); (J.J.G.); (G.X.); (R.F.K.); (A.S.P.)
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Jonathan P. Troost
- Michigan Institute for Clinical and Health Research, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA; (N.N.); (J.R.L.); (J.J.G.); (G.X.); (R.F.K.); (A.S.P.)
| | - Richard F. Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA; (N.N.); (J.R.L.); (J.J.G.); (G.X.); (R.F.K.); (A.S.P.)
| | - Aditya S. Pandey
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA; (N.N.); (J.R.L.); (J.J.G.); (G.X.); (R.F.K.); (A.S.P.)
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Neeraj Chaudhary
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA; (N.N.); (J.R.L.); (J.J.G.); (G.X.); (R.F.K.); (A.S.P.)
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|
9
|
Chen W, Xie L, Yu F, Li Y, Chen C, Xie W, Huang T, Zhang Y, Zhang S, Li P. Zebrafish as a Model for In-Depth Mechanistic Study for Stroke. Transl Stroke Res 2021; 12:695-710. [PMID: 34050491 DOI: 10.1007/s12975-021-00907-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022]
Abstract
Stroke is one of the world's leading causes of death and disability, posing enormous burden to the society. However, the pathogenesis and mechanisms that underlie brain injury and brain repair remain largely unknown. There's an unmet need of in-depth mechanistic research in this field. Zebrafish (Danio rerio) is a powerful tool in brain science research mainly due to its small size and transparent body, high genome synteny with human, and similar nervous system structures. It can be used to establish both hemorrhagic and ischemic stroke models easily and effectively through different ways. After the establishment of stroke model, research methods including behavioral test, in vivo imaging, and drug screening are available to explore mechanisms that underlie the brain injury and brain repair after stroke. This review focuses on the advantages and the feasibility of zebrafish stroke model, and will also introduce the key methods available for stroke studies in zebrafish, which may drive future mechanistic studies in the pursuit of discovering novel therapeutic targets for stroke patients.
Collapse
Affiliation(s)
- Weijie Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Lv Xie
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Fang Yu
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Yan Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Chen Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Wanqing Xie
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Tingting Huang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Yueman Zhang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Song Zhang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China.
| | - Peiying Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China.
| |
Collapse
|
10
|
Lu J, Li Z, Zhao Q, Liu D, Mei YA. Neuritin improves the neurological functional recovery after experimental intracerebral hemorrhage in mice. Neurobiol Dis 2021; 156:105407. [PMID: 34058347 DOI: 10.1016/j.nbd.2021.105407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/06/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
Stroke is one of the leading causes of death worldwide, with intracerebral hemorrhage (ICH) being the most lethal subtype. Neuritin (Nrn) is a neurotropic factor that has been reported to have neuroprotective effects in acute brain and spinal cord injury. However, whether Nrn has a protective role in ICH has not been investigated. In this study, ICH was induced in C57BL/6 J mice by injection of collagenase VII, while the overexpression of Nrn in the striatum was induced by an adeno-associated virus serotype 9 (AAV9) vector. We found that compared with GFP-ICH mice, Nrn-ICH mice showed improved performance in the corner, cylinder and forelimb tests after ICH, and showed less weight loss and more rapid weight recovery. Overexpression of Nrn reduced brain lesions, edema, neuronal death and white matter and synaptic integrity dysfunction caused by ICH. Western blot results showed that phosphorylated PERK and ATF4 were significantly inhibited, while phosphorylation of Akt/mammalian target of rapamycin was increased in the Nrn-ICH group, compared with the GFP-ICH group. Whole cell recording from motor neurons indicated that overexpression of Nrn reversed the decrease of spontaneous excitatory postsynaptic currents (sEPSCs) and action potential frequencies induced by ICH. These data show that Nrn improves neurological deficits in mice with ICH by reducing brain lesions and edema, inhibiting neuronal death, and possibly by increasing neuronal connections.
Collapse
Affiliation(s)
- Junmei Lu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Zhaoyang Li
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qianru Zhao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Dongdong Liu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yan-Ai Mei
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
11
|
IL-4/STAT6 signaling facilitates innate hematoma resolution and neurological recovery after hemorrhagic stroke in mice. Proc Natl Acad Sci U S A 2020; 117:32679-32690. [PMID: 33293423 DOI: 10.1073/pnas.2018497117] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating form of stroke affecting millions of people worldwide. Parenchymal hematoma triggers a series of reactions leading to primary and secondary brain injuries and permanent neurological deficits. Microglia and macrophages carry out hematoma clearance, thereby facilitating functional recovery after ICH. Here, we elucidate a pivotal role for the interleukin (IL)-4)/signal transducer and activator of transcription 6 (STAT6) axis in promoting long-term recovery in both blood- and collagenase-injection mouse models of ICH, through modulation of microglia/macrophage functions. In both ICH models, STAT6 was activated in microglia/macrophages (i.e., enhanced expression of phospho-STAT6 in Iba1+ cells). Intranasal delivery of IL-4 nanoparticles after ICH hastened STAT6 activation and facilitated hematoma resolution. IL-4 treatment improved long-term functional recovery in young and aged male and young female mice. In contrast, STAT6 knockout (KO) mice exhibited worse outcomes than WT mice in both ICH models and were less responsive to IL-4 treatment. The construction of bone marrow chimera mice demonstrated that STAT6 KO in either the CNS or periphery exacerbated ICH outcomes. STAT6 KO impaired the capacity of phagocytes to engulf red blood cells in the ICH brain and in primary cultures. Transcriptional analyses identified lower level of IL-1 receptor-like 1 (ST2) expression in microglia/macrophages of STAT6 KO mice after ICH. ST2 KO diminished the beneficial effects of IL-4 after ICH. Collectively, these data confirm the importance of IL-4/STAT6/ST2 signaling in hematoma resolution and functional recovery after ICH. Intranasal IL-4 treatment warrants further investigation as a clinically feasible therapy for ICH.
Collapse
|
12
|
Wei J, Novakovic N, Chenevert TL, Xi G, Keep RF, Pandey AS, Chaudhary N. Perihematomal brain tissue iron concentration measurement by MRI in patients with intracerebral hemorrhage. CNS Neurosci Ther 2020; 26:896-901. [PMID: 32436273 PMCID: PMC7415200 DOI: 10.1111/cns.13395] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
Aims Over the past two decades, animal intracerebral hemorrhage (ICH) model studies have indicated that iron, released after hemoglobin degradation, is neurotoxic. Iron phantom and animal experiments have shown that magnetic resonance imaging (MRI) relaxivity maps correlate with iron concentration. This study expands this into patients. Methods Eighteen human subjects with ICH underwent MRI at 3, 14, and 30 days. R2* relaxivity maps were used to calculate perihematomal iron concentrations and T2 imaging to determine hematoma and edema volumes. Results Perihematomal iron concentrations were increased at all three time points and decreased with distance from the hematoma. While perihematomal iron concentrations did not vary with hematoma size, the total iron overload (increased iron concentration x volume of affected tissue) did. Total iron overload correlated with edema volume. Conclusions These results demonstrate the feasibility of measuring perihematomal iron in ICH patients which may be important for monitoring treatment strategies and assessing efficacy noninvasively.
Collapse
Affiliation(s)
- Jialiang Wei
- Department of Neurosurgery, 1500 E Medical Center Dr, Ann Arbor, MI, USA
| | - Nemanja Novakovic
- Department of Neurosurgery, 1500 E Medical Center Dr, Ann Arbor, MI, USA
| | | | - Guohua Xi
- Department of Neurosurgery, 1500 E Medical Center Dr, Ann Arbor, MI, USA
| | - Richard F Keep
- Department of Neurosurgery, 1500 E Medical Center Dr, Ann Arbor, MI, USA
| | - Aditya S Pandey
- Department of Neurosurgery, 1500 E Medical Center Dr, Ann Arbor, MI, USA.,Department of Radiology, 1500 E Medical Center Dr, Ann Arbor, MI, USA
| | - Neeraj Chaudhary
- Department of Neurosurgery, 1500 E Medical Center Dr, Ann Arbor, MI, USA.,Department of Radiology, 1500 E Medical Center Dr, Ann Arbor, MI, USA
| |
Collapse
|