1
|
Jia Y, Song Y, Xue H, Li X, Zhang Y, Fan S, Yang X, Ding Z, Qiu Y, Wu Z, Zhao P. Sevoflurane postconditioning mitigates neuronal hypoxic-ischemic injury via regulating reactive astrocytic STAT3 protein modification. Chem Biol Interact 2025; 405:111308. [PMID: 39536892 DOI: 10.1016/j.cbi.2024.111308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Astrocyte activation plays a pivotal role in accelerating the cascade of neuroinflammation associated with the development of hypoxic-ischemic brain injury. This study aimed to investigate the mechanism by which sevoflurane postconditioning mitigates neuronal damage through astrocytes by regulating reactive astrocytic Signal Transducer and Activator of Transcription 3 (STAT3) modifications. A modified Rice‒Vannucci model in rats and a conditioned culture system established by subjecting primary astrocytes to oxygen glucose deprivation, followed by using the conditioned medium to culture the neuron cell line SH-SY5Y were used to simulate HI insult in vivo and in vitro, respectively. These models were followed by 30 min of 2.5 % sevoflurane treatment. Stattic was used to inhibit STAT3 phosphorylation, and (Z)-PUGNAc or OSMI-1 was added to regulate O-linked-β-N-acetylglucosamine modification (O-GlcNAcylation) in primary astrocytes in vitro. Neurobehavioral tests, Nissl staining, CCK8 assay, and flow cytometry for apoptosis were used to assess neuronal function. Immunofluorescence staining was used to detect astrocyte reactivity and the intracellular distribution of STAT3. Immunoprecipitation combined with Western blotting was used to evaluate the O-GlcNAcylation of STAT3. Protein expression and phosphorylation levels were detected by Western blotting. ELISA was conducted to detect the detrimental cytokines IL-6 and IL-1β in astrocyte-conditioned medium. Sevoflurane postconditioning enhanced the O-GlcNAcylation of astrocytic STAT3 following HI insult via the manner of OGT. Crosstalk between O-GlcNAcylation and phosphorylation of STAT3 showed that O-GlcNAcylation inhibited STAT3 phosphorylation. The inhibitory effect on astrocytes suppressed STAT3 nuclear translocation, reduced astrocyte reactivity, decreased the release of the inflammatory cytokines IL6 and IL-1β, attenuated neuronal apoptosis following HI insult, and improved neuron viability. Sevoflurane postconditioning increased astrocytic STAT3 O-GlcNAcylation level to competitively inhibit STAT3 phosphorylation. This deactivated downstream inflammation pathways and reduced astrocyte reactivity, thereby mitigating HI insult in neurons both in vivo and in vitro.
Collapse
Affiliation(s)
- Yufei Jia
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yanhong Song
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Hang Xue
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xingyue Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yinong Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Shiyue Fan
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xu Yang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zixuan Ding
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yue Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ziyi Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
2
|
Zhang SY, Yang N, Hao PH, Wen R, Zhang TN. Targeting sirtuins in neurological disorders: A comprehensive review. Int J Biol Macromol 2024; 292:139258. [PMID: 39736297 DOI: 10.1016/j.ijbiomac.2024.139258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/09/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025]
Abstract
The sirtuin (SIRT) family is a group of seven conserved nicotinamide adenine dinucleotide-dependent histone deacetylases (SIRT1-SIRT7), which play crucial roles in various fundamental biological processes, including metabolism, aging, stress responses, inflammation, and cell survival. The role of SIRTs in neuro-pathophysiology has recently attracted significant attention. Notably, SIRT1-SIRT3 have been identified as key players in neuroprotection as they reduce neuroinflammation and regulate mitochondrial function. This review summarizes the latest research advancements in the role of the SIRT family in neurological diseases, mainly including neurodegenerative diseases, ischemia-related diseases, bleeding-related diseases, nervous system injury and other nervous system diseases, emphasizing their critical functions and associated signaling pathways, (e.g., AMPK/SIRT1/PGC-1α, AMPK/SIRT1/IL-1β/NF-κB, STAT2-SIRT4-mTOR, SIRT3/FOXO3α, and other signaling pathways in disease progression, particularly their protective roles in neurodegenerative diseases, ischemic injuries, and neural damage. Additionally, this review discusses progress in clinical studies targeting SIRT-specific small-molecule agonists and inhibitors. Further research on SIRTs may provide new insights into potential therapeutic strategies for the prevention and treatment of neurological disorders.
Collapse
Affiliation(s)
- Sen-Yu Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Peng-Hui Hao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ri Wen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
3
|
Duan H, Yang X, Cai S, Zhang L, Qiu Z, Wang J, Wang S, Li Z, Li X. Nrf2 mitigates sepsis-associated encephalopathy-induced hippocampus ferroptosis via modulating mitochondrial dynamic homeostasis. Int Immunopharmacol 2024; 143:113331. [PMID: 39396427 DOI: 10.1016/j.intimp.2024.113331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is a serious neurological complication accompanied with acute and long-term cognitive dysfunction. Ferroptosis is a newly discovered type of cell death that is produced by iron-dependent lipid peroxidation. Emerging evidence suggests that ferroptosis is involved in SAE. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a mitochondria related gene involved in ferroptosis. However, the role of Nrf2 in SAE and the mechanisms remains elusive. In this study, we found that Nrf2 knockout aggravated cognitive and emotional dysfunction and promoted caecal ligation and puncture (CLP)-induced brain injury and hippocampus ferroptosis as indicated by the increase of ROS, Fe2+ and the levels of proinflammatory cytokines. Meanwhile, the levels of glutathione peroxidase 4 (GPX4), SLC7A11 and glutathionewere downregulatedin Nrf2 knockout group. In vitro experiments showed that mitochondrial ROS, Fe2+ and the expression of Fis1 and Drp1 decreased, and the level of Mfn1 and Opa-1 increased after Nrf2 overexpression. The silence of Nrf2 increased the expression of ROS, MDA and Fe2+, while decreased glutathione, mitochondrial membrane potential (MMP) and cell viability in vitro, indicating Nrf2 improved LPS-induced mitochondrial dysfunction and mitigated hippocampal cells ferroptosis. These results suggest that Nrf2 could inhibit ferroptosis and neuroinflammation in hippocampus and reduce cognitive dysfunction in SAE mice, making it a potential therapeutic target in the treatment of SAE. The protective effects of Nrf2 on the brain may be mediated by maintaining mitochondrial dynamic homeostasis.
Collapse
Affiliation(s)
- Haifeng Duan
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, China
| | - Xin Yang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, China
| | - Shuhan Cai
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Lei Zhang
- Department of Anesthesiology, the First Clinical College of Hubei University of Medicine, Shiyan, Hubei, China
| | - Zebao Qiu
- Department of Anesthesiology, Suizhou Zengdu Hospital, Suizhou, Hubei, China
| | - Jin Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shun Wang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Zhi Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xinyi Li
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, China.
| |
Collapse
|
4
|
Liu CP, Zheng S, Zhang P, Chen GH, Zhang YY, Sun HL, Peng L. Decreased serum SLC7A11 and GPX4 levels may reflect disease severity of acute ischaemic stroke. Ann Clin Biochem 2024:45632241305927. [PMID: 39632577 DOI: 10.1177/00045632241305927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
OBJECTIVE This study aimed to examine the levels of solute carrier family seven number 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) in the serum of patients with acute ischaemic stroke (AIS) and their relationship with disease severity. METHODS A total of 148 patients with AIS together with 148 healthy controls (HCs) were enrolled. The expression levels of SLC7A11 and GPX4 in serum were detected immediately as early as possible. Radiographic severity was detected by Alberta Stroke Program Early CT Score (ASPECTS). Disease severity was evaluated using modified Rankin Scale (mRS). High-sensitivity C-reactive protein (hs-CRP) and matrix metalloproteinase-9 (MMP-9) expression levels were also measured. A correlation analysis was conducted to determine the relationship between the expression levels of SLC7A11 and GPX4 with the clinical severity of the disease and the levels of hs-CRP and MMP-9. Furthermore, receiver operating characteristic (ROC) curve analysis was utilized to assess the potential of SLC7A11 and GPX4 as diagnostic markers. RESULTS Compared to the HC group, the serum expression levels of SLC7A11 and GPX4 were significantly lower in the AIS group. Serum SLC7A11 levels were positively associated with serum GPX4 levels. The AIS group included 50 patients with mild neurological impairment, 52 with moderate neurological impairment, and 46 with severe neurological impairment. AIS patients with mild neurological impairment had drastically higher serum SLC7A11 and GPX4 levels compared with those with moderate neurological impairment. AIS patients with moderate neurological impairment showed significantly higher serum SLC7A11 and GPX4 concentrations compared with those with severe neurological impairment. ROC curve analysis demonstrated that both serum SLC7A11 and GPX4 may both act as potential indicators for evaluating of AIS disease severity. In addition, both serum SLC7A11 and GPX4 levels were positively correlated with ASPECTS. Both serum SLC7A11 and GPX4 levels were negatively associated with hs-CRP as well as MMP-9 levels. Serum SLC7A11 and GPX4 levels were significantly increased following comprehensive therapy. CONCLUSIONS Decreased SLC7A11 and GPX4 levels may reflect disease severity of AIS.
Collapse
Affiliation(s)
| | - Su Zheng
- Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Ping Zhang
- Department of Acupuncture, Shiyan Hospital of Traditional Chinese Medicine, Shiyan, China
| | - Guang-Hui Chen
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yuan-Yuan Zhang
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Hui-Lin Sun
- Department of Radiology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Peng
- Shiyan Hospital of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Shiyan, China
| |
Collapse
|
5
|
Cazalla E, Cuadrado A, García-Yagüe ÁJ. Role of the transcription factor NRF2 in maintaining the integrity of the Blood-Brain Barrier. Fluids Barriers CNS 2024; 21:93. [PMID: 39574123 PMCID: PMC11580557 DOI: 10.1186/s12987-024-00599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND The Blood-Brain Barrier (BBB) is a complex and dynamic interface that regulates the exchange of molecules and cells between the blood and the central nervous system. It undergoes structural and functional throughout oxidative stress and inflammation, which may compromise its integrity and contribute to the pathogenesis of neurodegenerative diseases. MAIN BODY Maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. NRF2 is the main transcription factor that regulates cellular redox balance and inflammation-related gene expression. It has also demonstrated a potential role in regulating tight junction integrity and contributing to the inhibition of ECM remodeling, by reducing the expression of several metalloprotease family members involved in maintaining BBB function. Overall, we review current insights on the role of NRF2 in addressing protection against the effects of BBB dysfunction, discuss its involvement in BBB maintenance in different neuropathological diseases, as well as, some of its potential activators that have been used in vitro and in vivo animal models for preventing barrier dysfunction. CONCLUSIONS Thus, emerging evidence suggests that upregulation of NRF2 and its target genes could suppress oxidative stress, and neuroinflammation, restore BBB integrity, and increase its protection.
Collapse
Affiliation(s)
- Eduardo Cazalla
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonio Cuadrado
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ángel Juan García-Yagüe
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain.
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
6
|
He Y, Wang J, Ying C, Xu KL, Luo J, Wang B, Gao J, Yin Z, Zhang Y. The interplay between ferroptosis and inflammation: therapeutic implications for cerebral ischemia-reperfusion. Front Immunol 2024; 15:1482386. [PMID: 39582857 PMCID: PMC11583640 DOI: 10.3389/fimmu.2024.1482386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/14/2024] [Indexed: 11/26/2024] Open
Abstract
Stroke ranks as the second most significant contributor to mortality worldwide and is a major factor in disability. Ischemic strokes account for 71% of all stroke incidences globally. The foremost approach to treating ischemic stroke prioritizes quick reperfusion, involving methods such as intravenous thrombolysis and endovascular thrombectomy. These techniques can reduce disability but necessitate immediate intervention. After cerebral ischemia, inflammation rapidly arises in the vascular system, producing pro-inflammatory signals that activate immune cells, which in turn worsen neuronal injury. Following reperfusion, an overload of intracellular iron triggers the Fenton reaction, resulting in an excess of free radicals that cause lipid peroxidation and damage to cellular membranes, ultimately leading to ferroptosis. The relationship between inflammation and ferroptosis is increasingly recognized as vital in the process of cerebral ischemia-reperfusion (I/R). Inflammatory processes disturb iron balance and encourage lipid peroxidation (LPO) through neuroglial cells, while also reducing the activity of antioxidant systems, contributing to ferroptosis. Furthermore, the lipid peroxidation products generated during ferroptosis, along with damage-associated molecular patterns (DAMPs) released from ruptured cell membranes, can incite inflammation. Given the complex relationship between ferroptosis and inflammation, investigating their interaction in brain I/R is crucial for understanding disease development and creating innovative therapeutic options. Consequently, this article will provide a comprehensive introduction of the mechanisms linking ferroptosis and neuroinflammation, as well as evaluate potential treatment modalities, with the goal of presenting various insights for alleviating brain I/R injury and exploring new therapeutic avenues.
Collapse
Affiliation(s)
- Yuxuan He
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jingyi Wang
- Faculty of Chinese Medicine of Macau University of Science and
Technology, Macao, Macao SAR, China
| | - Chunmiao Ying
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Kang Li Xu
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jingwen Luo
- Faculty of Chinese Medicine of Macau University of Science and
Technology, Macao, Macao SAR, China
| | - Baiqiao Wang
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jing Gao
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Zaitian Yin
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yunke Zhang
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Xue H, Ding Z, Chen X, Yang X, Jia Y, Zhao P, Wu Z. Dexmedetomidine Improves Long-term Neurological Outcomes by Promoting Oligodendrocyte Genesis and Myelination in Neonatal Rats Following Hypoxic-ischemic Brain Injury. Mol Neurobiol 2024:10.1007/s12035-024-04564-z. [PMID: 39496877 DOI: 10.1007/s12035-024-04564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/18/2024] [Indexed: 11/06/2024]
Abstract
Neonatal hypoxic-ischemic brain injury (HIBI) can lead to white matter damage, which significantly contributes to cognitive dysfunction, emotional disorders, and sensorimotor impairments. Although dexmedetomidine enhances neurobehavioral outcomes, its impact on oligodendrocyte genesis and myelination following hypoxic-ischemic events, as well as the underlying mechanisms, remain poorly understood. Dexmedetomidine was administered 15 min post-HIBI. We assessed neurobehavioral deficits using various tests: surface righting, negative geotaxis, forelimb grip strength, cliff avoidance, sensory reflexes, novel object recognition, T-maze, and three-chamber social interaction. We also investigated the relationship between myelination and neurobehavioral outcomes. Measurements included oligodendrocyte precursor cell (OPC) proliferation and survival 24 h post-injury, early myelination, and oligodendrocyte differentiation by postnatal day 14. Furthermore, we evaluated microglial activation towards the M2 phenotype and the extent of neuroinflammation during the acute phase. Dexmedetomidine significantly ameliorated long-term neurological deficits caused by HIBI. Pearson linear regression analysis revealed a strong correlation between long-term neurological outcomes and myelin maturity. The treatment notably mitigated the long-term deterioration of myelin formation and maturation following HIBI. This protective effect was primarily due to enhanced OPC proliferation and survival post-HIBI during the acute phase and, to a lesser extent, to the modulation of microglial activity towards the M2 phenotype and a reduction in neuroinflammation. Dexmedetomidine offers substantial protection against long-term neurobehavioral disabilities induced by HIBI, primarily by revitalizing the impaired survival and maturation of oligodendrocyte progenitor cells and promoting myelination.
Collapse
Affiliation(s)
- Hang Xue
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zixuan Ding
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xiaoyan Chen
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xu Yang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yufei Jia
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ziyi Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
8
|
Zhang Z, Zhang N, Li M, Ma X, Qiu Y. Sappanone a alleviates osteoarthritis progression by inhibiting chondrocyte ferroptosis via activating the SIRT1/Nrf2 signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8759-8770. [PMID: 38832987 DOI: 10.1007/s00210-024-03179-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that cause pain and disability in adults. Chondrocyte ferroptosis is found to be involved in OA progression. Sappanone A has been found as an anti-inflammatory and antioxidative agent in several diseases. This study aims to investigate the effects of sappanone A on OA progression and chondrocyte ferroptosis. IL-1β-induced chondrocytes and destabilization of the medial meniscus (DMM)-induced rats were respectively used as the OA model in vitro and in vivo. The effects of sappanone A on inflammation, extracellular matrix (ECM) metabolism, and ferroptosis were determined. Our results showed that in IL-1β-induced chondrocytes, sappanone A suppressed the production of NO, PGE2, TNF-α, IL-6, iNOS, and COX2. Sappanone A also inhibited the expression of MMP3, MMP13, and ADAMTS5, while increasing collagen II expression. Moreover, sappanone A alleviated cytotoxicity and decreased the levels of intracellular ROS, lipid ROS, MDA, and iron, while increasing GSH levels. Additionally, sappanone A increased the protein expression of SLC7A11 and GPX4. Administration of ferroptosis activator reversed the inhibitory effects of sappanone A on IL-1β-induced inflammation and ECM degradation. More importantly, Sappanone A activated the Nrf2 signaling by targeting SIRT1. The inhibition of sappanone A on ferroptosis was greatly eliminated due to the addition of SIRT1 inhibitor. Furthermore, intra-articular injection of sappanone A mitigated cartilage destruction and ferroptosis in DMM-induced OA rats. In conclusion, sappanone A protects against inflammation and ECM degradation in OA via decreasing chondrocyte ferroptosis by activating the SIRT1/Nrf2 signaling. These findings deepen our understanding of chondrocyte ferroptosis in OA and highlight the therapeutic potential of sappanone A for OA.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Nanzhi Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Meng Li
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Xing Ma
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yusheng Qiu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
9
|
Li Z, Xing J. Nuclear factor erythroid 2-related factor-mediated signaling alleviates ferroptosis during cerebral ischemia-reperfusion injury. Biomed Pharmacother 2024; 180:117513. [PMID: 39341075 DOI: 10.1016/j.biopha.2024.117513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024] Open
Abstract
Cardiac arrest (CA) is a significant challenge for emergency physicians worldwide and leads to increased morbidity and mortality rates. The poor prognosis of CA primarily stems from the complexity and irreversibility of cerebral ischemia-reperfusion injury (CIRI). Ferroptosis, a form of programmed cell death characterized by iron overload and lipid peroxidation, plays a crucial role in the progression and treatment of CIRI. In this review, we highlight the mechanisms of ferroptosis within the context of CIRI, focusing on its role as a key contributor to neuronal damage and dysfunction post-CA. We explore the crucial involvement of the nuclear factor erythroid 2-related factor (Nrf2)-mediated signaling pathway in modulating ferroptosis-associated processes during CIRI. Through comprehensive analysis of the regulatory role of Nrf2 in the cellular responses to oxidative stress, we highlight its potential as a therapeutic target for mitigating ferroptotic cell death and improving the neurological prognosis of patients experiencing CA. Furthermore, we discuss interventions targeting the Kelch-like ECH-associated protein 1/Nrf2/antioxidant response element pathway, including the use of traditional Chinese medicine and Western medicine, which demonstrate potential for attenuating ferroptosis and preserving neuronal function in CIRI. Owing to the limitations in the safety, specificity, and effectiveness of Nrf2-targeted drugs, as well as the technical difficulties and ethical constraints in obtaining the results related to the brain pathological examination of patients, most of the studies focusing on Nrf2-related regulation of ferroptosis in CIRI are still in the basic research stage. Overall, this review aims to provide a comprehensive understanding of the mechanisms underlying ferroptosis in CIRI, offering insights into novel therapeutics aimed at enhancing the clinical outcomes of patients with CA.
Collapse
Affiliation(s)
- Zheng Li
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
10
|
Wang S, Qin M, Fan X, Jiang C, Hou Q, Ye Z, Zhang X, Yang Y, Xiao J, Wallace K, Rastegar-Kashkooli Y, Peng Q, Jin D, Wang J, Wang M, Ding R, Tao J, Kim YT, Bhawal UK, Wang J, Chen X, Wang J. The role of metal ions in stroke: Current evidence and future perspectives. Ageing Res Rev 2024; 101:102498. [PMID: 39243890 DOI: 10.1016/j.arr.2024.102498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/24/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Metal ions play a pivotal role in maintaining optimal brain function within the human body. Nevertheless, the accumulation of these ions can result in irregularities that lead to brain damage and dysfunction. Disruptions of metal ion homeostasis can result in various pathologies, including inflammation, redox dysregulation, and blood-brain barrier disruption. While research on metal ions has chiefly focused on neurodegenerative diseases, little attention has been given to their involvement in the onset and progression of stroke. Recent studies have identified cuproptosis and confirmed ferroptosis as significant factors in stroke pathology, underscoring the importance of metal ions in stroke pathology, including abnormal ion transport, neurotoxicity, blood-brain barrier damage, and cell death. Additionally, it provides an overview of contemporary metal ion chelators and detection techniques, which may offer novel approaches to stroke treatment.
Collapse
Affiliation(s)
- Shaoshuai Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Non-commissioned Officer School of Army Medical University, Shijiazhuang, Hebei 050000, China
| | - Mengzhe Qin
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Chao Jiang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Qingchuan Hou
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ziyi Ye
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xinru Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yunfan Yang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jingyu Xiao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kevin Wallace
- College of Mathematical and Natural Sciences, University of Maryland, College Park, MD 20742, USA
| | - Yousef Rastegar-Kashkooli
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; School of International Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qinfeng Peng
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Dongqi Jin
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Junyang Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Menglu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ruoqi Ding
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jin Tao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yun Tai Kim
- Division of Functional Food Research, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Ujjal K Bhawal
- Center for Global Health Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India; Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
11
|
Wei C. The role of glutathione peroxidase 4 in neuronal ferroptosis and its therapeutic potential in ischemic and hemorrhagic stroke. Brain Res Bull 2024; 217:111065. [PMID: 39243947 DOI: 10.1016/j.brainresbull.2024.111065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Ferroptosis is a type of cell death that depends on iron and is driven by lipid peroxidation, playing a crucial role in neuronal death during stroke. A central element in this process is the inactivation of glutathione peroxidase 4 (GPx4), an antioxidant enzyme that helps maintain redox balance by reducing lipid hydroperoxides. This review examines the critical function of GPx4 in controlling neuronal ferroptosis following ischemic and hemorrhagic stroke. We explore the mechanisms through which GPx4 becomes inactivated in various stroke subtypes. In strokes, excess glutamate depletes glutathione (GSH) and products of hemoglobin breakdown overwhelm GPx4. Studies using genetic models with GPx4 deficiency underscore its vital role in maintaining neuronal survival and function. We also consider new therapeutic approaches to enhance GPx4 activity, including novel small molecule activators, adjustments in GSH metabolism, and selenium supplementation. Additionally, we outline the potential benefits of combining these GPx4-focused strategies with other anti-ferroptotic methods like iron chelation and lipoxygenase inhibition for enhanced neuroprotection. Furthermore, we highlight the significance of understanding the timing of GPx4 inactivation during stroke progression to design effective therapeutic interventions.
Collapse
Affiliation(s)
- Chao Wei
- Feinberg school of medicine, Northwestern University, IL 60611, USA
| |
Collapse
|
12
|
Sun B, Cai F, Yu L, An R, Wei B, Li M. Quercetin inhibits ferroptosis through the SIRT1/Nrf2/HO-1 signaling pathway and alleviates asthma disease. Transl Pediatr 2024; 13:1747-1759. [PMID: 39524399 PMCID: PMC11543135 DOI: 10.21037/tp-24-193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Background Quercetin (QCT) is a bioflavonoid derived from vegetables and fruits that has anti-inflammatory and anti-ferroptosis effects against various diseases. Previous studies have shown that QCT modulates the production of cellular inflammatory factors in asthma models and delays the development of chronic airway inflammation. However, the regulatory mechanism of QCT, a traditional Chinese medicine, in the treatment of asthma has not been elucidated. The aim of the present study is to investigate whether QCT can inhibit ferroptosis via the SIRT1/Nrf2 pathway and play a therapeutic role in asthma. Methods An ovalbumin-induced mouse asthma model was established, and its function was verified by hematoxylin eosin staining, enzyme linked immunosorbent assay, ferric ion assay, malondialdehyde and superoxide dismutase assays, dihydroethidium staining, immunohistochemical staining, western blotting, and quantitative real-time polymerase chain reaction. Results Our results indicated that an ovalbumin-induced asthma mouse model had been successfully established and that QCT inhibited inflammation, reduced serum levels of inflammatory factors IL-4, IL-5 and IL-13, increased superoxide dismutase levels in lung tissue homogenates, and reduced malondialdehyde and ferric ion production in asthmatic mice. In addition, we found that QCT was able to reverse the expression of SIRT1, Nrf2 and HO-1 in an in vivo asthma mouse model. Conclusions The data from this study indicate that QCT can alleviate asthma, and its mechanism is related to the regulation of ferroptosis, oxidative stress, and the expression of SIRT1 protein.
Collapse
Affiliation(s)
- Bo Sun
- Department of Neonatology, General Hospital of Northern Theater Command, Shenyang, China
- Post-graduate College, China Medical University, Shenyang, China
| | - Fei Cai
- Post-graduate College, China Medical University, Shenyang, China
| | - Liming Yu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Ran An
- Department of Neonatology, General Hospital of Northern Theater Command, Shenyang, China
| | - Bing Wei
- Department of Neonatology, General Hospital of Northern Theater Command, Shenyang, China
| | - Miao Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Ji Y, Tian Y, Zhang H, Ma S, Liu Z, Tian Y, Xu Y. Histone modifications in hypoxic ischemic encephalopathy: Implications for therapeutic interventions. Life Sci 2024; 354:122983. [PMID: 39147319 DOI: 10.1016/j.lfs.2024.122983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a brain injury induced by many causes of cerebral tissue ischemia and hypoxia. Although HIE may occur at many ages, its impact on the neonatal brain is greater because it occurs during the formative stage. Recent research suggests that histone modifications may occur in the human brain in response to acute stress events, resulting in transcriptional changes and HIE development. Because there are no safe and effective therapies for HIE, researchers have focused on HIE treatments that target histone modifications. In this review, four main histone modifications are explored, histone methylation, acetylation, phosphorylation, and crotonylation, as well as their relevance to HIE. The efficacy of histone deacetylase inhibitors in the treatment of HIE is also explored. In conclusion, targeting histone modifications may be a novel strategy for elucidating the mechanism of HIE, as well as a novel approach to HIE treatment.
Collapse
Affiliation(s)
- Yichen Ji
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Tian
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huiyi Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuai Ma
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhongwei Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue Tian
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Xu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
14
|
Fan CH, Zeng XQ, Feng RM, Yi HW, Xia R. Comprehensive review of perioperative factors influencing ferroptosis. Biomed Pharmacother 2024; 179:117375. [PMID: 39278186 DOI: 10.1016/j.biopha.2024.117375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
The perioperative period encompasses all phases of patient care from the decision to perform surgery until full recovery. Ferroptosis, a newly identified type of regulated cell death, influences a wide array of diseases, including those affecting the prognosis and regression of surgical patients, such as ischemia-reperfusion injury and perioperative cognitive dysfunction. This review systematically examines perioperative factors impacting ferroptosis such as surgical trauma-induced stress, tissue hypoxia, anesthetics, hypothermia, and blood transfusion. By analyzing their intrinsic relationships, we aim to improve intraoperative management, enhance perioperative safety, prevent complications, and support high-quality postoperative recovery, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Cheng-Hui Fan
- Department of Anaesthesiology, the First Affiliated Hospital of Yangtze University, Jingzhou 434000, PR China
| | - Xiao-Qin Zeng
- Department of Anaesthesiology, The Second People's Hospital of Jingzhou, Jingzhou 434020, PR China
| | - Rui-Min Feng
- Laboratory Department, the First Affiliated Hospital of Yangtze University, Jingzhou 434000, PR China
| | - Hua-Wei Yi
- Laboratory Department, the First Affiliated Hospital of Yangtze University, Jingzhou 434000, PR China.
| | - Rui Xia
- Department of Anaesthesiology, the First Affiliated Hospital of Yangtze University, Jingzhou 434000, PR China.
| |
Collapse
|
15
|
Peng L, Hu XZ, Liu ZQ, Liu WK, Huang Q, Wen Y. Therapeutic potential of resveratrol through ferroptosis modulation: insights and future directions in disease therapeutics. Front Pharmacol 2024; 15:1473939. [PMID: 39386035 PMCID: PMC11461341 DOI: 10.3389/fphar.2024.1473939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Resveratrol, a naturally occurring polyphenolic compound, has captivated the scientific community with its promising therapeutic potential across a spectrum of diseases. This review explores the complex role of resveratrol in modulating ferroptosis, a newly identified form of programmed cell death, and its potential implications for managing cardiovascular and cerebrovascular disorders, cancer, and other conditions. Ferroptosis is intricately linked to the pathogenesis of diverse diseases, with resveratrol exerting multifaceted effects on this process. It mitigates ferroptosis by modulating lipid peroxidation, iron accumulation, and engaging with specific cellular receptors, thereby manifesting profound therapeutic benefits in cardiovascular and cerebrovascular conditions, as well as oncological settings. Moreover, resveratrol's capacity to either suppress or induce ferroptosis through the modulation of signaling pathways, including Sirt1 and Nrf2, unveils novel therapeutic avenues. Despite resveratrol's limited bioavailability, advancements in molecular modification and drug delivery optimization have amplified its clinical utility. Future investigations are poised to unravel the comprehensive mechanisms underpinning resveratrol's action and expand its therapeutic repertoire. We hope this review could furnish a detailed and novel insight into the exploration of resveratrol in the regulation of ferroptosis and its therapeutic prospects.
Collapse
Affiliation(s)
- Liu Peng
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xi-Zhuo Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhi-Qiang Liu
- Department of General Surgery, Deyang Sixth People’s Hospital, Deyang, China
| | - Wen-Kai Liu
- Department of General Surgery, Deyang Sixth People’s Hospital, Deyang, China
| | - Qun Huang
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Wen
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Sun YW, Zhao BW, Li HF, Zhang GX. Overview of ferroptosis and pyroptosis in acute liver failure. World J Gastroenterol 2024; 30:3856-3861. [PMID: 39350783 PMCID: PMC11438646 DOI: 10.3748/wjg.v30.i34.3856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024] Open
Abstract
In this editorial, we comment on the article by Zhou et al published in a recent issue. We specifically focus on the crucial roles of ferroptosis and pyroptosis in acute liver failure (ALF), a disease with high mortality rates. Ferroptosis is the result of increased intracellular reactive oxygen species due to iron accumulation, glutathione (GSH) depletion, and decreased GSH peroxidase 4 activity, while pyroptosis is a procedural cell death mediated by gasdermin D which initiates a sustained inflammatory process. In this review, we describe the characteristics of ferroptosis and pyroptosis, and discuss the involvement of the two cell death modes in the onset and development of ALF. Furthermore, we summarize several interfering methods from the perspective of ferroptosis and pyroptosis for the alleviation of ALF. These observations might provide new targets and a theoretical basis for the treatment of ALF, which are also crucial for improving the prognosis of patients with ALF.
Collapse
Affiliation(s)
- Ya-Wen Sun
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, Shandong Province, China
| | - Bo-Wen Zhao
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, Shandong Province, China
| | - Hai-Fang Li
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, Shandong Province, China
| | - Guang-Xiao Zhang
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, Shandong Province, China
| |
Collapse
|
17
|
Ma Y, Liu C, Ren L, Li J, Xu Y, Liang J, Wang P. β-1,4-Galactosyltransferase 1 protects against cerebral ischemia injury in mice by suppressing ferroptosis via the TAZ/Nrf2/HO-1 signaling pathway. CNS Neurosci Ther 2024; 30:e70030. [PMID: 39233353 PMCID: PMC11374693 DOI: 10.1111/cns.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Ischemic stroke leads a primary cause of mortality in human diseases, with a high disability rate worldwide. This study aims to investigate the function of β-1,4-galactosyltransferase 1 (B4galt1) in mouse brain ischemia/reperfusion (I/R) injury. METHODS Recombinant human B4galt1 (rh-B4galt1) was intranasally administered to the mice model of middle cerebral artery occlusion (MCAO)/reperfusion. In this study, the impact of rh-B4galt1 on cerebral injury assessed using multiple methods, including the neurological disability status scale, 2,3,5-triphenyltetrazolium chloride (TTC), Nissl and TUNEL staining. This study utilized laser speckle Doppler flowmeter to monitor the cerebral blood flow. Western blotting was performed to assess the protein expression levels, and fluorescence-labeled dihydroethidium method was performed to determine the superoxide anion generation. Assay kits were used for the measurement of iron, malondialdehyde (MDA) and glutathione (GSH) levels. RESULTS We demonstrated that rh-B4galt1 markedly improved neurological function, reduced cerebral infarct volume and preserved the completeness of blood-brain barrier (BBB) for preventing damage. These findings further illustrated that rh-B4galt1 alleviated oxidative stress, lipid peroxidation, as well as iron deposition induced by I/R. The vital role of ferroptosis was proved in brain injury. Furthermore, the rh-B4galt1 could increase the levels of TAZ, Nrf2 and HO-1 after I/R. And TAZ-siRNA and ML385 reversed the neuroprotective effects of rh-B4galt1. CONCLUSIONS The results indicated that rh-B4galt1 implements neuroprotective effects by modulating ferroptosis, primarily via upregulating TAZ/Nrf2/HO-1 pathway. Thus, B4galt1 could be seen as a promising novel objective for ischemic stroke therapy.
Collapse
Affiliation(s)
- Yao Ma
- Department of Neurobiology, School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Chang Liu
- Department of Neurobiology, School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Lili Ren
- Department of Neurobiology, School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jiachen Li
- Department of Neurobiology, School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yunhao Xu
- Department of Neurobiology, School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jia Liang
- Institute of Life Science, Jinzhou Medical University, Jinzhou, Liaoning, China
- Liaoning Provincial Key Laboratory of Neurodegenerative Diseases, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Peng Wang
- Department of Neurobiology, School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
- Liaoning Provincial Key Laboratory of Neurodegenerative Diseases, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
18
|
Guo JT, Cheng C, Shi JX, Zhang WT, Sun H, Liu CM. Avicularin Attenuated Lead-Induced Ferroptosis, Neuroinflammation, and Memory Impairment in Mice. Antioxidants (Basel) 2024; 13:1024. [PMID: 39199268 PMCID: PMC11352125 DOI: 10.3390/antiox13081024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Lead (Pb) is a common environmental neurotoxicant that results in abnormal neurobehavior and impaired memory. Avicularin (AVL), the main dietary flavonoid found in several plants and fruits, exhibits neuroprotective and hepatoprotective properties. In the present study, the effects of AVL on Pb-induced neurotoxicity were evaluated using ICR mice to investigate the molecular mechanisms behind its protective effects. Our study has demonstrated that AVL treatment significantly ameliorated memory impairment induced by lead (Pb). Furthermore, AVL mitigated Pb-triggered neuroinflammation, ferroptosis, and oxidative stress. The inhibition of Pb-induced oxidative stress in the brain by AVL was evidenced by the reduction in malondialdehyde (MDA) levels and the enhancement of glutathione (GSH) and glutathione peroxidase (GPx) activities. Additionally, in the context of lead-induced neurotoxicity, AVL mitigated ferroptosis by increasing the expression of GPX4 and reducing ferrous iron levels (Fe2+). AVL increased the activities of glycogenolysis rate-limiting enzymes HK, PK, and PYG. Additionally, AVL downregulated TNF-α and IL-1β expression while concurrently enhancing the activations of AMPK, Nrf2, HO-1, NQO1, PSD-95, SNAP-25, CaMKII, and CREB in the brains of mice. The findings from this study suggest that AVL mitigates the memory impairment induced by Pb, which is associated with the AMPK/Nrf2 pathway and ferroptosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Chan-Min Liu
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, Xuzhou 221116, China; (J.-T.G.); (C.C.); (J.-X.S.); (W.-T.Z.); (H.S.)
| |
Collapse
|
19
|
Guo JT, Li HY, Cheng C, Shi JX, Ruan HN, Li J, Liu CM. Isochlorogenic acid A ameliorated lead-induced anxiety-like behaviors in mice by inhibiting ferroptosis-mediated neuroinflammation via the BDNF/Nrf2/GPX4 pathways. Food Chem Toxicol 2024; 190:114814. [PMID: 38876379 DOI: 10.1016/j.fct.2024.114814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Lead (Pb) is a common environmental neurotoxicant that causes behavioral impairments in both rodents and humans. Isochlorogenic acid A (ICAA), a phenolic acid found in a variety of natural sources such as tea, fruits, vegetables, coffee, plant-based food products, and various medicinal plants, exerts multiple effects, including protective effects on the lungs, livers, and intestines. The objective of this study was to investigate the potential neuroprotective effects of ICAA against Pb-induced neurotoxicity in ICR mice. The results indicate that ICAA attenuates Pb-induced anxiety-like behaviors. ICAA reduced neuroinflammation, ferroptosis, and oxidative stress caused by Pb. ICAA successfully mitigated the Pb-induced deficits in the cholinergic system in the brain through the reduction of ACH levels and the enhancement of AChE and BChE activities. ICAA significantly reduced the levels of ferrous iron and MDA in the brain and prevented decreases in GSH, SOD, and GPx activity. Immunofluorescence analysis demonstrated that ICAA attenuated ferroptosis and upregulated GPx4 expression in the context of Pb-induced nerve damage. Additionally, ICAA downregulated TNF-α and IL-6 expression while concurrently enhancing the activations of Nrf2, HO-1, NQO1, BDNF, and CREB in the brains of mice. The inhibition of BDNF, Nrf2 and GPx4 reversed the protective effects of ICAA on Pb-induced ferroptosis in nerve cells. In general, ICAA ameliorates Pb-induced neuroinflammation, ferroptosis, oxidative stress, and anxiety-like behaviors through the activation of the BDNF/Nrf2/GPx4 pathways.
Collapse
Affiliation(s)
- Jun-Tao Guo
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Han-Yu Li
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Chao Cheng
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Jia-Xue Shi
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Hai-Nan Ruan
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Jun Li
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Chan-Min Liu
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China.
| |
Collapse
|
20
|
Gao C, Wang L, Fu K, Cheng S, Wang S, Feng Z, Yu S, Yang Z. N-Acetylcysteine Alleviates Necrotizing Enterocolitis by Depressing SESN2 Expression to Inhibit Ferroptosis in Intestinal Epithelial Cells. Inflammation 2024:10.1007/s10753-024-02068-5. [PMID: 39037665 DOI: 10.1007/s10753-024-02068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 07/23/2024]
Abstract
Abstract-Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease in neonates, and effective strategies to prevent and treat NEC are still lacking. Studies have shown that N-acetylcysteine (NAC) has protective effects against NEC, however, the specific mechanism underlying its effects on intestinal functions remains unclear. Recently, NAC has been shown to suppress ferroptosis in many diseases, while it is unclear whether the beneficial effects of NAC on NEC are related to ferroptosis. In this study, we revealed that ferroptosis was significantly induced in intestinal samples from infants with NEC. NAC alleviated intestinal inflammation, barrier damage and ferroptosis in multifactorial NEC models in vivo and in vitro. Sestrin2 (SESN2) was identified as an important mediator of NAC-induced ferroptosis resistance in intestinal epithelial cells. Furthermore, SESN2 knockdown inhibited the inflammatory response, alleviated barrier damage and ferroptosis in intestinal epithelial cells and enhanced the protective effects of NAC to a certain extent. Conversely, cells overexpressing SESN2 showed the opposite changes. In summary, our study demonstrated that NAC attenuates NEC progression by decreasing SESN2 expression to inhibit ferroptosis in intestinal epithelial cells, suggesting that NAC might be an effective clinical treatment for NEC.
Collapse
Affiliation(s)
- Chuchu Gao
- Department of Neonatology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, 215002, China
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Lixia Wang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Kai Fu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Shan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Sannan Wang
- Department of Neonatology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, 215002, China
| | - Zongtai Feng
- Department of Neonatology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, 215002, China.
| | - Shenglin Yu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Zuming Yang
- Department of Neonatology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, 215002, China.
| |
Collapse
|
21
|
Feng L, Yin X, Hua Q, Ren T, Ke J. Advancements in understanding the role of ferroptosis in hypoxia-associated brain injury: a narrative review. Transl Pediatr 2024; 13:963-975. [PMID: 38984029 PMCID: PMC11228899 DOI: 10.21037/tp-24-47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/13/2024] [Indexed: 07/11/2024] Open
Abstract
Background and Objective Ferroptosis, a form of programmed cell death driven by lipid peroxidation and dependent on iron ions, unfolds through a sophisticated interplay of multiple biological processes. These include perturbations in iron metabolism, lipid peroxidation, aberrant amino acid metabolism, disruptions in hypoxia-inducible factor-prolyl hydroxylase (HIF-PHD) axis, and endoplasmic reticulum (ER) stress. Recent studies indicate that ferroptosis may serve as a promising therapeutic target for hypoxia-associated brain injury such as hypoxic-ischemic brain damage (HIBD) and cerebral ischemia-reperfusion injury (CIRI). HIBD is a neonatal disease that can be fatal, causing death or mental retardation in newborns. HIBD is a kind of diffuse brain injury, which is characterized by apoptosis of nerve cells and abnormal function and structure of neurons after cerebral hypoxia and ischemia. At present, there are no fundamental prevention and treatment measures for HIBD. The brain is the most sensitive organ of the human body to hypoxia. Cerebral ischemia will lead to the damage of local brain tissue and its function, and CIRI will lead to a series of serious consequences. We hope to clarify the mechanism of ferroptosis in hypoxia-associated brain injury, inhibit the relevant targets of ferroptosis in hypoxia-associated brain injury to guide clinical treatment, and provide guidance for the subsequent treatment of disease-related drugs. Methods Our research incorporated data on "ferroptosis", "neonatal hypoxic ischemia", "hypoxic ischemic brain injury", "hypoxic ischemic encephalopathy", "brain ischemia-reperfusion injury", and "therapeutics", which were sourced from Web of Science, PubMed, and comprehensive reviews and articles written in English. Key Content and Findings This review delineates the underlying mechanisms of ferroptosis and the significance of these pathways in hypoxia-associated brain injury, offering an overview of therapeutic strategies for mitigating ferroptosis. Conclusions Ferroptosis involves dysregulation of iron metabolism, lipid peroxidation, amino acid metabolism, dysregulation of HIF-PHD axis and endoplasmic reticulum stress (ERS). By reviewing the literature, we identified the involvement of the above processes in HIBD and CIRI, and summarized a series of therapeutic measures for HIBD and CIRI by inhibiting ferroptosis. We hope this study would provide guidance for the clinical treatment of HIBD and CIRI in the future.
Collapse
Affiliation(s)
- Liang Feng
- Department of Neonatology, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Xinghao Yin
- Department of Neonatology, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Qianqian Hua
- Department of Neurology, The First Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Tianyu Ren
- Department of Neonatology, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Jiangqiong Ke
- Department of Geriatric Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
22
|
Wang L, Li M, Liu B, Zheng R, Zhang X, Yu S. miR-30a-5p mediates ferroptosis of hippocampal neurons in chronic cerebral hypoperfusion-induced cognitive dysfunction by modulating the SIRT1/NRF2 pathway. Brain Res Bull 2024; 212:110953. [PMID: 38636610 DOI: 10.1016/j.brainresbull.2024.110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024]
Abstract
OBJECTIVE Chronic cerebral hypoperfusion (CCH) is a common cause of brain dysfunction. As a microRNA (also known as miRNAs or miRs), miR-30a-5p participates in neuronal damage and relates to ferroptosis. We explored the in vivo and in vitro effects and functional mechanism of miR-30a-5p in CCH-triggered cognitive impairment through the silent information regulator 1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway. METHODS After 1 month of CCH modeling through bilateral common carotid artery stenosis, mice were injected with 2 μL antagomir (also known as anti-miRNAs) miR-30a-5p, with cognitive function evaluated by Morris water maze and novel object recognition tests. In vitro HT-22 cell oxygen glucose deprivation (OGD) model was established, followed by miR-30a-5p inhibitor and/or si-SIRT1 transfections, with Fe2+ concentration, malonaldehyde (MDA) and glutathione (GSH) contents, reactive oxygen species (ROS), miR-30a-5p and SIRT1 and glutathione peroxidase 4 (GPX4) protein levels, NRF2 nuclear translocation, and miR-30a-5p-SIRT1 targeting relationship assessed. RESULTS CCH-induced mice showed obvious cognitive impairment, up-regulated miR-30a-5p, and down-regulated SIRT1. Ferroptosis occurred in hippocampal neurons, manifested by elevated Fe2+ concentration and ROS and MDA levels, mitochondrial atrophy, and diminished GSH content. Antagomir miR-30a-5p or miR-30a-5p inhibitor promoted SIRT1 expression and NRF2 nuclear translocation, increased GPX4, cell viability and GSH content, and reduced Fe2+ concentration and ROS and MDA levels. miR-30a-5p negatively regulated SIRT1. In vitro, miR-30a-5p knockout increased NRF2 nuclear translocation by up-regulating SIRT1, inhibiting OGD-induced ferroptosis in HT-22 cells. CONCLUSION miR-30a-5p induces hippocampal neuronal ferroptosis and exacerbates post-CCH cognitive dysfunction by targeting SIRT1 and reducing NRF2 nuclear translocation.
Collapse
Affiliation(s)
- Lihua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China.
| | - Mingjie Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China
| | - Bing Liu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China
| | - Ruihan Zheng
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China
| | - Xinyi Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China
| | - Shuoyi Yu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China
| |
Collapse
|
23
|
Wu L, Chang E, Zhao H, Ma D. Regulated cell death in hypoxic-ischaemic encephalopathy: recent development and mechanistic overview. Cell Death Discov 2024; 10:277. [PMID: 38862503 PMCID: PMC11167026 DOI: 10.1038/s41420-024-02014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024] Open
Abstract
Hypoxic-ischaemic encephalopathy (HIE) in termed infants remains a significant cause of morbidity and mortality worldwide despite the introduction of therapeutic hypothermia. Depending on the cell type, cellular context, metabolic predisposition and insult severity, cell death in the injured immature brain can be highly heterogenous. A continuum of cell death exists in the H/I-injured immature brain. Aside from apoptosis, emerging evidence supports the pathological activation of necroptosis, pyroptosis and ferroptosis as alternative regulated cell death (RCD) in HIE to trigger neuroinflammation and metabolic disturbances in addition to cell loss. Upregulation of autophagy and mitophagy in HIE represents an intrinsic neuroprotective strategy. Molecular crosstalk between RCD pathways implies one RCD mechanism may compensate for the loss of function of another. Moreover, mitochondrion was identified as the signalling "hub" where different RCD pathways converge. The highly-orchestrated nature of RCD makes them promising therapeutic targets. Better understanding of RCD mechanisms and crosstalk between RCD subtypes likely shed light on novel therapy development for HIE. The identification of a potential RCD converging node may open up the opportunity for simultaneous and synergistic inhibition of cell death in the immature brain.
Collapse
Affiliation(s)
- Lingzhi Wu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Enqiang Chang
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK.
- Perioperative and Systems Medicine Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| |
Collapse
|
24
|
Lin P, Lin C, Diao L. RBM3 Ameliorates Acute Brain Injury-induced Inflammation and Oxidative Stress by Stabilizing GAS6 mRNA Through Nrf2 Signaling Pathway. Neuroscience 2024; 547:74-87. [PMID: 38555015 DOI: 10.1016/j.neuroscience.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
RNA-binding motif protein 3 (RBM3), as a cold-inducible protein, exhibits neuroprotective function in brain disorders. This study was conducted to investigate the effects of RBM3 on acute brain injury (ABI) and its underlying mechanism. The cerebral injury (CI) rat model and oxygen-glucose deprivation (OGD) cell model were established. The neurological severity score, wire-grip score, morris water maze test, and Y-maze test were used to detect the neurological damage, vestibular motor, learning, and memory functions. Cerebral injury, apoptosis, oxidative stress, and inflammatory level were evaluated by hematoxylin-eosin and TUNEL staining and specific kits. Flow cytometry was used to analyze the apoptosis rate. The relationship between RBM3 and growth arrest specific (GAS) 6 was analyzed by RNA immunoprecipitation assay. The results indicated that RBM3 recovered of neurological function and behaviour impairment of CI rats. Additionally, RBM3 reversed the increased oxidative stress, inflammatory level, and apoptosis induced by CI and OGD. RBM3 interacted with GAS6 to activate the Nrf2 signaling pathway, thus playing neuroprotection on ABI. Besides, the results of RBM3 treatment were similar to those of mild hypothermia treatment. In summary, RBM3 exerted neuroprotection and ameliorated inflammatory levels and oxidative stress by stabilizing GAS6 mRNA through the Nrf2 signaling pathway, suggesting that RBM3 might be a potential therapeutic candidate for treating ABI.
Collapse
Affiliation(s)
- Pingqing Lin
- Department Of Emergency, Fuzhou Second General Hospital, Fuzhou City, Fujian Province 350007, China.
| | - Chengshi Lin
- Department Of Emergency, Fuzhou Second General Hospital, Fuzhou City, Fujian Province 350007, China
| | - Liangbiao Diao
- Department Of Nephrology, Fuzhou Second General Hospital, Fuzhou City, Fujian Province 350007, China
| |
Collapse
|
25
|
Yuan D, Xu Y, Xue L, Zhang W, Gu L, Liu Q. Resveratrol protects against diabetic retinal ganglion cell damage by activating the Nrf2 signaling pathway. Heliyon 2024; 10:e30786. [PMID: 38774075 PMCID: PMC11107105 DOI: 10.1016/j.heliyon.2024.e30786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/24/2024] Open
Abstract
Objective Oxidative stress-induced retinal neurodegenerative changes are among the pathological alterations observed in diabetic retinopathy. Resveratrol (RSV), a polyphenolic compound with diverse pharmacological effects, has shown preventive qualities in several neurodegenerative illnesses, including anti-inflammatory, anti-aging, and antioxidant benefits. However, its therapeutic efficacy in diabetic retinal neurodegeneration has not yet been thoroughly elucidated. Our study aimed to explore the protective mechanisms and therapeutic benefits of RSV on diabetic retinal neurodegeneration alterations. Materials and methods Using streptozotocin, we created a diabetic mouse model and conducted visual electrophysiological examinations on mice from the normal group, diabetic group, and diabetic group treated with RSV. Retinas were harvested for histological staining. Additionally, primary retinal ganglion cells cultured in high glucose conditions were used to assess malondialdehyde (MDA) levels and superoxide dismutase (SOD) levels upon siRNA-mediated nuclear factor erythroid 2-related factor 2 (Nrf2) interference. Protein levels of Nrf-2, heme oxygenase-1 (HO-1), and transcriptional levels of them were also measured. Results We demonstrated that RSV significantly improved the retinal morphology and function in the diabetic retinopathy model mice. The treated mice exhibited notable improvements in visual electrophysiology, with a significant reduction in retinal ganglion cell apoptosis. Following RSV treatment, the high glucose-cultured ganglion cells demonstrated a considerable rise in SOD levels and a substantial drop in MOD. Moreover, the protein expression of solute carrier family 7 member 11 (SLC7A11) and Nrf2 significantly increased. RT-PCR and Western blot results indicated a significant attenuation of RSV's therapeutic effects upon Nrf2 inhibition. Conclusion Our findings suggest that RSV may reduce oxidative stress levels in the retina and inhibit retinal ganglion cell apoptosis via reducing the Nrf2/HO-1 pathway, which lessens the harm that excessive glucose causes to the retina.
Collapse
Affiliation(s)
- Dongqing Yuan
- Department of Ophthalmology, Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Women and Children Health Hospital, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Yingnan Xu
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
| | - Lian Xue
- Department of Neurology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Weiwei Zhang
- Department of Ophthalmology, Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Women and Children Health Hospital, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Liuwei Gu
- Department of Ophthalmology, Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Women and Children Health Hospital, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Qinghuai Liu
- Department of Ophthalmology, Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Women and Children Health Hospital, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| |
Collapse
|
26
|
Gao M, Dong L, Yang Y, Yan J, Liang Y, Ma X, Zhou M, Wu H, Liu Y, Dai M. The anti-atherosclerotic effect of Paeonol against the lipid accumulation in macrophage-derived foam cells by inhibiting ferroptosis via the SIRT1/NRF2/GPX4 signaling pathway. Biochem Biophys Res Commun 2024; 708:149788. [PMID: 38518720 DOI: 10.1016/j.bbrc.2024.149788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Atherosclerosis (AS) is the underlying cause of many severe vascular diseases and is primarily characterized by abnormal lipid metabolism. Paeonol (Pae), a bioactive compound derived from Paeonia Suffruticosa Andr., is recognized for its significant role in reducing lipid accumulation. Our research objective is to explore the link between lipid buildup in foam cells originating from macrophages and the process of ferroptosis, and explore the effect and mechanism of Pae on inhibiting AS by regulating ferroptosis. In our animal model, ApoE-deficient mice, which were provided with a high-fat regimen to provoke atherosclerosis, were administered Pae. The treatment was benchmarked against simvastatin and ferrostatin-1. The results showed that Pae significantly reduced aortic ferroptosis and lipid accumulation in the mice. In vitro experiments further demonstrated that Pae could decrease lipid accumulation in foam cells induced by oxidized low-density lipoprotein (LDL) and challenged with the ferroptosis inducer erastin. Crucially, the protective effect of Pae against lipid accumulation was dependent on the SIRT1/NRF2/GPX4 pathway, as SIRT1 knockdown abolished this effect. Our findings suggest that Pae may offer a novel therapeutic approach for AS by inhibiting lipid accumulation through the suppression of ferroptosis, mediated by the SIRT1/NRF2/GPX4 pathway. Such knowledge has the potential to inform the creation of novel therapeutic strategies aimed at regulating ferroptosis within the context of atherosclerosis.
Collapse
Affiliation(s)
- Menglong Gao
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Lishun Dong
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Yulong Yang
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Jinjin Yan
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Yuning Liang
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Xiaolin Ma
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Min Zhou
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Hongfei Wu
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Yarong Liu
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China.
| | - Min Dai
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China.
| |
Collapse
|
27
|
Huo L, Fu J, Wang S, Wang H, Liu X. Emerging ferroptosis inhibitors as a novel therapeutic strategy for the treatment of neonatal hypoxic-ischemic encephalopathy. Eur J Med Chem 2024; 271:116453. [PMID: 38701713 DOI: 10.1016/j.ejmech.2024.116453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
Neonatal hypoxia-ischemia encephalopathy (NHIE), an oxygen deprivation-mediated brain injury due to birth asphyxia or reduced cerebral blood perfusion, often leads to lifelong sequelae, including seizures, cerebral palsy, and mental retardation. NHIE poses a significant health challenge, as one of the leading causes of neonatal morbidity and mortality globally. Despite this, available therapies are limited. Numerous studies have recently demonstrated that ferroptosis, an iron-dependent non-apoptotic regulated form of cell death characterized by lipid peroxidation (LPO) and iron dyshomeostasis, plays a role in the genesis of NHIE. Moreover, recently discovered compounds have been shown to exert potential therapeutic effects on NHIE by inhibiting ferroptosis. This comprehensive review summarizes the fundamental mechanisms of ferroptosis contributing to NHIE. We focus on various emerging therapeutic compounds exhibiting characteristics of ferroptosis inhibition and delineate their pharmacological benefits for the treatment of NHIE. This review suggests that pharmacological inhibition of ferroptosis may be a potential therapeutic strategy for NHIE.
Collapse
Affiliation(s)
- Liang Huo
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 11004, China.
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 11004, China
| | - Shimeng Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 11004, China
| | - Hua Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 11004, China
| | - Xueyan Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 11004, China.
| |
Collapse
|
28
|
Zhang L, Bai XY, Sun KY, Li X, Zhang ZQ, Liu YD, Xiang Y, Liu XL. A New Perspective in the Treatment of Ischemic Stroke: Ferroptosis. Neurochem Res 2024; 49:815-833. [PMID: 38170383 DOI: 10.1007/s11064-023-04096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/14/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024]
Abstract
Ischemic stroke is a common neurological disease. Currently, there are no Food and Drug Administration-approved drugs that can maximize the improvement in ischemic stroke-induced nerve damage. Hence, treating ischemic stroke remains a clinical challenge. Ferroptosis has been increasingly studied in recent years, and it is closely related to the pathophysiological process of ischemic stroke. Iron overload, reactive oxygen species accumulation, lipid peroxidation, and glutamate accumulation associated with ferroptosis are all present in ischemic stroke. This article focuses on describing the relationship between ferroptosis and ischemic stroke and summarizes the relevant substances that ameliorate ischemic stroke-induced neurological damage by inhibiting ferroptosis. Finally, the problems in the treatment of ischemic stroke targeting ferroptosis are discussed, hoping to provide a new direction for its treatment.
Collapse
Affiliation(s)
- Lei Zhang
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Xin Yue Bai
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Ke Yao Sun
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Xuan Li
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Zhao Qi Zhang
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Yi Ding Liu
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Yang Xiang
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Xiao Long Liu
- School of Medicine, Yan'an University, Yan'an, 716000, China.
| |
Collapse
|
29
|
Xu Y, Jia B, Li J, Li Q, Luo C. The Interplay between Ferroptosis and Neuroinflammation in Central Neurological Disorders. Antioxidants (Basel) 2024; 13:395. [PMID: 38671843 PMCID: PMC11047682 DOI: 10.3390/antiox13040395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Central neurological disorders are significant contributors to morbidity, mortality, and long-term disability globally in modern society. These encompass neurodegenerative diseases, ischemic brain diseases, traumatic brain injury, epilepsy, depression, and more. The involved pathogenesis is notably intricate and diverse. Ferroptosis and neuroinflammation play pivotal roles in elucidating the causes of cognitive impairment stemming from these diseases. Given the concurrent occurrence of ferroptosis and neuroinflammation due to metabolic shifts such as iron and ROS, as well as their critical roles in central nervous disorders, the investigation into the co-regulatory mechanism of ferroptosis and neuroinflammation has emerged as a prominent area of research. This paper delves into the mechanisms of ferroptosis and neuroinflammation in central nervous disorders, along with their interrelationship. It specifically emphasizes the core molecules within the shared pathways governing ferroptosis and neuroinflammation, including SIRT1, Nrf2, NF-κB, Cox-2, iNOS/NO·, and how different immune cells and structures contribute to cognitive dysfunction through these mechanisms. Researchers' findings suggest that ferroptosis and neuroinflammation mutually promote each other and may represent key factors in the progression of central neurological disorders. A deeper comprehension of the common pathway between cellular ferroptosis and neuroinflammation holds promise for improving symptoms and prognosis related to central neurological disorders.
Collapse
Affiliation(s)
- Yejia Xu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Bowen Jia
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Jing Li
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Qianqian Li
- NHC Key Laboratory of Drug Addiction Medicine, Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
- School of Forensic Medicine, Wannan Medical College, Wuhu 241002, China
| | - Chengliang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- NHC Key Laboratory of Drug Addiction Medicine, Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
30
|
Jiang Z, Yang H, Ni W, Gao X, Pei X, Jiang H, Su J, Weng R, Fei Y, Gao Y, Gu Y. Attenuation of neuronal ferroptosis in intracerebral hemorrhage by inhibiting HDAC1/2: Microglial heterogenization via the Nrf2/HO1 pathway. CNS Neurosci Ther 2024; 30:e14646. [PMID: 38523117 PMCID: PMC10961428 DOI: 10.1111/cns.14646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 03/26/2024] Open
Abstract
AIM The class I histone deacetylases (HDACs) implicate in microglial heterogenization and neuroinflammation following Intracerebral hemorrhage (ICH). Ferroptosis has also been reported in the ICH model. However, the relationship between HDAC1/2's role in microglial heterogenization and neuronal ferroptosis remains unclear. METHODS In both in vivo and in vitro models of ICH, we used Romidepsin (FK228), a selective HDAC1/2 inhibitor, to investigate its effects on microglial heterogenization and neuronal ferroptosis. In the in vitro ICH model using Hemin, a transwell system was utilized to examine how microglia-driven inflammation and ICH-triggered neuronal ferroptosis interact. Immunostaining, Western blotting and RT-qPCR were used to evaluate the microglial heterogenization and neuronal ferroptosis. Microglial heterogenization, neuronal ferroptosis, and neurological dysfunctions were assessed in vivo ICH mice model performed by autologous blood injection. RESULTS HDAC1/2 inhibition altered microglial heterogenization after ICH, as showing the reducing neuroinflammation and shifting microglia towards an anti-inflammatory phenotype by immunostaining and qPCR results. HDAC1/2 inhibition reduced ferroptosis, characterized by high ROS and low GPx4 expression in HT22 cells, and reduced iron and lipid deposition post-ICH in vivo. Additionally, the Nrf2/HO1 signaling pathway, especially acetyl-Nrf2, activated in the in vivo ICH model due to HDAC1/2 inhibition, plays a role in regulating microglial heterogenization. Furthermore, HDAC1/2 inhibition improved sensorimotor and histological outcomes post-ICH, offering a potential mechanism against ICH. CONCLUSION Inhibition of HDAC1/2 reduces neuro-ferroptosis by modifying the heterogeneity of microglia via the Nrf2/HO1 pathway, with a particular focus on acetyl-Nrf2. Additionally, this inhibition aids in the faster removal of hematomas and lessens prolonged neurological impairments, indicating novel approach for treating ICH.
Collapse
Affiliation(s)
- Zhiwen Jiang
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Heng Yang
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Wei Ni
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Xinjie Gao
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Xu Pei
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Hanqiang Jiang
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Jiabin Su
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Ruiyuan Weng
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Yuchao Fei
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Yanqin Gao
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Yuxiang Gu
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
31
|
Fadoul G, Ikonomovic M, Zhang F, Yang T. The cell-specific roles of Nrf2 in acute and chronic phases of ischemic stroke. CNS Neurosci Ther 2024; 30:e14462. [PMID: 37715557 PMCID: PMC10916447 DOI: 10.1111/cns.14462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/17/2023] Open
Abstract
Ischemic stroke refers to the sudden loss of blood flow in a specific area of the brain. It is the fifth leading cause of mortality and the leading cause of permanent disability. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) controls the production of several antioxidants and protective proteins and it has been investigated as a possible pharmaceutical target for reducing harmful oxidative events in brain ischemia. Each cell type exhibits different roles and behaviors in different phases post-stroke, which is comprehensive yet important to understand to optimize management strategies and goals for care for stroke patients. In this review, we comprehensively summarize the protective effects of Nrf2 in experimental ischemic stroke, emphasizing the role of Nrf2 in different cell types including neurons, astrocytes, oligodendrocytes, microglia, and endothelial cells during acute and chronic phases of stroke and providing insights on the neuroprotective role of Nrf2 on each cell type throughout the long term of stroke care. We also highlight the importance of targeting Nrf2 in clinical settings while considering a variety of important factors such as age, drug dosage, delivery route, and time of administration.
Collapse
Affiliation(s)
- George Fadoul
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders and RecoveryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Milos Ikonomovic
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
| | - Feng Zhang
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders and RecoveryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Tuo Yang
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders and RecoveryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Internal MedicineUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| |
Collapse
|
32
|
Zhang F, Zeng Z, Zhang J, Li X, Yang W, Wei Y, Guo X. Pterostilbene attenuates heart failure by inhibiting myocardial ferroptosis through SIRT1/GSK-3β/GPX4 signaling pathway. Heliyon 2024; 10:e24562. [PMID: 38318046 PMCID: PMC10838740 DOI: 10.1016/j.heliyon.2024.e24562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Sustained myocardial injury due to hypertension and diabetes mellitus leads to production of endogenous reactive oxygen species (ROS) and insufficient myocardial antioxidant capacity, increasing the risk of cardiomyocyte ferroptosis. Ferroptosis is a nonapoptotic form of cell death driven by unrestricted lipid peroxidation. Dysfunction of the glutathione peroxidase 4 (GPX4) antioxidant system also plays an important role in ferroptosis. Cardiomyocyte ferroptosis ultimately leads to myocardial deterioration, such as inflammation, fibrosis, and cardiac remodeling, resulting in structural and functional changes. Pterostilbene (PTS), a demethylated derivative of resveratrol, exhibits strong anti-inflammatory and antioxidative activities. In this study, we used in vitro experiments to explore ferroptosis induced by angiotensin II (Ang II) of primary cardiac myocytes (CMs) and in vivo experiments to prepare a transverse aortic constriction (TAC)-induced cardiac dysfunction mouse model. PTS can significantly ameliorate Ang II-induced cardiomyocyte ferroptosis in vitro and reduce cardiac remodeling, while improving cardiac function in mice after TAC in vivo. Further mechanistic investigations revealed that PTS exerts its protective effect through the SIRT1/GSK-3β/GPX4 pathway. After siRNA-mediated knockdown of SIRT1 or GPX4 in CMs, the protective effects of PTS on cardiomyocytes were abolished. This study provides important theoretical support for the potential of PTS to attenuate pathological cardiac remodeling and heart failure and provides a preliminary exploration of the molecular pathways involved in its protective mechanism.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuanglin Zeng
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiahui Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuelian Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenling Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaopeng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
33
|
Chen X, Wang Z, Li C, Zhang Z, Lu S, Wang X, Liang Q, Zhu X, Pan C, Wang Q, Ji Z, Wang Y, Piao M, Chi G, Ge P. SIRT1 activated by AROS sensitizes glioma cells to ferroptosis via induction of NAD+ depletion-dependent activation of ATF3. Redox Biol 2024; 69:103030. [PMID: 38181705 PMCID: PMC10791567 DOI: 10.1016/j.redox.2024.103030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
Ferroptosis is a type of programmed cell death resulting from iron overload-dependent lipid peroxidation, and could be promoted by activating transcription factor 3 (ATF3). SIRT1 is an enzyme accounting for removing acetylated lysine residues from target proteins by consuming NAD+, but its role remains elusive in ferroptosis and activating ATF3. In this study, we found SIRT1 was activated during the process of RSL3-induced glioma cell ferroptosis. Moreover, the glioma cell death was aggravated by SIRT1 activator SRT2183, but suppressed by SIRT inhibitor EX527 or when SIRT1 was silenced with siRNA. These indicated SIRT1 sensitized glioma cells to ferroptosis. Furthermore, we found SIRT1 promoted RSL3-induced expressional upregulation and nuclear translocation of ATF3. Silence of ATF3 with siRNA attenuated RSL3-induced increases of ferrous iron and lipid peroxidation, downregulation of SLC7A11 and GPX4 and depletion of cysteine and GSH. Thus, SIRT1 promoted glioma cell ferroptosis by inducting ATF3 activation. Mechanistically, ATF3 activation was reinforced when RSL3-induced decline of NAD+ was aggravated by FK866 that could inhibit NAD + synthesis via salvage pathway, but suppressed when intracellular NAD+ was maintained at higher level by supplement of exogenous NAD+. Notably, the NAD + decline caused by RSL3 was enhanced when SIRT1 was further activated by SRT2183, but attenuated when SIRT1 activation was inhibited by EX527. These indicated SIRT1 promoted ATF3 activation via consumption of NAD+. Finally, we found RSL3 activated SIRT1 by inducing reactive oxygen species-dependent upregulation of AROS. Together, our study revealed SIRT1 activated by AROS sensitizes glioma cells to ferroptosis via activation of ATF3-dependent inhibition of SLC7A11 and GPX4.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhenchuan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhao Zhang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Shan Lu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Xuanzhong Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Qi Liang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaoxi Zhu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Chengliang Pan
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Qingxuan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhilin Ji
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Yubo Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Meihua Piao
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, 130021, China
| | - Guangfan Chi
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Pengfei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
34
|
Luan Y, Yang Y, Luan Y, Liu H, Xing H, Pei J, Liu H, Qin B, Ren K. Targeting ferroptosis and ferritinophagy: new targets for cardiovascular diseases. J Zhejiang Univ Sci B 2024; 25:1-22. [PMID: 38163663 PMCID: PMC10758208 DOI: 10.1631/jzus.b2300097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/21/2023] [Indexed: 01/03/2024]
Abstract
Cardiovascular diseases (CVDs) are a leading factor driving mortality worldwide. Iron, an essential trace mineral, is important in numerous biological processes, and its role in CVDs has raised broad discussion for decades. Iron-mediated cell death, namely ferroptosis, has attracted much attention due to its critical role in cardiomyocyte damage and CVDs. Furthermore, ferritinophagy is the upstream mechanism that induces ferroptosis, and is closely related to CVDs. This review aims to delineate the processes and mechanisms of ferroptosis and ferritinophagy, and the regulatory pathways and molecular targets involved in ferritinophagy, and to determine their roles in CVDs. Furthermore, we discuss the possibility of targeting ferritinophagy-induced ferroptosis modulators for treating CVDs. Collectively, this review offers some new insights into the pathology of CVDs and identifies possible therapeutic targets.
Collapse
Affiliation(s)
- Yi Luan
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yang Yang
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ying Luan
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Hui Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Han Xing
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Jinyan Pei
- Quality Management Department, Henan No. 3 Provincial People's Hospital, Zhengzhou 450052, China
| | - Hengdao Liu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. ,
| | - Bo Qin
- Center for Translational Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. ,
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China.
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
35
|
Zhang J, Zhu Q, Peng Z, Li XJ, Ding PF, Gao S, Sheng B, Liu Y, Lu Y, Zhuang Z, Hang CH, Li W. Menaquinone-4 attenuates ferroptosis by upregulating DHODH through activation of SIRT1 after subarachnoid hemorrhage. Free Radic Biol Med 2024; 210:416-429. [PMID: 38042225 DOI: 10.1016/j.freeradbiomed.2023.11.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND Menaquinone-4(MK-4), the isoform of vitamin K2 in the brain, exerts neuroprotective effects against a variety of central nervous system disorders. This study aimed to demonstrate the anti-ferroptosis effects of MK-4 in neurons after SAH. METHODS A subarachnoid hemorrhage (SAH) model was prepared by endovascular perforation in mice. In vitro hemoglobin stimulation of primary cortical neurons mimicked SAH. MK-4, Brequinar (BQR, DHODH inhibitor), and Selisistat (SEL, SIRT1 inhibitor) were administered, respectively. Subsequently, WB, immunofluorescence was used to determine protein expression and localization, and transmission electron microscopy was used to observe neuronal mitochondrial structure while other indicators of ferroptosis were measured. RESULTS MK-4 treatment significantly upregulated the protein levels of DHODH; decreased GSH, PTGS2, NOX1, ROS, and restored mitochondrial membrane potential. Meanwhile, MK-4 upregulated the expression of SIRT1 and promoted its entry into the nucleus. BQR or SEL partially abolished the protective effect of MK-4 on, neurologic function, and ferroptosis. CONCLUSIONS Taken together, our results suggest that MK-4 attenuates ferroptosis after SAH by upregulating DHODH through the activation of SIRT1.
Collapse
Affiliation(s)
- Jiatong Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China; Neurosurgical Institute, Nanjing University, China.
| | - Qi Zhu
- Neurosurgical Institute, Nanjing University, China; Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Zheng Peng
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China; Neurosurgical Institute, Nanjing University, China.
| | - Xiao-Jian Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China; Neurosurgical Institute, Nanjing University, China.
| | - Peng-Fei Ding
- Neurosurgical Institute, Nanjing University, China; Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Sen Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China; Neurosurgical Institute, Nanjing University, China.
| | - Bin Sheng
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China; Neurosurgical Institute, Nanjing University, China.
| | - Yang Liu
- Neurosurgical Institute, Nanjing University, China; Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
| | - Yue Lu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China; Neurosurgical Institute, Nanjing University, China.
| | - Zong Zhuang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China; Neurosurgical Institute, Nanjing University, China.
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China; Neurosurgical Institute, Nanjing University, China.
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China; Neurosurgical Institute, Nanjing University, China.
| |
Collapse
|
36
|
Chen Y, Huang J. FTO-Mediated m6A Modification of FTH1 Inhibits Ferroptosis of Neurons in Neonatal Cerebral Hypoxic Ischemia. Crit Rev Eukaryot Gene Expr 2024; 34:47-57. [PMID: 39180207 DOI: 10.1615/critreveukaryotgeneexpr.2024054011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
FTO alpha-ketoglutarate dependent dioxygenase (FTO) is aberrantly expressed in brain disorders. However, the roles of FTO in neonatal hypoxic-ischemic brain injury (HIE) are still unclear. This study aims to investigate the potential of FTO in neonatal HIE. Oxygen-glucose deprivation (OGD) was used to establish HIE in vitro. mRNA levels were detected by real-time reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). Protein expression was detected by Western blot. The levels of malondialdehyde (MDA), superoxide dismutase (SOD), ferrous iron (Fe2+) and glutathione (GSH) was detected by specific kit. m6A sites were analyzed using SRAMP and further verify by methylated RNA immunoprecipitation (MeRIP) assay. Cell proliferation was determined by Cell Counting Kit-8 (CCK-8) assay. Cell death was determined by propidium iodide (PI) staining. FTO was downregulated in patients with neonatal HIE and OGD-treated neurons. Moreover, FTO mRNA expression was decreased in ferroptosis inducer, especially ferric ammonium citrate (FAC). However, overexpression of FTO inhibited the ferroptosis of neurons. Moreover, FTO-mediated N6-methyladenosine (m6A) modification of ferritin heavy chain 1 (FTH1) suppressed its mRNA expression and stability, inhibiting its protein expression. However, overexpression of FTH1 abrogated the effects of FTO and promoted the ferroptosis of neurons. In summary, FTO functions as a protective role in neonatal HIE via inhibiting FTH1 signaling. Thence, targeting may be a promising strategy for FTO neonatal HIE.
Collapse
Affiliation(s)
- Yanhong Chen
- Pediatric Department, The Second Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province 226006, China
| | - Jia Huang
- Affiliated Maternity and Child Health Care Hospital of Nantong University
| |
Collapse
|
37
|
Zhang M, Liu Z, Zhou W, Shen M, Mao N, Xu H, Wang Y, Xu Z, Li M, Jiang H, Chen Y, Zhu J, Lin W, Yuan J, Lin Z. Ferrostatin-1 attenuates hypoxic-ischemic brain damage in neonatal rats by inhibiting ferroptosis. Transl Pediatr 2023; 12:1944-1970. [PMID: 38130589 PMCID: PMC10730959 DOI: 10.21037/tp-23-189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/02/2023] [Indexed: 12/23/2023] Open
Abstract
Background Hypoxic-ischemic brain damage (HIBD) is a type of brain damage that is caused by perinatal asphyxia and serious damages the central nervous system. At present, there is no effective drug for the treatment of this disease. Besides, the pathogenesis of HIBD remains elusive. While studies have shown that ferroptosis plays an important role in HIBD, its role and mechanism in HIBD are yet to be fully understood. Methods The HIBD model of neonatal rats was established using the Rice-Vannucci method. A complete medium of PC12 cells was adjusted to a low-sugar medium, and the oxygen-glucose deprivation model was established after continuous hypoxia for 12 h. Laser Doppler blood flow imaging was used to detect the blood flow intensity after modeling. 2,3,5-triphenyl tetrazolium chloride staining was employed to detect ischemic cerebral infarction in rat brain tissue, and hematoxylin and eosin staining and transmission electron microscopy were used to observe brain injury and mitochondrial damage. Immunofluorescence was applied to monitor the expression of GFAP. Real-time quantitative polymerase chain reaction, western blot, and immunofluorescence were utilized to detect the expression of messenger RNA and protein. The level of reactive oxygen species (ROS) in cells was detected using the ROS detection kit. Results The results showed that ferrostatin-1 (Fer-1) significantly alleviated the brain injury caused by hypoxia and ischemia. Fer-1 significantly increased the expression of SLC3A2, SLC7A11, ACSL3, GSS, and GPX4 (P<0.05) and dramatically decreased the expressions of GFAP, ACSL4, TFRC, FHC, FLC, 4-HNE, HIF-1α, and ROS (P<0.05). Conclusions Fer-1 inhibits ferroptosis and alleviates HIBD by potentially targeting the GPX4/ACSL3/ACSL4 axis; however, its specific mechanism warrants further exploration.
Collapse
Affiliation(s)
- Min Zhang
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhiming Liu
- Department of Spinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Zhou
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ming Shen
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Niping Mao
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hang Xu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yanan Wang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zidi Xu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Mopu Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Haibin Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yuetong Chen
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jianghu Zhu
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Lin
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junhui Yuan
- Department of Neonatology, Wenling Maternal and Child Health Care Hospital, Wenling, China
| | - Zhenlang Lin
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
38
|
You Q, Lan XB, Liu N, Du J, Ma L, Yang JM, Niu JG, Peng XD, Jin GL, Yu JQ. Neuroprotective strategies for neonatal hypoxic-ischemic brain damage: Current status and challenges. Eur J Pharmacol 2023; 957:176003. [PMID: 37640219 DOI: 10.1016/j.ejphar.2023.176003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Neonatal hypoxic-ischemic brain damage (HIBD) is a prominent contributor to both immediate mortality and long-term impairment in newborns. The elusive nature of the underlying mechanisms responsible for neonatal HIBD presents a significant obstacle in the effective clinical application of numerous pharmaceutical interventions. This comprehensive review aims to concentrate on the potential neuroprotective agents that have demonstrated efficacy in addressing various pathogenic factors associated with neonatal HIBD, encompassing oxidative stress, calcium overload, mitochondrial dysfunction, endoplasmic reticulum stress, inflammatory response, and apoptosis. In this review, we conducted an analysis of the precise molecular pathways by which these drugs elicit neuroprotective effects in animal models of neonatal hypoxic-ischemic brain injury (HIBD). Our objective was to provide a comprehensive overview of potential neuroprotective agents for the treatment of neonatal HIBD in animal experiments, with the ultimate goal of enhancing the feasibility of clinical translation and establishing a solid theoretical foundation for the clinical management of neonatal HIBD.
Collapse
Affiliation(s)
- Qing You
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Xiao-Bing Lan
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Ning Liu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; Ningxia Special Traditional Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Juan Du
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Lin Ma
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Jia-Mei Yang
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Jian-Guo Niu
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, China.
| | - Xiao-Dong Peng
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Gui-Lin Jin
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou, 350108, Fujian, China; Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, 350108, Fujian, China.
| | - Jian-Qiang Yu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; Ningxia Special Traditional Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| |
Collapse
|
39
|
Jiao X, Guo ZY, Sun J, Bi C, Qian AD, Li YH. Transcriptome analysis reveals the mechanism of the effect of perfluorocaproic acid exposure on brain injury in Carassius auratus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106709. [PMID: 37793945 DOI: 10.1016/j.aquatox.2023.106709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Perfluorocaproic acid (PFHxA) has received much attention as an emerging pollutant linked to neurological problems in humans and fish. However, the potential mechanism remains unknown. In this study, the pathological damage to tissue sections demonstrated that perfluorocaproic acid caused brain tissue damage, and the increased antioxidant index malondialdehyde (MDA) and decrease in superoxide Dismutase (SOD), acid phosphatase (ACP), alkaline phosphatase (AKP), glutathione peroxidase (GSH-Px), Catalase (CAT), and Lysozyme (LZM) that perfluorocaproic acid activated antioxidant stress and caused brain damage. Transcriptome sequencing discovered 1,532 divergent genes, 931 upregulated, and 601 down-regulated. Furthermore, according to GO enrichment analysis, the differently expressed genes were shown to be involved in biological processes, cellular components, and molecular functions. The MAPK, calcium, and Neuroactive ligand-receptor interaction were considerably enriched in the KEGG enrichment analysis. We then analyzed qRT-PCR and chose ten essential differentially expressed genes for validation. The qRT-PCR results followed the same pattern as the RNA-Seq results. In conclusion, our study shows that perfluorocaproic acid exposure causes oxidative stress in the brain. It establishes a theoretical foundation for future research into genes linked to perfluorocaproic acid toxicity.
Collapse
Affiliation(s)
- Xue Jiao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zheng Yao Guo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jia Sun
- Comprehensive Technical Service Center of Yanji Customs, Jilin, China
| | - Cheng Bi
- Comprehensive Technical Service Center of Yanji Customs, Jilin, China
| | - Ai-Dong Qian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.
| | - Yue-Hong Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
40
|
Tang H, Wen J, Qin T, Chen Y, Huang J, Yang Q, Jiang P, Wang L, Zhao Y, Yang Q. New insights into Sirt1: potential therapeutic targets for the treatment of cerebral ischemic stroke. Front Cell Neurosci 2023; 17:1228761. [PMID: 37622049 PMCID: PMC10445043 DOI: 10.3389/fncel.2023.1228761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Ischemic stroke is one of the main causes of mortality and disability worldwide. However, the majority of patients are currently unable to benefit from intravenous thrombolysis or intravascular mechanical thrombectomy due to the limited treatment windows and serious complications. Silent mating type information regulation 2 homolog 1 (Sirt1), a nicotine adenine dinucleotide-dependent enzyme, has emerged as a potential therapeutic target for ischemic stroke due to its ability to maintain brain homeostasis and possess neuroprotective properties in a variety of pathological conditions for the central nervous system. Animal and clinical studies have shown that activation of Sirt1 can lessen neurological deficits and reduce the infarcted volume, offering promise for the treatment of ischemic stroke. In this review, we summarized the direct evidence and related mechanisms of Sirt1 providing neuroprotection against cerebral ischemic stroke. Firstly, we introduced the protein structure, catalytic mechanism and specific location of Sirt1 in the central nervous system. Secondly, we list the activators and inhibitors of Sirt1, which are primarily divided into three categories: natural, synthetic and physiological. Finally, we reviewed the neuroprotective effects of Sirt1 in ischemic stroke and discussed the specific mechanisms, including reducing neurological deficits by inhibiting various programmed cell death such as pyroptosis, necroptosis, ferroptosis, and cuproptosis in the acute phase, as well as enhancing neurological repair by promoting angiogenesis and neurogenesis in the later stage. Our review aims to contribute to a deeper understanding of the critical role of Sirt1 in cerebral ischemic stroke and to offer novel therapeutic strategies for this condition.
Collapse
Affiliation(s)
- Hao Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Qin
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiagui Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinghuan Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peiran Jiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Zhao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
41
|
Chen W, Zheng D, Yang C. The Emerging Roles of Ferroptosis in Neonatal Diseases. J Inflamm Res 2023; 16:2661-2674. [PMID: 37396013 PMCID: PMC10312340 DOI: 10.2147/jir.s414316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/13/2023] [Indexed: 07/04/2023] Open
Abstract
Ferroptosis is a novel type of programmed cell death involved in many diseases' pathological processes. Ferroptosis is characterized by lipid peroxidation, reactive oxygen species accumulation, and iron metabolism disorder. Newborns are susceptible to ferroptosis due to their special physiological state, which is prone to abnormal iron metabolism and the accumulation of reactive oxygen species. Recent studies have linked ferroptosis to a variety of diseases in the neonatal period (including hypoxic-ischemic encephalopathy, bronchopulmonary dysplasia, and necrotizing enterocolitis). Ferroptosis may become an effective target for the treatment of neonatal-related diseases. In this review, the ferroptosis molecular mechanism, metabolism characteristics of iron and reactive oxygen species in infants, the relationship between ferroptosis and common infant disorders, and the treatment of infant diseases targeted for ferroptosis are systematically summarized.
Collapse
Affiliation(s)
- Wenqian Chen
- Department of Neonatology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Dali Zheng
- Key Laboratory of Stomatology of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Changyi Yang
- Department of Neonatology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| |
Collapse
|
42
|
Li Y, Qiao Y, Li H, Wang Z, Su E, Du Y, Che L. Mechanism of the Mongolian medicine Eerdun Wurile basic formula in improving postoperative cognitive dysfunction by inhibiting apoptosis through the SIRT1/p53 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116312. [PMID: 36863641 DOI: 10.1016/j.jep.2023.116312] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Mongolian medicine Eerdun Wurile is a commonly used Mongolian in folk medicine used to treat cerebral nervous system diseases such as cerebral hemorrhage, cerebral thrombosis, nerve injury and cognitive function, cardiovascular diseases such as hypertension and coronary heart disease. Eerdun wurile may effect anti-postoperative cognitive function. AIM OF THE STUDY To investigate the molecular mechanism of the Mongolian medicine Eerdun Wurile Basic Formula (EWB) in improving postoperative cognitive dysfunction (POCD) based on Network pharmacology, and to confirm involvement of the SIRT1/p53 signal pathway, one of the key signal pathways, by using the POCD mouse model. MATERIAL AND METHODS Obtain compounds and disease-related targets through TCMSP, TCMID, PubChem, PharmMapper platforms, GeneCards, and OMIM databases, and screen intersection genes; Use Cytoscape software to build a "drug-ingredient-disease-target" network, and the STRING platform for protein interaction analysis.; R software was used to analyze the function of gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment.; AutoDock Vina software for active components and core targets to Perform molecular docking. The POCD mouse model was prepared by intracerebroventricular injection of lipopolysaccharide (LPS), and the morphological changes of hippocampal tissue were observed by hematoxylin-eosin (HE) staining, Western blot, immunofluorescence and TUNEL were used to verify the results of network pharmacological enrichment analysis. RESULTS There were 110 potential targets for improving POCD by EWB, 117 items were enriched by GO, and 113 pathways were enriched by KEGG, among which the SIRT1/p53 signaling pathway was related to the occurrence of POCD. Quercetin, kaempferol, vestitol, β-sitosterol and 7-methoxy-2-methyl isoflavone in EWB can form stable conformations with low binding energy with core target proteins IL-6, CASP3, VEGFA, EGFR and ESR1. Animal experiments showed that compared with the POCD model group, the EWB group could significantly improve the apoptosis in the hippocampus of the mice, and significantly down-regulate the expression of Acetyl-p53 protein (P < 0.05). CONCLUSION EWB can improve POCD with the characteristics of multi-component, multi-target, and multi-pathway synergistic effects. Studies have confirmed that EWB can improve the occurrence of POCD by regulating the expression of genes related to the SIRT1/p53 signal pathway, which provides a new target and basis for the treatment of POCD.
Collapse
Affiliation(s)
- Yan Li
- Inner Mongolia Medical University, Hohhot, 010059, China.
| | - Yun Qiao
- Inner Mongolia Medical University, Hohhot, 010059, China.
| | - Huiru Li
- Inner Mongolia Medical University, Hohhot, 010059, China.
| | - Zhe Wang
- Inner Mongolia Medical University, Hohhot, 010059, China.
| | - Enboer Su
- Department of Anesthesiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China.
| | - Yiri Du
- Department of Anesthesiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China.
| | - Limuge Che
- Medicine Innovation Center for Nationalities, Inner Mongolia Medical University, Hohhot, 010110, China.
| |
Collapse
|
43
|
Huang Y, Liu Z, Wang X, Li Y, Liu L, Li B. TGF-β3 Protects Neurons Against Intermittent Hypoxia-Induced Oxidative Stress and Apoptosis Through Activation of the Nrf-2/KEAP1/HO-1 Pathway via Binding to TGF-βRI. Neurochem Res 2023:10.1007/s11064-023-03942-8. [PMID: 37140776 DOI: 10.1007/s11064-023-03942-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
Intermittent hypoxia (IH) is the primary pathological manifestation of obstructive sleep apnea (OSA) and the main cause of OSA-induced cognitive impairment. Hippocampal neurons are considered to be critical cells affected by IH. Transforming growth factor-β3 (TGF-β3) is a cytokine with a neuroprotective effect, which plays a crucial role in resisting hypoxic brain injury, while its role in IH-induced neuronal injury is still unclear. Here, we aimed to clarify the mechanism of TGF-β3 protecting IH-exposed neurons by regulating oxidative stress and secondary apoptosis. Morris water maze results revealed that IH exposure was unable to affect the vision and motor ability of rats, but significantly affected their spatial cognition. Second-generation sequencing (RNA-seq) and subsequent experiments supported that IH decreased TGF-β3 expression and stimulated reactive oxygen species (ROS)-induced oxidative stress and apoptosis in rat hippocampus. In vitro, IH exposure significantly activated oxidative stress within HT-22 cells. Exogenous administration of Recombinant Human Transforming Growth Factor-β3 (rhTGF-β3) prevented ROS surge and secondary apoptosis in HT-22 cells caused by IH, while TGF-β type receptor I (TGF-βRI) inhibitor SB431542 blocked the neuroprotective effect of rhTGF-β3. Nuclear factor erythroid 2-related factor 2 (Nrf-2) is a transcription factor preserving intracellular redox homeostasis. rhTGF-β3 improved the nuclear translocation of Nrf-2 and activated downstream pathway. However, Nrf-2 inhibitor ML385 suppressed the activation of the Nrf-2 mechanism by rhTGF-3 and restored the effects of oxidative stress damage. These results indicate that TGF-β3 binding to TGF-βRI activates the intracellular Nrf-2/KEAP1/HO-1 pathway, reduces ROS creation, and attenuates oxidative stress and apoptosis in IH-exposed HT-22 cells.
Collapse
Affiliation(s)
- Yinpei Huang
- Department of ENT, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhili Liu
- Department of ENT, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xin Wang
- Department of ENT, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yaoxu Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lian Liu
- Department of ENT, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Bing Li
- Department of ENT, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
44
|
Zhang Z, Liu C, Zhou X, Zhang X. The Critical Role of Sirt1 in Subarachnoid Hemorrhages: Mechanism and Therapeutic Considerations. Brain Sci 2023; 13:brainsci13040674. [PMID: 37190639 DOI: 10.3390/brainsci13040674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/28/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
The subarachnoid hemorrhage (SAH) is an important cause of death and long-term disability worldwide. As a nicotinamide adenine dinucleotide-dependent deacetylase, silent information regulator 1 (Sirt1) is a multipotent molecule involved in many pathophysiological processes. A growing number of studies have demonstrated that Sirt1 activation may exert positive effects on SAHs by regulating inflammation, oxidative stress, apoptosis, autophagy, and ferroptosis. Thus, Sirt1 agonists may serve as potential therapeutic drugs for SAHs. In this review, we summarized the current state of our knowledge on the relationship between Sirt1 and SAHs and provided an updated overview of the downstream molecules of Sirt1 in SAHs.
Collapse
Affiliation(s)
- Zhonghua Zhang
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Cong Liu
- Department of Ophthalmology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Xiaoming Zhou
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Xin Zhang
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
45
|
Suárez-Rivero JM, López-Pérez J, Muela-Zarzuela I, Pastor-Maldonado C, Cilleros-Holgado P, Gómez-Fernández D, Álvarez-Córdoba M, Munuera-Cabeza M, Talaverón-Rey M, Povea-Cabello S, Suárez-Carrillo A, Piñero-Pérez R, Reche-López D, Romero-Domínguez JM, Sánchez-Alcázar JA. Neurodegeneration, Mitochondria, and Antibiotics. Metabolites 2023; 13:metabo13030416. [PMID: 36984858 PMCID: PMC10056573 DOI: 10.3390/metabo13030416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Neurodegenerative diseases are characterized by the progressive loss of neurons, synapses, dendrites, and myelin in the central and/or peripheral nervous system. Actual therapeutic options for patients are scarce and merely palliative. Although they affect millions of patients worldwide, the molecular mechanisms underlying these conditions remain unclear. Mitochondrial dysfunction is generally found in neurodegenerative diseases and is believed to be involved in the pathomechanisms of these disorders. Therefore, therapies aiming to improve mitochondrial function are promising approaches for neurodegeneration. Although mitochondrial-targeted treatments are limited, new research findings have unraveled the therapeutic potential of several groups of antibiotics. These drugs possess pleiotropic effects beyond their anti-microbial activity, such as anti-inflammatory or mitochondrial enhancer function. In this review, we will discuss the controversial use of antibiotics as potential therapies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Juan M. Suárez-Rivero
- Institute for Biomedical Researching and Innovation of Cádiz (INiBICA) University Hospital Puerta del Mar, 11009 Cádiz, Spain
| | - Juan López-Pérez
- Institute for Biomedical Researching and Innovation of Cádiz (INiBICA) University Hospital Puerta del Mar, 11009 Cádiz, Spain
| | - Inés Muela-Zarzuela
- Institute for Biomedical Researching and Innovation of Cádiz (INiBICA) University Hospital Puerta del Mar, 11009 Cádiz, Spain
| | - Carmen Pastor-Maldonado
- Department of Molecular Biology Interfaculty Institute for Cell Biology, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Paula Cilleros-Holgado
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - David Gómez-Fernández
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Mónica Álvarez-Córdoba
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Manuel Munuera-Cabeza
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Marta Talaverón-Rey
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Suleva Povea-Cabello
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Alejandra Suárez-Carrillo
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Rocío Piñero-Pérez
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Diana Reche-López
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - José M. Romero-Domínguez
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - José Antonio Sánchez-Alcázar
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
- Correspondence: ; Tel.: +34-954978071
| |
Collapse
|
46
|
Li Y, Chen L, Zheng D, Liu JX, Liu C, Qi SH, Hu PC, Yang XF, Min JW. Echinocystic acid alleviated hypoxic-ischemic brain damage in neonatal mice by activating the PI3K/Akt/Nrf2 signaling pathway. Front Pharmacol 2023; 14:1103265. [PMID: 36843928 PMCID: PMC9947717 DOI: 10.3389/fphar.2023.1103265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is considered a major cause of death and long-term neurological injury in newborns. Studies have demonstrated that oxidative stress and apoptosis play a major role in the progression of neonatal HIE. Echinocystic acid (EA), a natural plant extract, shows great antioxidant and antiapoptotic activities in various diseases. However, it has not yet been reported whether EA exerts a neuroprotective effect against neonatal HIE. Therefore, this study was undertaken to explore the neuroprotective effects and potential mechanisms of EA in neonatal HIE using in vivo and in vitro experiments. In the in vivo study, a hypoxic-ischemic brain damage (HIBD) model was established in neonatal mice, and EA was administered immediately after HIBD. Cerebral infarction, brain atrophy and long-term neurobehavioral deficits were measured. Hematoxylin and eosin (H&E), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and dihydroethidium (DHE) staining were performed, and the contents of malondialdehyde (MDA) and glutathione (GSH) were detected. In the in vitro study, an oxygen-glucose deprivation/reperfusion (OGD/R) model was employed in primary cortical neurons, and EA was introduced during OGD/R. Cell death and cellular ROS levels were determined. To illustrate the mechanism, the PI3K inhibitor LY294002 and Nrf2 inhibitor ML385 were used. The protein expression levels of p-PI3K, PI3K, p-Akt, Akt, Nrf2, NQO1, and HO-1 were measured by western blotting. The results showed that EA treatment significantly reduced cerebral infarction, attenuated neuronal injury, and improved brain atrophy and long-term neurobehavioral deficits in neonatal mice subjected to HIBD. Meanwhile, EA effectively increased the survival rate in neurons exposed to OGD/R and inhibited oxidative stress and apoptosis in both in vivo and in vitro studies. Moreover, EA activated the PI3K/Akt/Nrf2 pathway in neonatal mice following HIBD and in neurons after OGD/R. In conclusion, these results suggested that EA alleviated HIBD by ameliorating oxidative stress and apoptosis via activation of the PI3K/Akt/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Ling Chen
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Da Zheng
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Jian-Xia Liu
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Chao Liu
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Shao-Hua Qi
- Department of Systems Medicine and Bioengineering, Houston Methodist Cancer Center, Weill Cornell Medicine, Houston, TX, United States
| | - Peng-Chao Hu
- Department of Oncology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xiao-Fei Yang
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Jia-Wei Min
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China,*Correspondence: Jia-Wei Min,
| |
Collapse
|