1
|
Musto C, Cerri J, Capizzi D, Fontana MC, Rubini S, Merialdi G, Berzi D, Ciuti F, Santi A, Rossi A, Barsi F, Gelmini L, Fiorentini L, Pupillo G, Torreggiani C, Bianchi A, Gazzola A, Prati P, Sala G, Apollonio M, Delogu M, Biancardi A, Uboldi L, Moretti A, Garbarino C. First evidence of widespread positivity to anticoagulant rodenticides in grey wolves (Canis lupus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169990. [PMID: 38232835 DOI: 10.1016/j.scitotenv.2024.169990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Second-generation Anticoagulant Rodenticides (ARs) can be critical for carnivores, due to their widespread use and impacts. However, although many studies explored the impacts of ARs on small and mesocarnivores, none assessed the extent to which they could contaminate large carnivores in anthropized landscapes. We filled this gap by exploring spatiotemporal trends in grey wolf (Canis lupus) exposure to ARs in central and northern Italy, by subjecting a large sample of dead wolves (n = 186) to the LC-MS/MS method. Most wolves (n = 115/186, 61.8 %) tested positive for ARs (1 compound, n = 36; 2 compounds, n = 47; 3 compounds, n = 16; 4 or more compounds, n = 16). Bromadiolone, brodifacoum and difenacoum, were the most common compounds, with brodifacoum and bromadiolone being the ARs that co-occurred the most (n = 61). Both the probability of testing positive for multiple ARs and the concentration of brodifacoum, and bromadiolone in the liver, systematically increased in wolves that were found at more anthropized sites. Moreover, wolves became more likely to test positive for ARs through time, particularly after 2020. Our results underline that rodent control, based on ARs, increases the risks of unintentional poisoning of non-target wildlife. However, this risk does not only involve small and mesocarnivores, but also large carnivores at the top of the food chain, such as wolves. Therefore, rodent control is adding one further conservation threat to endangered large carnivores in anthropized landscapes of Europe, whose severity could increase over time and be far higher than previously thought. Large-scale monitoring schemes for ARs in European large carnivores should be devised as soon as possible.
Collapse
Affiliation(s)
- Carmela Musto
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy.
| | - Jacopo Cerri
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy.
| | - Dario Capizzi
- Directorate for Environment, Latium Region, 00173 Rome, Italy
| | - Maria Cristina Fontana
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Silva Rubini
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Giuseppe Merialdi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Duccio Berzi
- Centro per lo Studio e la Documentazione sul Lupo, 50033 Firenze, Italy
| | - Francesca Ciuti
- Centro per lo Studio e la Documentazione sul Lupo, 50033 Firenze, Italy
| | - Annalisa Santi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Arianna Rossi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Filippo Barsi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Luca Gelmini
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Laura Fiorentini
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Giovanni Pupillo
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Camilla Torreggiani
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Alessandro Bianchi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Alessandra Gazzola
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Paola Prati
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Giovanni Sala
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Marco Apollonio
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Mauro Delogu
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy
| | - Alberto Biancardi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Laura Uboldi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Alessandro Moretti
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Chiara Garbarino
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| |
Collapse
|
2
|
Marchetti C, Mastrogiuseppe L, Vanin S, Cecchi R, Gherardi M. On-Site Inspection Form in Veterinary Cases: The Parma Veterinary Form. Animals (Basel) 2023; 13:2064. [PMID: 37443862 DOI: 10.3390/ani13132064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The on-site inspection of the scene of an animal cadaver is crucial for a correct interpretation of the autopsy results, to determine the manner, method, and cause of death. This information plays a crucial role in the control of public health including the prevention of zoonoses. It is also fundamental for the recognition and the contrast of crimes against animals and to animal abuse phenomena, considered an alert sign of an anti-social or violent behavior of humans. Today the best veterinary procedure requires an accurate collection of the evidence at the scene that can be then handed to experts belonging to other forensic disciplines for further evaluation and data interpretation. In this paper authors suggest a form aiming to facilitate either the on-site and the autopsy activities, as a guarantee of the quality of the forensic process starting from the discovery scene up to the reconstruction of the case. Essential is training of non-medical personnel who often represent the first responder to be present on the scene. The form is inspired by the interdisciplinary form developed by the European Council of Legal Medicine and represents an initial tool to stimulate a multidisciplinary activity in close synergy with other forensic experts.
Collapse
Affiliation(s)
| | - Luigi Mastrogiuseppe
- Department of Prevention, Unit of Veterinary, Regional Health Unit of Molise, ASREM, 86100 Campobasso, Italy
| | - Stefano Vanin
- Department of Earth and Environmental Sciences, University of Genoa, 16132 Genoa, Italy
- National Research Council, Institute for the Study of Anthropic Impact and Sustainability in the Marine Environment (CNR-IAS), 16149 Genova, Italy
| | - Rossana Cecchi
- Department of Medicine and Surgery, Unit of Forensic Pathology, University of Parma, 43124 Parma, Italy
| | - Mirella Gherardi
- Department of Prevention of the Local Health Authority, SC Medicina Legale AUSL Valle D'Aosta, 11100 Aosta, Italy
| |
Collapse
|
3
|
Ghoddousi A, Van Cayzeele C, Negahdar P, Soofi M, Kh Hamidi A, Bleyhl B, Fandos G, Khorozyan I, Waltert M, Kuemmerle T. Understanding spatial patterns of poaching pressure using ranger logbook data to optimize future patrolling strategies. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2601. [PMID: 35366036 DOI: 10.1002/eap.2601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Poaching is driving many species toward extinction, and as a result, lowering poaching pressure is a conservation priority. This requires understanding where poaching pressure is high and which factors determine these spatial patterns. However, the cryptic and illegal nature of poaching makes this difficult. Ranger patrol data, typically recorded in protected area logbooks, contain information on patrolling efforts and poaching detection and should thus provide opportunities for a better understanding of poaching pressure. However, these data are seldom analyzed and rarely used to inform adaptive management strategies. We developed a novel approach to making use of analog logbook records to map poaching pressure and to test environmental criminology and predator-prey relationship hypotheses explaining poaching patterns. We showcase this approach for Golestan National Park in Iran, where poaching has substantially depleted ungulate populations. We digitized data from >4800 ranger patrols from 2014 to 2016 and used an occupancy modeling framework to relate poaching to (1) accessibility, (2) law enforcement, and (3) prey availability factors. Based on predicted poaching pressure and patrolling intensity, we provide suggestions for future patrol allocation strategies. Our results revealed a low probability (12%) of poacher detection during patrols. Poaching distribution was best explained by prey availability, indicating that poachers target areas with high concentrations of ungulates. Poaching pressure was estimated to be high (>0.49) in 39% of our study area. To alleviate poaching pressure, we recommend ramping up patrolling intensity in 12% of the national park, which could be achievable by reducing excess patrols in about 20% of the park. However, our results suggest that for 27% of the park, it is necessary to improve patrolling quality to increase detection probability of poaching, for example, by closing temporal patrolling gaps or expanding informant networks. Our approach illustrates that analog ranger logbooks are an untapped resource for evidence-based and adaptive planning of protected area management. Using this wealth of data can open up new avenues to better understand poaching and its determinants, to expand effectiveness assessments to the past, and, more generally, to allow for strategic conservation planning in protected areas.
Collapse
Affiliation(s)
- Arash Ghoddousi
- Geography Department, Humboldt-University Berlin, Berlin, Germany
| | - Corinna Van Cayzeele
- Department of Conservation Biology, University of Goettingen, Göttingen, Germany
| | - Pegah Negahdar
- Tropical Ecology, Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Mahmood Soofi
- Department of Conservation Biology, University of Goettingen, Göttingen, Germany
- CSIRO Land and Water, Darwin, Northern Territory, Australia
| | | | - Benjamin Bleyhl
- Geography Department, Humboldt-University Berlin, Berlin, Germany
| | - Guillermo Fandos
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Igor Khorozyan
- Department of Conservation Biology, University of Goettingen, Göttingen, Germany
| | - Matthias Waltert
- Department of Conservation Biology, University of Goettingen, Göttingen, Germany
| | - Tobias Kuemmerle
- Geography Department, Humboldt-University Berlin, Berlin, Germany
- Integrative Research Institute for Transformations in Human-Environment Systems (IRI THESys), Humboldt-University Berlin, Berlin, Germany
| |
Collapse
|
4
|
Chaudhuri S, Bandyopadhyay M, Rajaraman R, Kalyanasundaram S, Sathyakumar S, Krishnamurthy R. Spatio-Temporal Patterns and Source-Dispersion Modeling Towards Sloth Bear–Human Conflict Management in Central India. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.850309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The impact of humans on biodiversity, in the form of the spatially extensive occurrence of humans and subsequent habitat degradation, leads to negative interactions between humans and native wildlife. However, knowledge of the spatial and temporal interface between humans and wildlife is necessary to understand the root cause of such negative interactions, yet considerably understudied in the context of human-dominated landscapes in south and south-eastern Asia. We took this opportunity, gaining insights on seasonal spatial interaction and spatio-temporal overlap between sloth bears (Melursus ursinus) and humans, and subsequently predicted the conflict source sites and dispersion (i.e., hotspots) based on the robust geographic profiling (GP) method in the Sanjay Tiger Reserve (STR), a human-dominated landscape of central India. Detection data of sloth bear and human were obtained from camera trap survey conducted for two years (2017–2018) and records of conflict incidents (2009–2019) were collected from forest department. We found that sloth bears can co-occur with humans independently of seasons, based on occupancy models. However, during summer, higher temporal overlap (Δ4 = 0.46) and lower spatial overlap (0.31) were observed between sloth bears and humans. Contrastingly, lower temporal overlap (Δ4 = 0.29) and higher spatial overlap (0.44) were observed between the same two during winter. The activity patterns of sloth bears and humans differed significantly across seasons and within the same species in different seasons. Our findings indicated that significant changes in human activity, especially during summer, increased the likelihood of sloth bear-human interaction and subsequent conflict incidents. The mapping of conflict source and dispersion (with high accuracy) also predicted a greater probability of conflict during summer, compared to winter, and thus showed the successful application of GP models in this field. Also, camera trap data alone were able to predict the occurrence of hotspots, demonstrating the use of camera trap records in the successful prediction of source-dispersion of conflict. This study would be useful for decision-makers to alleviate sloth bear–human conflict based on insights on seasonal variation of spatio-temporal overlap between the two and direct conservation efforts accordingly.
Collapse
|
5
|
Yabiku ST, Sullivan A, York AM, Zhao Q, Glick JE, Hall SJ, Ghimire DJ, An L. Drivers of prohibited natural resource collection in Chitwan National Park, Nepal. ENVIRONMENTAL CONSERVATION 2022; 49:114-121. [PMID: 36246571 PMCID: PMC9563263 DOI: 10.1017/s0376892922000121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protected areas (PAs) are critical for achieving conservation, economic and development goals, but the factors that lead households to engage in prohibited resource collection in PAs are not well understood. We examine collection behaviours in community forests and the protected Chitwan National Park in Chitwan, Nepal. Our approach incorporates household and ecological data, including structured interviews, spatially explicit data on collection behaviours measured with computer tablets and a systematic field survey of invasive species. We pair our data with a framework that considers factors related to a household's demand for resources, barriers to prohibited resource collection, barriers to legal resource collection and alternatives to resource collection. The analysis identifies key drivers of prohibited collection, including sociodemographic variables and perceptions of an invasive plant (Mikania micrantha). The social-ecological systems approach reveals that household perceptions of the presence of M. micrantha were more strongly associated with resource collection decisions than the actual ecologically measured presence of the plant. We explore the policy implications of our findings for PAs and propose that employing a social-ecological systems approach leads to conservation policy and scientific insights that are not possible to achieve with social or ecological approaches alone.
Collapse
Affiliation(s)
- Scott T Yabiku
- Penn State University, 306 Oswald Tower, Penn State University, University Park, PA 16802, USA
| | - Abigail Sullivan
- Boston University Earth & Environment, 685 Commonwealth Avenue, Boston, MA 02215, USA
| | - Abigail M York
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA
| | - Qunshan Zhao
- Urban Big Data Centre 7-302, 7 Lilybank Gardens, University of Glasgow, Glasgow, G12 8RZ, UK
| | - Jennifer E Glick
- Penn State University, 601 Oswald Tower, Penn State University, University Park, PA 16802, USA
| | - Sharon J Hall
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Dirgha J Ghimire
- Population Studies Center, University of Michigan, 426 Thompson St, Ann Arbor, MI 48106, USA
| | - Li An
- San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4493, USA
| |
Collapse
|
6
|
Stevens MCA, Faulkner SC, Wilke ABB, Beier JC, Vasquez C, Petrie WD, Fry H, Nichols RA, Verity R, Le Comber SC. Spatially clustered count data provide more efficient search strategies in invasion biology and disease control. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02329. [PMID: 33752255 DOI: 10.1002/eap.2329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/23/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Geographic profiling, a mathematical model originally developed in criminology, is increasingly being used in ecology and epidemiology. Geographic profiling boasts a wide range of applications, such as finding source populations of invasive species or breeding sites of vectors of infectious disease. The model provides a cost-effective approach for prioritizing search strategies for source locations and does so via simple data in the form of the positions of each observation, such as individual sightings of invasive species or cases of a disease. In doing so, however, classic geographic profiling approaches fail to make the distinction between those areas containing observed absences and those areas where no data were recorded. Absence data are generated via spatial sampling protocols but are often discarded during the inference process. Here we construct a geographic profiling model that resolves these issues by making inferences via count data, analyzing a set of discrete sentinel locations at which the number of encounters has been recorded. Crucially, in our model this number can be zero. We verify the ability of this new model to estimate source locations and other parameters of practical interest via a Bayesian power analysis. We also measure model performance via real-world data in which the model infers breeding locations of mosquitoes in bromeliads in Miami-Dade County, Florida, USA. In both cases, our novel model produces more efficient search strategies by shifting focus from those areas containing observed absences to those with no data, an improvement over existing models that treat these areas equally. Our model makes important improvements upon classic geographic profiling methods, which will significantly enhance real-world efforts to develop conservation management plans and targeted interventions.
Collapse
Affiliation(s)
- Michael C A Stevens
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
- Centre for Advanced Spatial Analysis, University College London, London, W1T 4TJ, UK
| | - Sally C Faulkner
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - André B B Wilke
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
| | - John C Beier
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
| | - Chalmers Vasquez
- Miami-Dade County Mosquito Control Division, Miami, Florida, 33178, USA
| | - William D Petrie
- Miami-Dade County Mosquito Control Division, Miami, Florida, 33178, USA
| | - Hannah Fry
- Centre for Advanced Spatial Analysis, University College London, London, W1T 4TJ, UK
| | - Richard A Nichols
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Robert Verity
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, W2 1PG, UK
| | - Steven C Le Comber
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| |
Collapse
|
7
|
|
8
|
Karawita H, Perera P. A method for rapid assessment of the distribution and conservation status of Indian pangolin ( Manis crassicaudata) in an extended geographical region. MethodsX 2020; 7:100912. [PMID: 32477893 PMCID: PMC7248234 DOI: 10.1016/j.mex.2020.100912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/29/2020] [Indexed: 11/11/2022] Open
Abstract
Development of an effective conservation management strategy for the Indian pangolins (Manis crassicaudata) found in Sri Lanka is hindered due to lack of solid evidence based distribution and ecological data on Indian pangolins. We employed a rapid and cost-effective method based on reliable information by combining primary and secondary data. The method was predominantly based on secondary data from the official records maintained by the government and non-governmental institutions related to wildlife conservation. The primary data collection was carried out depending on the findings from the secondary data sources; i.e. structured interviews and field studies were carried out in the localities that identified from secondary data sources. As a source of primary data, the structured interviews were carried out with stakeholders including the officials of government and nongovernmental institutions, hunters and villagers of the identified localities.This method allows collecting quick and accurate data on the distribution, habitats and conservation threats for the species. Cost effective method to collect ecological data of elusive mammals in large areas. Efficient method to identify trends of pangolin related crimes and illicit trade.
Collapse
Affiliation(s)
- Hasitha Karawita
- Department of Forestry and Environmental Science, University of Sri Jayewardenepura, Sri Lanka
| | - Priyan Perera
- Department of Forestry and Environmental Science, University of Sri Jayewardenepura, Sri Lanka.,IUCN SSC Pangolin Specialist Group, C/o Zoological Society of London, Regent's Park, London NW1 4RY, United Kingdom
| |
Collapse
|
9
|
Heald OJN, Fraticelli C, Cox SE, Stevens MCA, Faulkner SC, Blackburn TM, Le Comber SC. Understanding the origins of the ring‐necked parakeet in the UK. J Zool (1987) 2019. [DOI: 10.1111/jzo.12753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- O. J. N. Heald
- Cameron Forensic Medical Sciences William Harvey Research Institute Barts and The London School of Medicine and Dentistry Queen Mary University of London London UK
| | - C. Fraticelli
- School of Biological and Chemical Sciences Queen Mary University of London London UK
| | - S. E. Cox
- Goldsmiths University of London London UK
| | - M. C. A. Stevens
- School of Biological and Chemical Sciences Queen Mary University of London London UK
| | - S. C. Faulkner
- School of Biological and Chemical Sciences Queen Mary University of London London UK
| | - T. M. Blackburn
- Centre for Biodiversity and Environment Research University College London London UK
- Institute of Zoology Zoological Society of London London UK
| | - S. C. Le Comber
- School of Biological and Chemical Sciences Queen Mary University of London London UK
| |
Collapse
|