1
|
Ottaiano A, Sabbatino F, Perri F, Cascella M, Sirica R, Patrone R, Capuozzo M, Savarese G, Ianniello M, Petrillo N, Circelli L, Granata V, Berretta M, Santorsola M, Nasti G. KRAS p.G12C Mutation in Metastatic Colorectal Cancer: Prognostic Implications and Advancements in Targeted Therapies. Cancers (Basel) 2023; 15:3579. [PMID: 37509241 PMCID: PMC10377118 DOI: 10.3390/cancers15143579] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
KRAS is frequently mutated in tumors. It is mutated in approximately 30% of all cancer cases and in nearly 50% of cases of metastatic colorectal cancer (CRC), which is the third leading cause of cancer-related deaths worldwide. Recent advancements in understanding CRC biology and genetics have highlighted the significance of KRAS mutations in the progression of CRC. The KRAS gene encodes a small GTPase (Guanosine TriPhosphatases) that plays a key role in signaling pathways associated with important proteins involved in amplifying growth factor and receptor signals. Mutations in KRAS are frequently observed in codons 12 and 13, and these mutations have oncogenic properties. Abnormal activation of KRAS proteins strongly stimulates signals associated with various cancer-related processes in CRC, including cell proliferation, migration and neoangiogenesis. In this review, we explore the distinct prognostic implications of KRAS mutations. Specifically, the KRAS p.G12C mutation is associated with a worse prognosis in metastatic CRC. The correlation between structure, conformation and mutations is visually presented to emphasize how alterations in individual amino acids at the same position in a single protein can unexpectedly exhibit complex involvement in cancer. Last, KRAS p.G12C is discussed as an emerging and promising therapeutic target in metastatic CRC, providing a concise overview of available clinical data regarding the use of new inhibitors.
Collapse
Affiliation(s)
- Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131 Naples, Italy
| | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, 84081 Salerno, Italy
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131 Naples, Italy
| | - Marco Cascella
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131 Naples, Italy
| | - Roberto Sirica
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy
| | - Renato Patrone
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131 Naples, Italy
| | | | - Giovanni Savarese
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy
| | - Monica Ianniello
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy
| | - Nadia Petrillo
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy
| | - Luisa Circelli
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy
| | - Vincenza Granata
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131 Naples, Italy
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131 Naples, Italy
| | - Guglielmo Nasti
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131 Naples, Italy
| |
Collapse
|
2
|
Su J, Lai J, Yang R, Xu B, Zhu Y, Zhao M, Yang C, Liang G. Capecitabine plus bevacizumab versus capecitabine in maintenance treatment for untreated characterised KRAS exon 2 wild-type metastatic colorectal cancer: a retrospective analysis in Chinese postmenopausal women. BMC Gastroenterol 2019; 19:17. [PMID: 30683047 PMCID: PMC6346504 DOI: 10.1186/s12876-018-0916-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/03/2018] [Indexed: 12/16/2022] Open
Abstract
Background Capecitabine plus bevacizumab (CAP-B) maintenance treatment after 6 cycles of capecitabine, oxaliplatin, and bevacizumab (CAPOXB) has demonstrated clinical activity and failure to compromise quality of life in patients with metastatic colorectal cancer (MCC) in a previous phase 3 CAIRO3 study. The objective of this study is to evaluate the efficacy and safety of CAP-B versus CAP in maintenance treatment after 6-cycle CAPOXB induction therapy in Chinese postmenopausal women with untreated characterised KRAS exon 2 wild-type MCC. Methods During 2012–2016, prospectively maintained databases were reviewed to evaluate cohorts with untreated characterised KRAS exon 2 wild-type MCC and stable disease or better after 6-cycle CAPOXB induction treatment. After induction treatment, all patients received either CAP-B or capecitabine (CAP) as maintenance treatment. Median progression-free survival (mPFS) and median overall survival (mOS) were the primary endpoints. Safety was the secondary endpoint. Results A total of 263 women with untreated characterised KRAS exon 2 wild-type MCC and stable disease or better after 6-cycle CAPOXB induction treatment were included for the evaluation of efficacy and safety (CAP-B-treated cohort, n = 130 and CAP-treated cohort, n = 133). The mPFS was 11.5 months (95% confidence interval [CI], 5.6–17.4) and 9.2 months (95% CI, 3.6–14.8) for the CAP-B-treated and CAP-treated cohorts, respectively (HR 0.54, 95% CI 0.32~0.85; P = 0.013). The mOS was 16.2 months (95% CI, 11.4–18.7) and 12.4 months (95% CI, 10.6–15.5) for the CAP-B- and CAP-treated cohorts, respectively (HR 0.72, 95% CI 0.51~0.94; P = 0.022). The CAP-B-treated cohort experienced significantly more grade 3 or 4 diarrhoea (P < 0.001) than the CAP-treated cohort. Conclusions CAP-B maintenance treatment after 6-cycle CAPOX-B in Chinese postmenopausal women with untreated KRAS exon 2 wild-type MCC is poorer tolerated but has a more modest, if any, benefit compared with that of CAP maintenance treatment.
Collapse
Affiliation(s)
- Jinsong Su
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road No.1, Erqi District, Zhengzhou, 450052, Henan, China
| | - Jiajie Lai
- Department of Gynaecology and obstetrics, The First Affiliated Hospital, Sun Yat-sen University, Huangpu East Road No. 183, Huangpu District, Guangzhou, 510700, China
| | - Ruikun Yang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Huangpu East Road No. 183, Huangpu District, Guangzhou, 510700, China
| | - Bo Xu
- Department of thoracic surgery, The First Affiliated Hospital, Sun Yat-sen University, Huangpu East Road No. 183, Huangpu District, Guangzhou, 510700, China
| | - Ying Zhu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Huangpu East Road No. 183, Huangpu District, Guangzhou, 510700, China
| | - Mingdong Zhao
- Department of Orthopaedics, Jinshan Hospital, Fudan University, Longhang Road No. 1508, Jinshan District, Shanghai, 201508, China.
| | - Chen Yang
- Department of Physical Examination, The First Affiliated Hospital, Sun Yat-sen University, Huangpu East Road No. 183, Huangpu District, Guangzhou, 510700, China.
| | - Guanzhao Liang
- Emergency Department, The First Affiliated Hospital, Sun Yat-sen University, Huangpu East Road No. 183, Huangpu District, Guangzhou, 510700, China.
| |
Collapse
|
3
|
Xiao N, Tang YT, Li ZS, Cao R, Wang R, Zou JM, Pei J. Performance of probe polymerization-conjunction-agarose gel electrophoresis in the rapid detection of KRAS gene mutation. Genet Mol Biol 2018; 41:555-561. [PMID: 30080912 PMCID: PMC6136376 DOI: 10.1590/1678-4685-gmb-2017-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/30/2017] [Indexed: 11/22/2022] Open
Abstract
This study aimed to develop a simple and rapid method to detect KRAS gene mutations for conventional clinical applications under laboratory conditions. The genotype of mutation sites was determined based on the occurrence of target bands in the corresponding lanes of the reaction tubes through polymerization-conjunction of the probes, probe purification and amplification, and agarose gel electrophoresis. Circulating DNA samples were obtained from the plasma of 72 patients with lung cancer, which were identified based on six mutation sites (G12S, G12R, G12C, G12D, G12A, and G12V) of codon 12 of the KRAS gene. The detection results were compared with direct sequencing data. The proposed detection method is characterized by simple operation, high specificity, and high sensitivity (2%). This method can detect the mutations of three samples at G12S, G12R, and G12A. In the direct sequencing spectra of these samples, the genotype could not be determined due to the lack of evident sequencing peaks that correspond to the basic group of mutations. In conclusion, a simple and rapid method was established based on probe polymerization-conjunction-agarose gel electrophoresis for detecting KRAS gene mutations. This method can be applied to the conventional mutation detection of inhomogeneous samples.
Collapse
Affiliation(s)
- Na Xiao
- Medical College of Hubei University of Arts and Science, Xiangyang, China
| | - Yi-Tong Tang
- Medical College of Hubei University of Arts and Science, Xiangyang, China
| | - Zhi-Shan Li
- Department of Clinical Laboratory, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Rui Cao
- Department of Internal Medicine, Maternal and Child Health Care Hospital of Dongguan, Dongguan, China
| | - Rong Wang
- Department of Clinical Laboratory, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jiu-Ming Zou
- Department of Clinical Laboratory, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jiao Pei
- Department of Clinical Laboratory, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
4
|
Evans JP, Winiarski BK, Sutton PA, Jones RP, Ressel L, Duckworth CA, Pritchard DM, Lin ZX, Fretwell VL, Tweedle EM, Costello E, Goldring CE, Copple IM, Park BK, Palmer DH, Kitteringham NR. The Nrf2 inhibitor brusatol is a potent antitumour agent in an orthotopic mouse model of colorectal cancer. Oncotarget 2018; 9:27104-27116. [PMID: 29930754 PMCID: PMC6007465 DOI: 10.18632/oncotarget.25497] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/07/2018] [Indexed: 12/30/2022] Open
Abstract
Nrf2 is a transcription factor that regulates cellular stress response and irinotecan-metabolising pathways. Its aberrant activity has been reported in a number of cancers, although relatively few studies have explored a role for Nrf2 in colorectal cancer (CRC). This study assessed the expression of Nrf2 in patient CRC tissues and explored the effect of Nrf2 modulation alone, or in combination with irinotecan, in human (HCT116) and murine (CT26) cell lines in vitro and in an orthotopic syngeneic mouse model utilising bioluminescent imaging. Using a tissue microarray, Nrf2 was found to be overexpressed (p<0.01) in primary CRC and metastatic tissue relative to normal colon, with a positive correlation between Nrf2 expression in matched primary and metastatic samples. In vitro experiments in CRC cell lines revealed that Nrf2 siRNA and brusatol, which is known to inhibit Nrf2, decreased viability and sensitised cells to irinotecan toxicity. Furthermore, brusatol effectively abrogated CRC tumour growth in subcutaneously and orthotopically-allografted mice, resulting in an average 8-fold reduction in luminescence at the study end-point (p=0.02). Our results highlight Nrf2 as a promising drug target in the treatment of CRC.
Collapse
Affiliation(s)
- Jonathan P Evans
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Boleslaw K Winiarski
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Paul A Sutton
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Robert P Jones
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lorenzo Ressel
- Department of Veterinary Pathology, Institute of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| | - Carrie A Duckworth
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - D Mark Pritchard
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Vicky L Fretwell
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Elizabeth M Tweedle
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Eithne Costello
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Christopher E Goldring
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Ian M Copple
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - B Kevin Park
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Daniel H Palmer
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom.,Clatterbridge Cancer Centre, Liverpool, United Kingdom
| | - Neil R Kitteringham
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
5
|
Yazdi MH, Faramarzi MA, Nikfar S, Abdollahi M. Comparative safety and efficacy of tyrosine kinase inhibitors (TKIs) in the treatment setting of different types of leukemia, and different types of adenocarcinoma. Biomed Pharmacother 2017; 95:1556-1564. [PMID: 28950655 DOI: 10.1016/j.biopha.2017.09.088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 02/01/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are blockers of tyrosine kinase proteins which are known for the activation of signaling pathways especially in neoplastic cells. TKIs are among targeted anticancer medications that are available in the market. Imatinib was introduced in the late 1990s as the first TKI medicine in oncology, followed by gefitinib, erlotinib, sorafenib, sunitinib, dasatanib and the list of TKIs is being updated nearly every month. To review the safety, efficacy, and current clinical stage of TKIs in different malignancies, particularly leukemia, advanced gastrointestinal and breast cancer, whole literature over the last decade (2006 to 2017) were searched to find all related studies. Criticizing current data indicates that TKIs have shown better clinical outcome in terms of both safety and efficacy compared to conventional therapies. Meanwhile, regarding the results of available clinical trials, the best approach into maximizing the benefits of this novel targeting therapy and also minimizing the undesirable adverse effects, is to evaluate the pharmacogenetic data of patients before allocating these agents in their treatment setting.
Collapse
Affiliation(s)
- Mohammad Hossein Yazdi
- Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Evidence-Based Medicine Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shekoufeh Nikfar
- Evidence-Based Medicine Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Sugai T, Eizuka M, Takahashi Y, Fukagawa T, Habano W, Yamamoto E, Akasaka R, Otuska K, Matsumoto T, Suzuki H. Molecular subtypes of colorectal cancers determined by PCR-based analysis. Cancer Sci 2017; 108:427-434. [PMID: 28083970 PMCID: PMC5378279 DOI: 10.1111/cas.13164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/05/2016] [Accepted: 01/02/2017] [Indexed: 12/15/2022] Open
Abstract
Tumor tissue consists of a heterogeneous cell population. The allelic imbalance (AI) ratio, determined in isolated tumor glands, is a good index of tumor heterogeneity. However, associations of the patterns of AI and microsatellite instability (MSI) development, observed in most cases of colorectal cancer (CRC), with tumor progression have not been reported previously. In this study, we examined whether CRC genetic profiles stratified by a combination of the AI ratio and MSI facilitate categorization of CRC, and whether these genetic profiles are associated with specific molecular alterations in CRC. A crypt isolation method was used to isolate DNA from tumors and normal glands obtained from 147 sporadic CRCs. AI and MSI statuses were determined using PCR‐based microsatellite analysis and stratified based on AI ratio and MSI status. DNA methylation status (high methylation, intermediate methylation and low methylation status and mutations in KRAS,BRAF, and TP53 were examined. In addition, mucin markers were immunostained. Based on this analysis, four subgroups were categorized. Subgroup 1 was characterized by a high MSI status and BRAF mutation; subgroup 2 was closely associated with a high AI ratio, which accumulated during the early phases of colorectal carcinogenesis, and TP53 mutation; subgroup 3 was associated with a low AI ratio, seen during the later phases of colorectal carcinogenesis, and KRAS mutation; and subgroup 4 was defined as a minor subgroup. These results confirmed that classification of distinct molecular profiles provides important insights into colorectal carcinogenesis.
Collapse
Affiliation(s)
- Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Pharmacy, Iwate Medical University, Morioka, Japan
| | - Makoto Eizuka
- Department of Molecular Diagnostic Pathology, School of Pharmacy, Iwate Medical University, Morioka, Japan
| | - Yayoi Takahashi
- Department of Molecular Diagnostic Pathology, School of Pharmacy, Iwate Medical University, Morioka, Japan
| | - Tomoyuki Fukagawa
- Department of Molecular Diagnostic Pathology, School of Pharmacy, Iwate Medical University, Morioka, Japan
| | - Wataru Habano
- Pharmacodynamics and Molecular Genetics, School of Pharmacy, Iwate Medical University, Morioka, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University, Sapporo, Japan
| | - Risaburo Akasaka
- Division of Gastroenterology, Department of Internal Medicine, School of Pharmacy, Iwate Medical University, Morioka, Japan
| | - Kouki Otuska
- Department of Surgery, School of Medicine, School of Pharmacy, Iwate Medical University, Morioka, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology, Department of Internal Medicine, School of Pharmacy, Iwate Medical University, Morioka, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
7
|
Dual Inhibition of MEK and PI3K Pathway in KRAS and BRAF Mutated Colorectal Cancers. Int J Mol Sci 2015; 16:22976-88. [PMID: 26404261 PMCID: PMC4613347 DOI: 10.3390/ijms160922976] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease with multiple underlying causative genetic mutations. Genetic mutations in the phosphatidylinositol-3 kinase (PI3K) and the mitogen activated protein kinase (MAPK) pathways are frequently implicated in CRC. Targeting the downstream substrate MEK in these mutated tumors stands out as a potential target in CRC. Several selective inhibitors of MEK have entered clinical trial evaluation; however, clinical activity with single MEK inhibitors has been rarely observed and acquired resistance seems to be inevitable. Amplification of the driving oncogene KRAS(13D), which increases signaling through the ERK1/2 pathway, upregulation of the noncanonical wingless/calcium signaling pathway (Wnt), and coexisting PIK3CA mutations have all been implicated with resistance against MEK inhibitor therapy in KRAS mutated CRC. The Wnt pathway and amplification of the oncogene have also been associated with resistance to MEK inhibitors in CRCs harboring BRAF mutations. Thus, dual targeted inhibition of MEK and PI3K pathway effectors (mTOR, PI3K, AKT, IGF-1R or PI3K/mTOR inhibitors) presents a potential strategy to overcome resistance to MEK inhibitor therapy. Many clinical trials are underway to evaluate multiple combinations of these pathway inhibitors in solid tumors.
Collapse
|
8
|
|