1
|
Bletz MC, Grant EHC, DiRenzo G. Quantitative support for the benefits of proactive management for wildlife disease control. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2025; 39:e14363. [PMID: 39183637 PMCID: PMC11780199 DOI: 10.1111/cobi.14363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 08/27/2024]
Abstract
Finding effective pathogen mitigation strategies is one of the biggest challenges humans face today. In the context of wildlife, emerging infectious diseases have repeatedly caused widespread host morbidity and population declines of numerous taxa. In areas yet unaffected by a pathogen, a proactive management approach has the potential to minimize or prevent host mortality. However, typically critical information on disease dynamics in a novel host system is lacking, empirical evidence on efficacy of management interventions is limited, and there is a lack of validated predictive models. As such, quantitative support for identifying effective management interventions is largely absent, and the opportunity for proactive management is often missed. We considered the potential invasion of the chytrid fungus, Batrachochytrium salamandrivorans (Bsal), whose expected emergence in North America poses a severe threat to hundreds of salamander species in this global salamander biodiversity hotspot. We developed and parameterized a dynamic multistate occupancy model to forecast host and pathogen occurrence, following expected emergence of the pathogen, and evaluated the response of salamander populations to different management scenarios. Our model forecasted that taking no action is expected to be catastrophic to salamander populations. Proactive action was predicted to maximize host occupancy outcomes relative to wait-and-see reactive management, thus providing quantitative support for proactive management opportunities. The eradication of Bsal was unlikely under all the evaluated management options. Contrary to our expectations, even early pathogen detection had little effect on Bsal or host occupancy outcomes. Our results provide quantitative support that proactive management is the optimal strategy for promoting persistence of disease-threatened salamander populations. Our approach fills a critical gap by defining a framework for evaluating management options prior to pathogen invasion and can thus serve as a template for addressing novel disease threats that jeopardize wildlife and human health.
Collapse
Affiliation(s)
- Molly C. Bletz
- Department of Environmental ConservationUniversity of Massachusetts AmherstAmherstMassachusettsUSA
- U.S. Geological Survey Eastern Ecological Science Center (Patuxent Wildlife Research Center)Turners FallsMassachusettsUSA
- Department of Ecosystem Science and ManagementThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Evan H. Campbell Grant
- U.S. Geological Survey Eastern Ecological Science Center (Patuxent Wildlife Research Center)Turners FallsMassachusettsUSA
| | - Graziella DiRenzo
- U.S. Geological Survey, Massachusetts Cooperative Fish and Wildlife Research UnitUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| |
Collapse
|
2
|
Trumbo DR, Hardy BM, Crockett HJ, Muths E, Forester BR, Cheek RG, Zimmerman SJ, Corey-Rivas S, Bailey LL, Funk WC. Conservation genomics of an endangered montane amphibian reveals low population structure, low genomic diversity and selection pressure from disease. Mol Ecol 2023; 32:6777-6795. [PMID: 37864490 DOI: 10.1111/mec.17175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
Wildlife diseases are a major global threat to biodiversity. Boreal toads (Anaxyrus [Bufo] boreas) are a state-endangered species in the southern Rocky Mountains of Colorado and New Mexico, and a species of concern in Wyoming, largely due to lethal skin infections caused by the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd). We performed conservation and landscape genomic analyses using single nucleotide polymorphisms from double-digest, restriction site-associated DNA sequencing in combination with the development of the first boreal toad (and first North American toad) reference genome to investigate population structure, genomic diversity, landscape connectivity and adaptive divergence. Genomic diversity (π = 0.00034-0.00040) and effective population sizes (Ne = 8.9-38.4) were low, likely due to post-Pleistocene founder effects and Bd-related population crashes over the last three decades. Population structure was also low, likely due to formerly high connectivity among a higher density of geographically proximate populations. Boreal toad gene flow was facilitated by low precipitation, cold minimum temperatures, less tree canopy, low heat load and less urbanization. We found >8X more putatively adaptive loci related to Bd intensity than to all other environmental factors combined, and evidence for genes under selection related to immune response, heart development and regulation and skin function. These data suggest boreal toads in habitats with Bd have experienced stronger selection pressure from disease than from other, broad-scale environmental variations. These findings can be used by managers to conserve and recover the species through actions including reintroduction and supplementation of populations that have declined due to Bd.
Collapse
Affiliation(s)
- D R Trumbo
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - B M Hardy
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - H J Crockett
- Colorado Parks and Wildlife, Fort Collins, Colorado, USA
| | - E Muths
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA
| | - B R Forester
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - R G Cheek
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - S J Zimmerman
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA
| | - S Corey-Rivas
- Department of Biology, New Mexico Highlands University, Las Vegas, New Mexico, USA
| | - L L Bailey
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - W C Funk
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
3
|
Davis CL, Muñoz DJ, Amburgey SM, Dinsmore CR, Teitsworth EW, Miller DAW. Multistate model to estimate sex‐specific dispersal rates and distances for a wetland‐breeding amphibian population. Ecosphere 2023. [DOI: 10.1002/ecs2.4345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Courtney L. Davis
- Department of Ecosystem Science and Management Pennsylvania State University University Park Pennsylvania USA
- Intercollege Graduate Ecology Program, Pennsylvania State University University Park Pennsylvania USA
- Cornell Lab of Ornithology Cornell University Ithaca New York USA
| | - David J. Muñoz
- Department of Ecosystem Science and Management Pennsylvania State University University Park Pennsylvania USA
- Intercollege Graduate Ecology Program, Pennsylvania State University University Park Pennsylvania USA
| | - Staci M. Amburgey
- Washington Cooperative Fish and Wildlife Research Unit, School of Aquatic and Fishery Sciences University of Washington Seattle Washington USA
- Washington Department of Fish and Wildlife Olympia Washington USA
| | - Carli R. Dinsmore
- Department of Ecosystem Science and Management Pennsylvania State University University Park Pennsylvania USA
| | - Eric W. Teitsworth
- Department of Fisheries, Wildlife, and Conservation Biology North Carolina State University Raleigh North Carolina USA
| | - David A. W. Miller
- Department of Ecosystem Science and Management Pennsylvania State University University Park Pennsylvania USA
- Intercollege Graduate Ecology Program, Pennsylvania State University University Park Pennsylvania USA
| |
Collapse
|
4
|
Ditmer MA, Francis CD, Barber JR, Stoner DC, Seymoure BM, Fristrup KM, Carter NH. Assessing the Vulnerabilities of Vertebrate Species to Light and Noise Pollution: Expert Surveys Illuminate the Impacts on Specialist Species. Integr Comp Biol 2021; 61:1202-1215. [PMID: 34272862 DOI: 10.1093/icb/icab091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Global expansion of lighting and noise pollution alters how animals receive and interpret environmental cues. However, we lack a cross-taxon understanding of how animal traits influence species vulnerability to this growing phenomenon. This knowledge is needed to improve the design and implementation of policies that mitigate or reduce sensory pollutants. We present results from an expert knowledge survey that quantified the relative influence of 21 ecological, anatomical, and physiological traits on the vulnerability of terrestrial vertebrates to elevated levels of anthropogenic lighting and noise. We aimed not only to quantify the importance of threats and the relative influence of traits as viewed by sensory and wildlife experts, but to examine knowledge gaps based on the variation in responses. Identifying traits that had less consensus can guide future research for strengthening ecologists' and conservation biologists' understanding of sensory abilities. Our findings, based on 280 responses of expert opinion, highlight the increasing recognition among experts that sensory pollutants are important to consider in management and conservation decisions. Participant responses show mounting threats to species with narrow niches; especially habitat specialists, nocturnal species, and those with the greatest ability to differentiate environmental visual and auditory cues. Our results call attention to the threat specialist species face and provide a generalizable understanding of which species require additional considerations when developing conservation policies and mitigation strategies in a world altered by expanding sensory pollutant footprints. We provide a step-by-step example for translating these results to on-the-ground conservation planning using two species as case studies.
Collapse
Affiliation(s)
- Mark A Ditmer
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109-1382, USA
| | - Clinton D Francis
- Department of Biological Science, California Polytechnic University, San Luis Obispo, CA 93407, USA
| | - Jesse R Barber
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - David C Stoner
- Department of Wildland Resources, Utah State University, Logan, UT 84322, USA
| | - Brett M Seymoure
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO 80523, USA.,Living Earth Collaborative, Washington University in St. Louis, St. Louis, MO 63111, USA
| | - Kurt M Fristrup
- National Park Service, Natural Sounds and Night Skies Division, Fort Collins, CO 80525, USA
| | - Neil H Carter
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109-1382, USA
| |
Collapse
|
5
|
Lammens L, Martel A, Pasmans F. Application of Disinfectants for Environmental Control of a Lethal Amphibian Pathogen. J Fungi (Basel) 2021; 7:jof7060406. [PMID: 34064294 PMCID: PMC8224365 DOI: 10.3390/jof7060406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Chytridiomycosis is an emerging infectious disease threatening amphibian populations worldwide. While environmental disinfection is important in mitigating the disease, successful elimination of Batrachochytrium dendrobatidis (Bd) without excessively harming ecosystems is challenging. We selected peracetic acid (PAA) as the most potent of six commercially available products regarding their ability to inhibit growth of a highly virulent Bd strain. PAA killed Bd after 5 min of exposure to approximately 94.7 mg/L. We examined the toxicity of PAA against three invertebrate species and Discoglossus pictus tadpoles. 93% of invertebrates, but none of the tadpoles survived 5 min of exposure to 94.7 mg/L. Tadpoles showed no adverse effects after 5 min exposure to concentrations of approximately 37.9 mg/L or lower. Addition of PAA to aquatic microcosms decreased pH, while dissolved oxygen (DO) initially increased. Degradation of PAA reversed the pH drop, but caused a massive drop in DO, which could be remedied by aeration. As proof of concept, microcosms that were aerated and treated with 94.7 mg/L PAA sustained survival of tadpoles starting 48 h after treatment. Disinfecting aquatic environments using PAA could contribute to mitigating chytridiomycosis, while preserving at least some invertebrate diversity, but requires temporary removal of resident amphibians.
Collapse
|
6
|
Hardy BM, Pope KL, Latch EK. Genomic signatures of demographic declines in an imperiled amphibian inform conservation action. Anim Conserv 2021. [DOI: 10.1111/acv.12695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- B. M. Hardy
- Behavioral and Molecular Ecology Research Group Department of Biological Sciences University of Wisconsin‐Milwaukee Milwaukee WI USA
- Graduate Degree Program in Ecology Colorado State University Fort Collins CO USA
| | - K. L. Pope
- United States Forest Service Pacific Southwest Research Station Arcata CA USA
| | - E. K. Latch
- Behavioral and Molecular Ecology Research Group Department of Biological Sciences University of Wisconsin‐Milwaukee Milwaukee WI USA
| |
Collapse
|
7
|
Valenzuela-Sánchez A, Wilber MQ, Canessa S, Bacigalupe LD, Muths E, Schmidt BR, Cunningham AA, Ozgul A, Johnson PTJ, Cayuela H. Why disease ecology needs life-history theory: a host perspective. Ecol Lett 2021; 24:876-890. [PMID: 33492776 DOI: 10.1111/ele.13681] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022]
Abstract
When facing an emerging infectious disease of conservation concern, we often have little information on the nature of the host-parasite interaction to inform management decisions. However, it is becoming increasingly clear that the life-history strategies of host species can be predictive of individual- and population-level responses to infectious disease, even without detailed knowledge on the specifics of the host-parasite interaction. Here, we argue that a deeper integration of life-history theory into disease ecology is timely and necessary to improve our capacity to understand, predict and mitigate the impact of endemic and emerging infectious diseases in wild populations. Using wild vertebrates as an example, we show that host life-history characteristics influence host responses to parasitism at different levels of organisation, from individuals to communities. We also highlight knowledge gaps and future directions for the study of life-history and host responses to parasitism. We conclude by illustrating how this theoretical insight can inform the monitoring and control of infectious diseases in wildlife.
Collapse
Affiliation(s)
- Andrés Valenzuela-Sánchez
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile.,ONG Ranita de Darwin, Valdivia and Santiago, Chile.,Centro de Investigación para la Sustentabilidad, Universidad Andrés Bello, Santiago, Chile
| | - Mark Q Wilber
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.,Center for Wildlife Health, Department of Forestry, Wildlife and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - Stefano Canessa
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Leonardo D Bacigalupe
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Erin Muths
- U.S. Geological Survey, 2150 Centre Avenue Bldg C, Fort Collins, Colorado, 80526, USA
| | - Benedikt R Schmidt
- Institut für Evolutionsbiologie und Umweltwissenschaften, Universität Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.,Info Fauna Karch, UniMail, Bâtiment G, Bellevaux 51, 2000, Neuchâtel, Switzerland
| | - Andrew A Cunningham
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Arpat Ozgul
- Institut für Evolutionsbiologie und Umweltwissenschaften, Universität Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Pieter T J Johnson
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
| | - Hugo Cayuela
- IBIS, Department of Biology, University Laval, Pavillon Charles-Eugène-Marchand, Avenue de la Médecine, Quebec City, Canada.,Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Russell RE, DiRenzo GV, Szymanski JA, Alger KE, Grant EHC. Principles and Mechanisms of Wildlife Population Persistence in the Face of Disease. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.569016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
9
|
Muths E, Hossack B, Campbell Grant E, Pilliod D, Mosher B. Effects of Snowpack, Temperature, and Disease on Demography in a Wild Population of Amphibians. HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- E. Muths
- US Geological Survey, Fort Collins Science Center, 2150 Centre Avenue, Building C, Fort Collins, CO 80526, USA
| | - B.R. Hossack
- US Geological Survey, Northern Rocky Mountain Science Center, Wildlife Biology Program, University of Montana, Missoula, MT 59812, USA
| | - E.H. Campbell Grant
- US Geological Survey, Patuxent Wildlife Research Center, SO Conte Anadromous Fish Laboratory, One Migratory Way, Turners Falls, MA 01376, USA
| | - D.S. Pilliod
- US Geological Survey, Forest and Rangeland Ecosystem Science Center, 970 Lusk Street, Boise, ID 83706, USA
| | - B.A. Mosher
- University of Vermont, Rubenstein School of Environment and Natural Resources, Aiken Center, 81 Carrigan Drive, Burlington, VT 05405, USA
| |
Collapse
|
10
|
Crockett JG, Bailey LL, Muths E. Highly variable rates of survival to metamorphosis in wild boreal toads (
Anaxyrus boreas boreas
). POPUL ECOL 2020. [DOI: 10.1002/1438-390x.12044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- John G. Crockett
- Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins Colorado
| | - Larissa L. Bailey
- Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins Colorado
| | - Erin Muths
- United States Geological Survey Fort Collins Science Center Fort Collins Colorado
| |
Collapse
|
11
|
Canessa S, Taylor G, Clarke RH, Ingwersen D, Vandersteen J, Ewen JG. Risk aversion and uncertainty create a conundrum for planning recovery of a critically endangered species. CONSERVATION SCIENCE AND PRACTICE 2020. [DOI: 10.1111/csp2.138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Stefano Canessa
- Wildlife Health Ghent, Faculty of Veterinary MedicineGhent University Merelbeke Belgium
- Institute of ZoologyZoological Society of London London UK
| | - Gemma Taylor
- Institute of ZoologyZoological Society of London London UK
- Department of Genetics, Evolution & EnvironmentCentre for Biodiversity & Environment Research, University College London London UK
| | - Rohan H. Clarke
- School of Biological SciencesMonash University Melbourne Victoria Australia
| | - Dean Ingwersen
- BirdLife Australia, Conservation Department Melbourne Victoria Australia
| | - James Vandersteen
- School of Biological SciencesMonash University Melbourne Victoria Australia
| | - John G. Ewen
- Institute of ZoologyZoological Society of London London UK
| |
Collapse
|
12
|
Canessa S, Spitzen‐van der Sluijs A, Stark T, Allen BE, Bishop PJ, Bletz M, Briggs CJ, Daversa DR, Gray MJ, Griffiths RA, Harris RN, Harrison XA, Hoverman JT, Jervis P, Muths E, Olson DH, Price SJ, Richards‐Zawacki CL, Robert J, Rosa GM, Scheele BC, Schmidt BR, Garner TWJ. Conservation decisions under pressure: Lessons from an exercise in rapid response to wildlife disease. CONSERVATION SCIENCE AND PRACTICE 2019. [DOI: 10.1111/csp2.141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Stefano Canessa
- Wildlife Health Ghent, Faculty of Veterinary MedicineGhent University Merelbeke Belgium
| | | | - Tariq Stark
- Reptile, Amphibian & Fish Conservation Netherlands (RAVON) Nijmegen The Netherlands
| | - Bryony E. Allen
- Institute of ZoologyZoological Society of London, Regents Park London UK
- Institute for Integrative BiologyUniversity of Liverpool Liverpool UK
| | - Phillip J. Bishop
- Department of ZoologyUniversity of Otago Dunedin New Zealand
- Amphibian Survival Alliance London UK
| | - Molly Bletz
- Biology DepartmentUniversity of Massachusetts Boston Massachusetts
| | - Cheryl J. Briggs
- Department of Ecology, Evolution and Marine BiologyUniversity of California Santa Barbara California
| | - David R. Daversa
- Institute of ZoologyZoological Society of London, Regents Park London UK
- Institute for Integrative BiologyUniversity of Liverpool Liverpool UK
| | - Matthew J. Gray
- Center for Wildlife HealthUniversity of Tennessee Institute of Agriculture Knoxville Tennessee
| | - Richard A. Griffiths
- Durrell Institute of Conservation and Ecology, School of Anthropology and ConservationUniversity of Kent Kent UK
| | - Reid N. Harris
- Amphibian Survival Alliance London UK
- Department of BiologyJames Madison University Harrisonburg Virginia
| | | | - Jason T. Hoverman
- Department of Forestry and Natural ResourcesPurdue University West Lafayette Indiana
| | - Phillip Jervis
- Institute of ZoologyZoological Society of London, Regents Park London UK
- Faculty of Medicine, School of Public HealthImperial College London UK
| | - Erin Muths
- United States Geological Survey Fort Collins Colorado
| | - Deanna H. Olson
- Pacific Northwest Research Station, US Forest Service Corvallis Oregon
| | | | | | - Jacques Robert
- Department of Microbiology & ImmunologyUniversity of Rochester Rochester New York
| | - Gonçalo M. Rosa
- Institute of ZoologyZoological Society of London, Regents Park London UK
- Centre for Ecology, Evolution and Environmental Changes (CE3C), Faculdade de Ciências da Universidade de Lisboa Lisbon Portugal
| | - Ben C. Scheele
- Fenner School of Environment and SocietyThe Australian National University Canberra Australian Capital Territory Australia
| | - Benedikt R. Schmidt
- Institut für Evolutionsbiologie und Umweltwissenschaften, Universität Zürich Zürich Switzerland
- Info Fauna Karch Neuchâtel Switzerland
| | | |
Collapse
|
13
|
Voorhies KJ, Szymanski J, Nail KR, Fidino M. A Method to Project Future Impacts From Threats and Conservation on the Probability of Extinction for North American Migratory Monarch (Danaus plexippus) Populations. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Endemic Infection of Batrachochytrium dendrobatidis in Costa Rica: Implications for Amphibian Conservation at Regional and Species Level. DIVERSITY 2019. [DOI: 10.3390/d11080129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Batrachochytrium dendrobatidis (Bd) has been associated with the severe declines and extinctions of amphibians in Costa Rica that primarily occurred during the 1980s and 1990s. However, the current impact of Bd infection on amphibian species in Costa Rica is unknown. We aimed to update the list of amphibian species in Costa Rica and evaluate the prevalence and infection intensity of Bd infection across the country to aid in the development of effective conservation strategies for amphibians. We reviewed taxonomic lists and included new species descriptions and records for a total of 215 amphibian species in Costa Rica. We also sampled for Bd at nine localities from 2015–2018 and combined these data with additional Bd occurrence data from multiple studies conducted in amphibian communities across Costa Rica from 2005–2018. With this combined dataset, we found that Bd was common (overall infection rate of 23%) across regions and elevations, but infection intensity was below theoretical thresholds associated with mortality. Bd was also more prevalent in Caribbean lowlands and in terrestrial amphibians with an aquatic larval stage; meanwhile, infection load was the highest in direct-developing species (forest and stream-dwellers). Our findings can be used to prioritize regions and taxonomic groups for conservation strategies.
Collapse
|
15
|
Determining Presence of Rare Amphibian Species: Testing and Combining Novel Survey Methods. J HERPETOL 2019. [DOI: 10.1670/18-122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
ESTIMATING OCCURRENCE, PREVALENCE, AND DETECTION OF AMPHIBIAN PATHOGENS: INSIGHTS FROM OCCUPANCY MODELS. J Wildl Dis 2018; 55:563-575. [PMID: 30566380 DOI: 10.7589/2018-02-042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Understanding the distribution of pathogens across landscapes and their prevalence within host populations is a common aim of wildlife managers. Despite the need for unbiased estimates of pathogen occurrence and prevalence for planning effective management interventions, many researchers fail to account for imperfect pathogen detection. Instead raw data are often reported, which may lead to ineffective, or even detrimental, management actions. We illustrate the utility of occupancy models for generating unbiased estimates of disease parameters by 1) providing a written tutorial describing how to fit these models in Program PRESENCE and 2) presenting a case study with the pathogen ranavirus. We analyzed ranavirus detection data from a wildlife refuge (Maryland, US) using occupancy modeling, which yields unbiased estimates of pathogen occurrence and prevalence. We found ranavirus prevalence was underestimated by up to 30% if imperfect pathogen detection was ignored. The unbiased estimate of ranavirus prevalence in larval wood frog (Lithobates sylvaticus; 0.73) populations was higher than in larval spotted salamander (Ambystoma maculatum; 0.56) populations. In addition, the odds of detecting ranavirus in tail samples were 6.7 times higher than detecting ranavirus in liver samples. Therefore, tail samples presented a nonlethal sampling method for ranavirus that may be able to detect early (nonsystemic) infections.
Collapse
|
17
|
Mosher BA, Huyvaert KP, Bailey LL. Beyond the swab: ecosystem sampling to understand the persistence of an amphibian pathogen. Oecologia 2018; 188:319-330. [PMID: 29860635 DOI: 10.1007/s00442-018-4167-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 05/12/2018] [Indexed: 10/14/2022]
Abstract
Understanding the ecosystem-level persistence of pathogens is essential for predicting and measuring host-pathogen dynamics. However, this process is often masked, in part due to a reliance on host-based pathogen detection methods. The amphibian pathogens Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal) are pathogens of global conservation concern. Despite having free-living life stages, little is known about the distribution and persistence of these pathogens outside of their amphibian hosts. We combine historic amphibian monitoring data with contemporary host- and environment-based pathogen detection data to obtain estimates of Bd occurrence independent of amphibian host distributions. We also evaluate differences in filter- and swab-based detection probability and assess inferential differences arising from using different decision criteria used to classify samples as positive or negative. Water filtration-based detection probabilities were lower than those from swabs but were > 10%, and swab-based detection probabilities varied seasonally, declining in the early fall. The decision criterion used to classify samples as positive or negative was important; using a more liberal criterion yielded higher estimates of Bd occurrence than when a conservative criterion was used. Different covariates were important when using the liberal or conservative criterion in modeling Bd detection. We found evidence of long-term Bd persistence for several years after an amphibian host species of conservation concern, the boreal toad (Anaxyrus boreas boreas), was last detected. Our work provides evidence of long-term Bd persistence in the ecosystem, and underscores the importance of environmental samples for understanding and mitigating disease-related threats to amphibian biodiversity.
Collapse
Affiliation(s)
- Brittany A Mosher
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Kathryn P Huyvaert
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Larissa L Bailey
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|