1
|
Wang K, Smith SH, Iijima H, Hettinger ZR, Mallepally A, Shroff SG, Ambrosio F. Bioengineered 3D Skeletal Muscle Model Reveals Complement 4b as a Cell-Autonomous Mechanism of Impaired Regeneration with Aging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207443. [PMID: 36650030 DOI: 10.1002/adma.202207443] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/11/2022] [Indexed: 05/17/2023]
Abstract
A mechanistic understanding of cell-autonomous skeletal muscle changes after injury can lead to novel interventions to improve functional recovery in an aged population. However, major knowledge gaps persist owing to limitations of traditional biological aging models. 2D cell culture represents an artificial environment, while aging mammalian models are contaminated by influences from non-muscle cells and other organs. Here, a 3D muscle aging system is created to overcome the limitations of these traditional platforms. It is shown that old muscle constructs (OMC) manifest a sarcopenic phenotype, as evidenced by hypotrophic myotubes, reduced contractile function, and decreased regenerative capacity compared to young muscle constructs. OMC also phenocopy the regenerative responses of aged muscle to two interventions, pharmacological and biological. Interrogation of muscle cell-specific mechanisms that contribute to impaired regeneration over time further reveals that an aging-induced increase of complement component 4b (C4b) delays muscle progenitor cell amplification and impairs functional recovery. However, administration of complement factor I, a C4b inactivator, improves muscle regeneration in vitro and in vivo, indicating that C4b inhibition may be a novel approach to enhance aged muscle repair. Collectively, the model herein exhibits capabilities to study cell-autonomous changes in skeletal muscle during aging, regeneration, and intervention.
Collapse
Affiliation(s)
- Kai Wang
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Charlestown, MA, 02129, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, 02115, USA
| | - Stephen H Smith
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Hirotaka Iijima
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Zachary R Hettinger
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Charlestown, MA, 02129, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, 02115, USA
- Department of Medicine, Division of Geriatric Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Adarsh Mallepally
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Sanjeev G Shroff
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Fabrisia Ambrosio
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Charlestown, MA, 02129, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, 02115, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
2
|
Abstract
Cellular senescence has become a subject of great interest within the ageing research field over the last 60 years, from the first observation in vitro by Leonard Hayflick and Paul Moorhead in 1961, to novel findings of phenotypic sub-types and senescence-like phenotype in post-mitotic cells. It has essential roles in wound healing, tumour suppression and the very first stages of human development, while causing widespread damage and dysfunction with age leading to a raft of age-related diseases. This chapter discusses these roles and their interlinking pathways, and how the observed accumulation of senescent cells with age has initiated a whole new field of ageing research, covering pathologies in the heart, liver, kidneys, muscles, brain and bone. This chapter will also examine how senescent cell accumulation presents in these different tissues, along with their roles in disease development. Finally, there is much focus on developing treatments for senescent cell accumulation in advanced age as a method of alleviating age-related disease. We will discuss here the various senolytic and senostatic treatment approaches and their successes and limitations, and the innovative new strategies being developed to address the differing effects of cellular senescence in ageing and disease.
Collapse
Affiliation(s)
- Rebecca Reed
- Biosciences Institute, Faculty of Medical Sciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Satomi Miwa
- Biosciences Institute, Faculty of Medical Sciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
3
|
Sanchez MM, Bagdasarian IA, Darch W, Morgan JT. Organotypic cultures as aging associated disease models. Aging (Albany NY) 2022; 14:9338-9383. [PMID: 36435511 PMCID: PMC9740367 DOI: 10.18632/aging.204361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/21/2022] [Indexed: 11/24/2022]
Abstract
Aging remains a primary risk factor for a host of diseases, including leading causes of death. Aging and associated diseases are inherently multifactorial, with numerous contributing factors and phenotypes at the molecular, cellular, tissue, and organismal scales. Despite the complexity of aging phenomena, models currently used in aging research possess limitations. Frequently used in vivo models often have important physiological differences, age at different rates, or are genetically engineered to match late disease phenotypes rather than early causes. Conversely, routinely used in vitro models lack the complex tissue-scale and systemic cues that are disrupted in aging. To fill in gaps between in vivo and traditional in vitro models, researchers have increasingly been turning to organotypic models, which provide increased physiological relevance with the accessibility and control of in vitro context. While powerful tools, the development of these models is a field of its own, and many aging researchers may be unaware of recent progress in organotypic models, or hesitant to include these models in their own work. In this review, we describe recent progress in tissue engineering applied to organotypic models, highlighting examples explicitly linked to aging and associated disease, as well as examples of models that are relevant to aging. We specifically highlight progress made in skin, gut, and skeletal muscle, and describe how recently demonstrated models have been used for aging studies or similar phenotypes. Throughout, this review emphasizes the accessibility of these models and aims to provide a resource for researchers seeking to leverage these powerful tools.
Collapse
Affiliation(s)
- Martina M. Sanchez
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | | | - William Darch
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Joshua T. Morgan
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| |
Collapse
|
4
|
Parvatiyar MS, Qaisar R. Editorial: Skeletal muscle in age-related diseases: From molecular pathogenesis to potential interventions. Front Physiol 2022; 13:1056479. [PMID: 36324312 PMCID: PMC9619087 DOI: 10.3389/fphys.2022.1056479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 09/05/2023] Open
Affiliation(s)
- Michelle S. Parvatiyar
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, United States
| | - Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
5
|
Larson KF, Malik A, Brozovich FV. Aging and Heart Failure with Preserved Ejection Fraction. Compr Physiol 2022; 12:3813-3822. [PMID: 35950652 DOI: 10.1002/cphy.c210035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Heart failure is a clinical syndrome characterized by the inability of the cardiovascular system to provide adequate cardiac output at normal filling pressures. This results in a clinical syndrome characterized by dyspnea, edema, and decreased exertional tolerance. Heart failure with preserved ejection fraction (HFpEF) is an increasingly common disease, and the incidence of HFpEF increases with age. There are a variety of factors which contribute to the development of HFpEF, including the presence of hypertension, diabetes, obesity, and other pro-inflammatory states. These comorbid conditions result in changes at the biochemical and cell signaling level which ultimately lead to a disease with a great deal of phenotypic heterogeneity. In general, the physiologic dysfunction of HFpEF is characterized by vascular stiffness, increased cardiac filling pressures, pulmonary hypertension, and impaired volume management. The normal and abnormal processes associated with aging serve as an accelerant in this process, resulting in the hypothesis that HFpEF represents a form of presbycardia. In this article, we aim to review the processes importance of aging in the development of HFpEF by examining the disease and its causes from the biochemical to physiologic level. © 2022 American Physiological Society. Compr Physiol 12: 1-10, 2022.
Collapse
Affiliation(s)
- Kathryn F Larson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Awais Malik
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Frank V Brozovich
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
From cyclins to CDKIs: Cell cycle regulation of skeletal muscle stem cell quiescence and activation. Exp Cell Res 2022; 420:113275. [PMID: 35931143 DOI: 10.1016/j.yexcr.2022.113275] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/12/2022] [Accepted: 07/03/2022] [Indexed: 11/22/2022]
Abstract
After extensive proliferation during development, the adult skeletal muscle cells remain outside the cell cycle, either as post-mitotic myofibers or as quiescent muscle stem cells (MuSCs). Despite its terminally differentiated state, adult skeletal muscle has a remarkable regeneration potential, driven by MuSCs. Upon injury, MuSC quiescence is reversed to support tissue growth and repair and it is re-established after the completion of muscle regeneration. The distinct cell cycle states and transitions observed in the different myogenic populations are orchestrated by elements of the cell cycle machinery. This consists of i) complexes of cyclins and Cyclin-Dependent Kinases (CDKs) that ensure cell cycle progression and ii) their negative regulators, the Cyclin-Dependent Kinase Inhibitors (CDKIs). In this review we discuss the roles of these factors in developmental and adult myogenesis, with a focus on CDKIs that have emerging roles in stem cell functions.
Collapse
|
7
|
Xu Q, Li J, Wu Y, Zhou W, Xu Z. Colorectal Cancer Chemotherapy Drug Bevacizumab May Induce Muscle Atrophy Through CDKN1A and TIMP4. Front Oncol 2022; 12:897495. [PMID: 35847900 PMCID: PMC9283830 DOI: 10.3389/fonc.2022.897495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
The muscle in the organism has the function of regulating metabolism. Long-term muscle inactivity or the occurrence of chronic inflammatory diseases are easy to induce muscle atrophy. Bevacizumab is an antiangiogenic drug that prevents the formation of neovascularization by inhibiting the activation of VEGF signaling pathway. It is used in the first-line treatment of many cancers in clinic. Studies have shown that the use of bevacizumab in the treatment of tumors can cause muscle mass loss and may induce muscle atrophy. Based on bioinformatics analysis, this study sought the relationship and influence mechanism between bevacizumab and muscle atrophy. The differences of gene and sample expression between bevacizumab treated group and control group were studied by RNA sequencing. WGCNA is used to find gene modules related to bevacizumab administration and explore biological functions through metascape. Differential analysis was used to analyze the difference of gene expression between the administration group and the control group in different muscle tissues. The key genes timp4 and CDKN1A were obtained through Venn diagram, and then GSEA was used to explore their biological functions in RNA sequencing data and geo chip data. This study studied the role of bevacizumab in muscle through the above methods, preliminarily determined that timp4 and CDKN1A may be related to muscle atrophy, and further explored their functional mechanism in bevacizumab myotoxicity.
Collapse
|
8
|
The Critical Role of Oxidative Stress in Sarcopenic Obesity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4493817. [PMID: 34676021 PMCID: PMC8526202 DOI: 10.1155/2021/4493817] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022]
Abstract
Sarcopenic obesity (SO) is a combination of obesity and sarcopenia that primarily develops in older people. Patients with SO have high fat mass, low muscle mass, low muscle strength, and low physical function. SO relates to metabolic syndrome and an increased risk of morbimortality. The prevalence of SO varies because of lacking consensus criteria regarding its definition and the methodological difficulty in diagnosing sarcopenia and obesity. SO includes systemic alterations such as insulin resistance, increased proinflammatory cytokines, age-associated hormonal changes, and decreased physical activity at pathophysiological levels. Interestingly, these alterations are influenced by oxidative stress, which is a critical factor in altering muscle function and the generation of metabolic dysfunctions. Thus, oxidative stress in SO alters muscle mass, the signaling pathways that control it, satellite cell functions, and mitochondrial and endoplasmic reticulum activities. Considering this background, our objectives in this review are to describe SO as a highly prevalent condition and look at the role of oxidative stress in SO pathophysiology.
Collapse
|
9
|
Joseph J, Doles JD. Disease-associated metabolic alterations that impact satellite cells and muscle regeneration: perspectives and therapeutic outlook. Nutr Metab (Lond) 2021; 18:33. [PMID: 33766031 PMCID: PMC7992337 DOI: 10.1186/s12986-021-00565-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/15/2021] [Indexed: 11/10/2022] Open
Abstract
Many chronic disease patients experience a concurrent loss of lean muscle mass. Skeletal muscle is a dynamic tissue maintained by continuous protein turnover and progenitor cell activity. Muscle stem cells, or satellite cells, differentiate (by a process called myogenesis) and fuse to repair and regenerate muscle. During myogenesis, satellite cells undergo extensive metabolic alterations; therefore, pathologies characterized by metabolic derangements have the potential to impair myogenesis, and consequently exacerbate skeletal muscle wasting. How disease-associated metabolic disruptions in satellite cells might be contributing to wasting is an important question that is largely neglected. With this review we highlight the impact of various metabolic disruptions in disease on myogenesis and skeletal muscle regeneration. We also discuss metabolic therapies with the potential to improve myogenesis, skeletal muscle regeneration, and ultimately muscle mass.
Collapse
Affiliation(s)
- Josiane Joseph
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, USA
| | - Jason D Doles
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
10
|
Nutrition and microRNAs: Novel Insights to Fight Sarcopenia. Antioxidants (Basel) 2020; 9:antiox9100951. [PMID: 33023202 PMCID: PMC7601022 DOI: 10.3390/antiox9100951] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Sarcopenia is a progressive age-related loss of skeletal muscle mass and strength, which may result in increased physical frailty and a higher risk of adverse events. Low-grade systemic inflammation, loss of muscle protein homeostasis, mitochondrial dysfunction, and reduced number and function of satellite cells seem to be the key points for the induction of muscle wasting, contributing to the pathophysiological mechanisms of sarcopenia. While a range of genetic, hormonal, and environmental factors has been reported to contribute to the onset of sarcopenia, dietary interventions targeting protein or antioxidant intake may have a positive effect in increasing muscle mass and strength, regulating protein homeostasis, oxidative reaction, and cell autophagy, thus providing a cellular lifespan extension. MicroRNAs (miRNAs) are endogenous small non-coding RNAs, which control gene expression in different tissues. In skeletal muscle, a range of miRNAs, named myomiRNAs, are involved in many physiological processes, such as growth, development, and maintenance of muscle mass and function. This review aims to present and to discuss some of the most relevant molecular mechanisms related to the pathophysiological effect of sarcopenia. Besides, we explored the role of nutrition as a possible way to counteract the loss of muscle mass and function associated with ageing, with special attention paid to nutrient-dependent miRNAs regulation. This review will provide important information to better understand sarcopenia and, thus, to facilitate research and therapeutic strategies to counteract the pathophysiological effect of ageing.
Collapse
|
11
|
Turner DC, Gorski PP, Maasar MF, Seaborne RA, Baumert P, Brown AD, Kitchen MO, Erskine RM, Dos-Remedios I, Voisin S, Eynon N, Sultanov RI, Borisov OV, Larin AK, Semenova EA, Popov DV, Generozov EV, Stewart CE, Drust B, Owens DJ, Ahmetov II, Sharples AP. DNA methylation across the genome in aged human skeletal muscle tissue and muscle-derived cells: the role of HOX genes and physical activity. Sci Rep 2020; 10:15360. [PMID: 32958812 PMCID: PMC7506549 DOI: 10.1038/s41598-020-72730-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle tissue demonstrates global hypermethylation with age. However, methylome changes across the time-course of differentiation in aged human muscle derived cells, and larger coverage arrays in aged muscle tissue have not been undertaken. Using 850K DNA methylation arrays we compared the methylomes of young (27 ± 4.4 years) and aged (83 ± 4 years) human skeletal muscle and that of young/aged heterogenous muscle-derived human primary cells (HDMCs) over several time points of differentiation (0, 72 h, 7, 10 days). Aged muscle tissue was hypermethylated compared with young tissue, enriched for; pathways-in-cancer (including; focal adhesion, MAPK signaling, PI3K-Akt-mTOR signaling, p53 signaling, Jak-STAT signaling, TGF-beta and notch signaling), rap1-signaling, axon-guidance and hippo-signalling. Aged cells also demonstrated a hypermethylated profile in pathways; axon-guidance, adherens-junction and calcium-signaling, particularly at later timepoints of myotube formation, corresponding with reduced morphological differentiation and reductions in MyoD/Myogenin gene expression compared with young cells. While young cells showed little alterations in DNA methylation during differentiation, aged cells demonstrated extensive and significantly altered DNA methylation, particularly at 7 days of differentiation and most notably in focal adhesion and PI3K-AKT signalling pathways. While the methylomes were vastly different between muscle tissue and HDMCs, we identified a small number of CpG sites showing a hypermethylated state with age, in both muscle tissue and cells on genes KIF15, DYRK2, FHL2, MRPS33, ABCA17P. Most notably, differential methylation analysis of chromosomal regions identified three locations containing enrichment of 6–8 CpGs in the HOX family of genes altered with age. With HOXD10, HOXD9, HOXD8, HOXA3, HOXC9, HOXB1, HOXB3, HOXC-AS2 and HOXC10 all hypermethylated in aged tissue. In aged cells the same HOX genes (and additionally HOXC-AS3) displayed the most variable methylation at 7 days of differentiation versus young cells, with HOXD8, HOXC9, HOXB1 and HOXC-AS3 hypermethylated and HOXC10 and HOXC-AS2 hypomethylated. We also determined that there was an inverse relationship between DNA methylation and gene expression for HOXB1, HOXA3 and HOXC-AS3. Finally, increased physical activity in young adults was associated with oppositely regulating HOXB1 and HOXA3 methylation compared with age. Overall, we demonstrate that a considerable number of HOX genes are differentially epigenetically regulated in aged human skeletal muscle and HDMCs and increased physical activity may help prevent age-related epigenetic changes in these HOX genes.
Collapse
Affiliation(s)
- D C Turner
- Institute for Physical Performance, Norwegian School of Sport Sciences (NiH), Oslo, Norway.,Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Institute for Science and Technology in Medicine (ISTM), School of Pharmacy & Bioengineering, Keele University, Staffordshire, UK
| | - P P Gorski
- Institute for Physical Performance, Norwegian School of Sport Sciences (NiH), Oslo, Norway.,Institute for Science and Technology in Medicine (ISTM), School of Pharmacy & Bioengineering, Keele University, Staffordshire, UK
| | - M F Maasar
- Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - R A Seaborne
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Institute for Science and Technology in Medicine (ISTM), School of Pharmacy & Bioengineering, Keele University, Staffordshire, UK.,Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - P Baumert
- Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Exercise Biology Group, Faculty of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - A D Brown
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - M O Kitchen
- Institute for Science and Technology in Medicine (ISTM), School of Pharmacy & Bioengineering, Keele University, Staffordshire, UK
| | - R M Erskine
- Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Institute of Sport, Exercise and Health, University College London, London, UK
| | - I Dos-Remedios
- Orthopedics Department, University Hospitals of the North Midlands, Keele University, Staffordshire, UK
| | - S Voisin
- Institute for Health and Sport (iHeS), Victoria University, Footscray, VIC, Australia
| | - N Eynon
- Institute for Health and Sport (iHeS), Victoria University, Footscray, VIC, Australia
| | - R I Sultanov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - O V Borisov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.,Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany
| | - A K Larin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - E A Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - D V Popov
- Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - E V Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - C E Stewart
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - B Drust
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - D J Owens
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - I I Ahmetov
- Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK. .,Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia. .,Department of Physical Education, Plekhanov Russian University of Economics, Moscow, Russia.
| | - A P Sharples
- Institute for Physical Performance, Norwegian School of Sport Sciences (NiH), Oslo, Norway. .,Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK. .,Institute for Science and Technology in Medicine (ISTM), School of Pharmacy & Bioengineering, Keele University, Staffordshire, UK.
| |
Collapse
|
12
|
Abstract
The prevalence of obesity in combination with sarcopenia (the age-related loss of muscle mass and strength or physical function) is increasing in adults aged 65 years and older. A major subset of adults over the age of 65 is now classified as having sarcopenic obesity, a high-risk geriatric syndrome predominantly observed in an ageing population that is at risk of synergistic complications from both sarcopenia and obesity. This Review discusses pathways and mechanisms leading to muscle impairment in older adults with obesity. We explore sex-specific hormonal changes, inflammatory pathways and myocellular mechanisms leading to the development of sarcopenic obesity. We discuss the evolution, controversies and challenges in defining sarcopenic obesity and present current body composition modalities used to assess this condition. Epidemiological surveys form the basis of defining its prevalence and consequences beyond comorbidity and mortality. Current treatment strategies, and the evidence supporting them, are outlined, with a focus on calorie restriction, protein supplementation and aerobic and resistance exercises. We also describe weight loss-induced complications in patients with sarcopenic obesity that are relevant to clinical management. Finally, we review novel and potential future therapies including testosterone, selective androgen receptor modulators, myostatin inhibitors, ghrelin analogues, vitamin K and mesenchymal stem cell therapy.
Collapse
Affiliation(s)
- John A Batsis
- Sections of General Internal Medicine and Weight and Wellness, and the Dartmouth Centers for Health and Aging, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
- Geisel School of Medicine at Dartmouth, The Dartmouth Institute for Health Policy and Clinical Practice, The Health Promotion Research Center and the Norris Cotton Cancer Center, Dartmouth College, Hanover, NH, USA.
| | - Dennis T Villareal
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Diseases, Michael E DeBakey VA Medical Center, Houston, TX, USA
| |
Collapse
|
13
|
Gatta L, Vitiello L, Gorini S, Chiandotto S, Costelli P, Giammarioli AM, Malorni W, Rosano G, Ferraro E. Modulating the metabolism by trimetazidine enhances myoblast differentiation and promotes myogenesis in cachectic tumor-bearing c26 mice. Oncotarget 2017; 8:113938-113956. [PMID: 29371959 PMCID: PMC5768376 DOI: 10.18632/oncotarget.23044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 11/28/2017] [Indexed: 12/28/2022] Open
Abstract
Trimetazidine (TMZ) is a metabolic reprogramming agent able to partially inhibit mitochondrial free fatty acid β-oxidation while enhancing glucose oxidation. Here we have found that the metabolic shift driven by TMZ enhances the myogenic potential of skeletal muscle progenitor cells leading to MyoD, Myogenin, Desmin and the slow isoforms of troponin C and I over-expression. Moreover, similarly to exercise, TMZ stimulates the phosphorylation of the AMP-activated protein kinase (AMPK) and up-regulates the peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1α), both of which are known to enhance the mitochondrial biogenesis necessary for myoblast differentiation. TMZ also induces autophagy which is required during myoblast differentiation and promotes myoblast alignment which allows cell fusion and myofiber formation. Finally, we found that intraperitoneally administered TMZ (5mg/kg) is able to stimulate myogenesis in vivo both in a mice model of cancer cachexia (C26 mice) and upon cardiotoxin damage. Collectively, our work demonstrates that TMZ enhances myoblast differentiation and promotes myogenesis, which might contribute recovering stem cell blunted regenerative capacity and counteracting muscle wasting, thanks to the formation of new myofibers; TMZ is already in use in humans as an anti-anginal drug and its repositioning might impact significantly on aging and regeneration-impaired disorders, including cancer cachexia, as well as have implications in regenerative medicine.
Collapse
Affiliation(s)
- Lucia Gatta
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Rome, Italy
| | - Laura Vitiello
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Rome, Italy
| | - Stefania Gorini
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Rome, Italy
| | - Sergio Chiandotto
- Department of Molecular and Clinical Medicine (DMCM), C/o Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Rome, Italy
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Interuniversity Institute of Myology-IIM, Chieti, Italy
| | - Anna Maria Giammarioli
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanita, Rome, Italy
| | - Walter Malorni
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanita, Rome, Italy
| | - Giuseppe Rosano
- Cardiovascular and Cell Sciences Institute, St George's University of London, Cranmer Terrace, London, UK
| | - Elisabetta Ferraro
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Rome, Italy
| |
Collapse
|
14
|
Hardee JP, Carson JA. Understanding Sarcopenia Development: A Role for Healthy Behaviors. Am J Lifestyle Med 2017; 11:17-20. [PMID: 28819350 DOI: 10.1177/1559827616674163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
For decades the biomedical community has documented the accelerated loss of muscle mass that occurs with advancing aging, termed sarcopenia. The timely review article ("Attenuation of Adverse Effects of Aging on Skeletal Muscle by Regular Exercise and Nutritional Support") by Arthur Leon presents our current state of knowledge on the biological processes responsible for age-induced loss of muscle mass and function. This loss of skeletal muscle has critical health implications as it can negatively affect morbidity and mortality. A significant theme throughout the review is that a lifelong commitment to regular physical activity and good dietary habits is extremely important to combat age related reductions in muscle mass and function. However, multi-targeted therapeutic approaches, in conjunction with nutrition and exercise, may be beneficial to prevent or treat sarcopenia. Additionally, while significant progress has been made in our understanding of the molecular and biochemical contributors to sarcopenia, further research using well-controlled clinical trials are needed to determine the long-term benefit of exercise and nutrition on aging skeletal muscle.
Collapse
Affiliation(s)
- Justin P Hardee
- Integrative Muscle Biology Laboratory, Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC
| | - James A Carson
- Integrative Muscle Biology Laboratory, Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC
| |
Collapse
|
15
|
Abstract
Skeletal muscle stem cells, originally termed satellite cells for their position adjacent to differentiated muscle fibers, are absolutely required for the process of skeletal muscle repair and regeneration. In the last decade, satellite cells have become one of the most studied adult stem cell systems and have emerged as a standard model not only in the field of stem cell-driven tissue regeneration but also in stem cell dysfunction and aging. Here, we provide background in the field and discuss recent advances in our understanding of muscle stem cell function and dysfunction, particularly in the case of aging, and the potential involvement of muscle stem cells in genetic diseases such as the muscular dystrophies.
Collapse
Affiliation(s)
- Ddw Cornelison
- Division of Biological Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| | - Eusebio Perdiguero
- Cell Biology Group, Department of Experimental and Health Sciences (DCEXS), Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), 08003, Barcelona, Spain.
| |
Collapse
|
16
|
Kung CP, Murphy ME. The role of the p53 tumor suppressor in metabolism and diabetes. J Endocrinol 2016; 231:R61-R75. [PMID: 27613337 PMCID: PMC5148674 DOI: 10.1530/joe-16-0324] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/08/2016] [Indexed: 12/12/2022]
Abstract
In the context of tumor suppression, p53 is an undisputedly critical protein. Functioning primarily as a transcription factor, p53 helps fend off the initiation and progression of tumors by inducing cell cycle arrest, senescence or programmed cell death (apoptosis) in cells at the earliest stages of precancerous development. Compelling evidence, however, suggests that p53 is involved in other aspects of human physiology, including metabolism. Indeed, recent studies suggest that p53 plays a significant role in the development of metabolic diseases, including diabetes, and further that p53's role in metabolism may also be consequential to tumor suppression. Here, we present a review of the literature on the role of p53 in metabolism, diabetes, pancreatic function, glucose homeostasis and insulin resistance. Additionally, we discuss the emerging role of genetic variation in the p53 pathway (single-nucleotide polymorphisms) on the impact of p53 in metabolic disease and diabetes. A better understanding of the relationship between p53, metabolism and diabetes may one day better inform the existing and prospective therapeutic strategies to combat this rapidly growing epidemic.
Collapse
Affiliation(s)
- Che-Pei Kung
- Department of Internal MedicineWashington University School of Medicine, St Louis, Missouri, USA
| | - Maureen E Murphy
- Department of Internal MedicineWashington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
17
|
Regenerative decline of stem cells in sarcopenia. Mol Aspects Med 2016; 50:109-17. [DOI: 10.1016/j.mam.2016.02.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 01/27/2016] [Accepted: 02/19/2016] [Indexed: 12/19/2022]
|
18
|
Sharples AP, Stewart CE, Seaborne RA. Does skeletal muscle have an 'epi'-memory? The role of epigenetics in nutritional programming, metabolic disease, aging and exercise. Aging Cell 2016; 15:603-16. [PMID: 27102569 PMCID: PMC4933662 DOI: 10.1111/acel.12486] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2016] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle mass, quality and adaptability are fundamental in promoting muscle performance, maintaining metabolic function and supporting longevity and healthspan. Skeletal muscle is programmable and can ‘remember’ early‐life metabolic stimuli affecting its function in adult life. In this review, the authors pose the question as to whether skeletal muscle has an ‘epi’‐memory? Following an initial encounter with an environmental stimulus, we discuss the underlying molecular and epigenetic mechanisms enabling skeletal muscle to adapt, should it re‐encounter the stimulus in later life. We also define skeletal muscle memory and outline the scientific literature contributing to this field. Furthermore, we review the evidence for early‐life nutrient stress and low birth weight in animals and human cohort studies, respectively, and discuss the underlying molecular mechanisms culminating in skeletal muscle dysfunction, metabolic disease and loss of skeletal muscle mass across the lifespan. We also summarize and discuss studies that isolate muscle stem cells from different environmental niches in vivo (physically active, diabetic, cachectic, aged) and how they reportedly remember this environment once isolated in vitro. Finally, we will outline the molecular and epigenetic mechanisms underlying skeletal muscle memory and review the epigenetic regulation of exercise‐induced skeletal muscle adaptation, highlighting exercise interventions as suitable models to investigate skeletal muscle memory in humans. We believe that understanding the ‘epi’‐memory of skeletal muscle will enable the next generation of targeted therapies to promote muscle growth and reduce muscle loss to enable healthy aging.
Collapse
Affiliation(s)
- Adam P. Sharples
- Stem Cells, Ageing and Molecular Physiology (SCAMP) Research Unit Exercise Metabolism and Adaptation Research Group (EMARG) Research Institute for Sport and Exercise Sciences (RISES) Liverpool John Moores University Liverpool UK
| | - Claire E. Stewart
- Stem Cells, Ageing and Molecular Physiology (SCAMP) Research Unit Exercise Metabolism and Adaptation Research Group (EMARG) Research Institute for Sport and Exercise Sciences (RISES) Liverpool John Moores University Liverpool UK
| | - Robert A. Seaborne
- Stem Cells, Ageing and Molecular Physiology (SCAMP) Research Unit Exercise Metabolism and Adaptation Research Group (EMARG) Research Institute for Sport and Exercise Sciences (RISES) Liverpool John Moores University Liverpool UK
| |
Collapse
|
19
|
Cisterna B, Giagnacovo M, Costanzo M, Fattoretti P, Zancanaro C, Pellicciari C, Malatesta M. Adapted physical exercise enhances activation and differentiation potential of satellite cells in the skeletal muscle of old mice. J Anat 2016; 228:771-83. [PMID: 26739770 DOI: 10.1111/joa.12429] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2015] [Indexed: 01/02/2023] Open
Abstract
During ageing, a progressive loss of skeletal muscle mass and a decrease in muscle strength and endurance take place, in the condition termed sarcopenia. The mechanisms of sarcopenia are complex and still unclear; however, it is known that muscle atrophy is associated with a decline in the number and/or efficiency of satellite cells, the main contributors to muscle regeneration. Physical exercise proved beneficial in sarcopenia; however, knowledge of the effect of adapted physical exercise on the myogenic properties of satellite cells in aged muscles is limited. In this study the amount and activation state of satellite cells as well as their proliferation and differentiation potential were assessed in situ by morphology, morphometry and immunocytochemistry at light and transmission electron microscopy on 28-month-old mice submitted to adapted aerobic physical exercise on a treadmill. Sedentary age-matched mice served as controls, and sedentary adult mice were used as a reference for an unperturbed control at an age when the capability of muscle regeneration is still high. The effect of physical exercise in aged muscles was further analysed by comparing the myogenic potential of satellite cells isolated from old running and old sedentary mice using an in vitro system that allows observation of the differentiation process under controlled experimental conditions. The results of this ex vivo and in vitro study demonstrated that adapted physical exercise increases the number and activation of satellite cells as well as their capability to differentiate into structurally and functionally correct myotubes (even though the age-related impairment in myotube formation is not fully reversed): this evidence further supports adapted physical exercise as a powerful, non-pharmacological approach to counteract sarcopenia and the age-related deterioration of satellite cell capabilities even at very advanced age.
Collapse
Affiliation(s)
- Barbara Cisterna
- Department of Neurological and Movement Sciences, Anatomy and Histology Section, University of Verona, Verona, Italy
| | - Marzia Giagnacovo
- Department of Animal Biology, Laboratory of Cell Biology, University of Pavia, Pavia, Italy
| | - Manuela Costanzo
- Department of Neurological and Movement Sciences, Anatomy and Histology Section, University of Verona, Verona, Italy
| | - Patrizia Fattoretti
- Cellular Bioenergetics Laboratory, Center for Neurobiology of Aging, INRCA IRCCS, Ancona, Italy
| | - Carlo Zancanaro
- Department of Neurological and Movement Sciences, Anatomy and Histology Section, University of Verona, Verona, Italy
| | - Carlo Pellicciari
- Department of Animal Biology, Laboratory of Cell Biology, University of Pavia, Pavia, Italy
| | - Manuela Malatesta
- Department of Neurological and Movement Sciences, Anatomy and Histology Section, University of Verona, Verona, Italy
| |
Collapse
|
20
|
Sousa-Victor P, Perdiguero E, Muñoz-Cánoves P. Geroconversion of aged muscle stem cells under regenerative pressure. Cell Cycle 2015; 13:3183-90. [PMID: 25485497 DOI: 10.4161/15384101.2014.965072] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Regeneration of skeletal muscle relies on a population of quiescent stem cells (satellite cells) and is impaired in very old (geriatric) individuals undergoing sarcopenia. Stem cell function is essential for organismal homeostasis, providing a renewable source of cells to repair damaged tissues. In adult organisms, age-dependent loss-of-function of tissue-specific stem cells is causally related with a decline in regenerative potential. Although environmental manipulations have shown good promise in the reversal of these conditions, recently we demonstrated that muscle stem cell aging is, in fact, a progressive process that results in persistent and irreversible changes in stem cell intrinsic properties. Global gene expression analyses uncovered an induction of p16(INK4a) in satellite cells of physiologically aged geriatric and progeric mice that inhibits satellite cell-dependent muscle regeneration. Aged satellite cells lose the repression of the INK4a locus, which switches stem cell reversible quiescence into a pre-senescent state; upon regenerative or proliferative pressure, these cells undergo accelerated senescence (geroconversion), through Rb-mediated repression of E2F target genes. p16(INK4a) silencing rejuvenated satellite cells, restoring regeneration in geriatric and progeric muscles. Thus, p16(INK4a)/Rb-driven stem cell senescence is causally implicated in the intrinsic defective regeneration of sarcopenic muscle. Here we discuss on how cellular senescence may be a common mechanism of stem cell aging at the organism level and show that induction of p16(INK4a) in young muscle stem cells through deletion of the Polycomb complex protein Bmi1 recapitulates the geriatric phenotype.
Collapse
|
21
|
Sousa-Victor P, García-Prat L, Serrano AL, Perdiguero E, Muñoz-Cánoves P. Muscle stem cell aging: regulation and rejuvenation. Trends Endocrinol Metab 2015; 26:287-96. [PMID: 25869211 DOI: 10.1016/j.tem.2015.03.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 01/17/2023]
Abstract
Aging is characterized by a progressive decline of physiological integrity leading to the loss of tissue function and vulnerability to disease, but its causes remain poorly understood. Skeletal muscle has an outstanding regenerative capacity that relies on its resident stem cells (satellite cells). This capacity declines with aging, and recent discoveries have redefined our view of why this occurs. Here, we discuss how an interconnection of extrinsic changes in the systemic and local environment and cell-intrinsic mechanisms might provoke failure of normal muscle stem cell functions with aging. We focus particularly on the emergent biology of rejuvenation of old satellite cells, including cells of geriatric age, by restoring traits of youthfulness, with the final goal of improving human health during aging.
Collapse
Affiliation(s)
- Pedro Sousa-Victor
- Buck Institute for Research on Aging, Novato, CA, USA; Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain
| | - Laura García-Prat
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain
| | - Antonio L Serrano
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain
| | - Eusebio Perdiguero
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
22
|
Abstract
Aging is marked by changes that affect organs and resident stem cell function. Shorting of telomeres, DNA damage, oxidative stress, deregulation of genes and proteins, impaired cell-cell communication, and an altered systemic environment cause the eventual demise of cells. At the same time, reparative activities also decline. It is intriguing to correlate aging with the decline of regenerative abilities. Animal models with strong regenerative capabilities imply that aging processes might not be affecting regeneration. In this review, we selectively present age-dependent changes in stem/progenitor cells that are vital for tissue homeostasis and repair. In addition, the aging effect on regeneration following injury in organs such as lung, skeletal muscle, heart, nervous system, cochlear hair, lens, and liver are discussed. These tissues are also known for diseases such as heart attack, stroke, cognitive impairment, cataract, and hearing loss that occur mostly during aging in humans. Conclusively, vertebrate regeneration declines with age with the loss of stem/progenitor cell function. Future studies on improving the function of stem cells, along with studies in fish and amphibians where regeneration does not decline with age, will undoubtedly provide insights into both processes.
Collapse
Affiliation(s)
- Konstantinos Sousounis
- Department of Biology and Center for Tissue Regeneration and Engineering, University of Dayton, Dayton, Ohio, USA
| | - Joelle A Baddour
- Department of Chemical and Materials Engineering and Center for Tissue Regeneration and Engineering, University of Dayton, Dayton, Ohio, USA
| | - Panagiotis A Tsonis
- Department of Biology and Center for Tissue Regeneration and Engineering, University of Dayton, Dayton, Ohio, USA.
| |
Collapse
|
23
|
Jadhav KS, Dungan CM, Williamson DL. Metformin limits ceramide-induced senescence in C2C12 myoblasts. Mech Ageing Dev 2013; 134:548-59. [PMID: 24269881 DOI: 10.1016/j.mad.2013.11.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/26/2013] [Accepted: 11/11/2013] [Indexed: 12/14/2022]
Abstract
UNLABELLED High lipid and ceramide concentrations are hallmarks of obese and/or insulin resistant skeletal muscle, yet little is known about its role on cell cycle and senescence. The purpose of this study was to examine the role of ceramide on muscle senescence, and whether metformin limited this response. METHODS Low passage, proliferating C2C12 myoblasts were treated with a control, 50μM C2-ceramide (8h), and/or 2mM metformin, then examined for insulin sensitivity, cell senescence, cell proliferation, cell cycle, protein expression of cell cycle regulators. RESULTS Ceramide treatment caused a dephosphorylation (p<0.05) of Akt and 4E-BP1, regardless of the presence of insulin. The ceramide treated myoblasts displayed higher β-galactosidase staining (p<0.05), reduced BrDu incorporation and total number of cells (p<0.05), and an increased proportion of cells in G2-phase (p<0.05) versus control cultures. Ceramide treatment also upregulated (p<0.05) p53 and p21 protein expression, that was reversed by either pifithrin-α or shRNA for p53. Metformin limited (p<0.05) ceramide's effects on insulin signaling, senescence, and cell cycle regulation. CONCLUSIONS High ceramide concentrations reduced myoblast proliferation that was associated with aberrant cell cycle regulation and a senescent phenotype, which could provide an understanding of skeletal muscle cell adaptation during conditions of high intramuscular lipid deposition and/or obesity.
Collapse
Affiliation(s)
- Kavita S Jadhav
- Department of Exercise and Nutrition Sciences, University at Buffalo SUNY, Buffalo, NY 14214, USA
| | - Cory M Dungan
- Department of Exercise and Nutrition Sciences, University at Buffalo SUNY, Buffalo, NY 14214, USA
| | - David L Williamson
- Department of Exercise and Nutrition Sciences, University at Buffalo SUNY, Buffalo, NY 14214, USA.
| |
Collapse
|
24
|
García-Prat L, Sousa-Victor P, Muñoz-Cánoves P. Functional dysregulation of stem cells during aging: a focus on skeletal muscle stem cells. FEBS J 2013; 280:4051-62. [DOI: 10.1111/febs.12221] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/18/2013] [Accepted: 02/26/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Laura García-Prat
- Cell Biology Group; Department of Experimental and Health Sciences; Pompeu Fabra University (UPF); CIBER on Neurodegenerative Diseases (CIBERNED); Barcelona; Spain
| | - Pedro Sousa-Victor
- Cell Biology Group; Department of Experimental and Health Sciences; Pompeu Fabra University (UPF); CIBER on Neurodegenerative Diseases (CIBERNED); Barcelona; Spain
| | | |
Collapse
|