1
|
Wang RR, Qiu X, Pan R, Fu H, Zhang Z, Wang Q, Chen H, Wu QQ, Pan X, Zhou Y, Shan P, Wang S, Guo G, Zheng M, Zhu L, Meng ZX. Dietary intervention preserves β cell function in mice through CTCF-mediated transcriptional reprogramming. J Exp Med 2022; 219:213256. [PMID: 35652891 DOI: 10.1084/jem.20211779] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 04/04/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
Pancreatic β cell plasticity is the primary determinant of disease progression and remission of type 2 diabetes (T2D). However, the dynamic nature of β cell adaptation remains elusive. Here, we establish a mouse model exhibiting the compensation-to-decompensation adaptation of β cell function in response to increasing duration of high-fat diet (HFD) feeding. Comprehensive islet functional and transcriptome analyses reveal a dynamic orchestration of transcriptional networks featuring temporal alteration of chromatin remodeling. Interestingly, prediabetic dietary intervention completely rescues β cell dysfunction, accompanied by a remarkable reversal of HFD-induced reprogramming of islet chromatin accessibility and transcriptome. Mechanistically, ATAC-based motif analysis identifies CTCF as the top candidate driving dietary intervention-induced preservation of β cell function. CTCF expression is markedly decreased in β cells from obese and diabetic mice and humans. Both dietary intervention and AAV-mediated restoration of CTCF expression ameliorate β cell dysfunction ex vivo and in vivo, through transducing the lipid toxicity and inflammatory signals to transcriptional reprogramming of genes critical for β cell glucose metabolism and stress response.
Collapse
Affiliation(s)
- Ruo-Ran Wang
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Chronic Disease Research Institute, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinyuan Qiu
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China
| | - Ran Pan
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Chronic Disease Research Institute, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongxing Fu
- Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ziyin Zhang
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Chronic Disease Research Institute, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qintao Wang
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Chronic Disease Research Institute, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haide Chen
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qing-Qian Wu
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Chronic Disease Research Institute, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaowen Pan
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanping Zhou
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pengfei Shan
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Tianjin, China.,NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Guoji Guo
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Chronic Disease Research Institute, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Geriatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Shahvazian E, Mahmoudi MB, Farashahi Yazd E, Gharibi S, Moghimi B, HosseinNia P, Mirzaei M. The KLF14 Variant is Associated with Type 2 Diabetes and HbA 1C Level. Biochem Genet 2021; 59:574-588. [PMID: 33389382 DOI: 10.1007/s10528-020-10015-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022]
Abstract
The purpose of this study was to scan variants in coding region of Krȕppel like factor14 (KLF14) locus and assess association related to type 2 diabetes (T2D) in Iranian population. We sequenced the coding region of KLF14 to scan variants in case-sibling study (92 individuals with T2D and 92 healthy older siblings). To confirm, we analyzed rs76603546 association with T2D in a larger unrelated case-control study by PCR-RFLP (475 cases and 512 controls). We analyzed the association of rs76603546 with HbA1C, BMI, fat mass, waist circumference, fasting glucose, cholesterol and HOMA-IR (Homeostatic Model Assessment for Insulin Resistance) using one-way ANOVA analysis. Also, association of genotypes with T2D adjusted for confounding variables was analyzed using logistic regression. HaploReg v 4.1 was used to predict rs76603546 possible function. Sequencing results analysis revealed the association of C allele of rs76603546, synonymous variant C>T, [OR 2.10 (1.38-3.20), P value < 0.001] and CC genotype of rs76603546 [OR 4.3 (1.79-10.23), P value = 0.001] with susceptibility to T2D. PCR-Restriction Fragment Length Polymorphism (RFLP) results analysis confirmed the association of rs76603546 with T2D [C allele, OR 1.91 (1.59-2.29), P value = 0.002, CC genotype, OR 3.27 (2.26-4.73), P value = 0.002 and TC genotype, OR 1.74 (1.31-2.31), P value = 0.001]. The CC genotype of rs76603546 is associated with HbA1C level (P value < 0.001) and BMI (P value = 0.02). After adjustment with confounding variables, we observed association of CC genotype with T2D [OR 2.542 (1.25-3.77), P value = 0.03]. Among over 220 SNPs, rs76603546 was associated with T2D, HbA1C and BMI in our study.
Collapse
Affiliation(s)
- Ensieh Shahvazian
- Department of Genetics, Faculty of Medicine, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Bagher Mahmoudi
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ehsan Farashahi Yazd
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. .,Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. .,Yazd Reproductive Sciences Institute, Bu-Ali Ave., Timsar Fallahi St., Safaeieh, Yazd, Iran.
| | - Saba Gharibi
- Department of Genetics, Faculty of Medicine, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Bahram Moghimi
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Masoud Mirzaei
- Yazd Cardiovascular Research Centre, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
3
|
Panneerselvam A, Kannan A, Mariajoseph-Antony LF, Prahalathan C. PAX proteins and their role in pancreas. Diabetes Res Clin Pract 2019; 155:107792. [PMID: 31325538 DOI: 10.1016/j.diabres.2019.107792] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/27/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022]
Abstract
Gene regulatory factors that govern the expression of heritable information come in an array of flavors, chiefly with transcription factors, the proteins which bind to regions of specific genes and modulate gene transcription, subsequently altering cellular function. PAX transcription factors are sequence-specific DNA-binding proteins exerting its regulatory activity in many tissues. Notably, three members of the PAX family namely PAX2, PAX4 and PAX6 have emerged as crucial players at multiple steps of pancreatic development and differentiation and also play a pivotal role in the regulation of pancreatic islet hormones synthesis and secretion. Providing a comprehensive outline of these transcription factors and their primordial and divergent roles in the pancreas is far-reaching in contemporary diabetes research. Accordingly, this review furnishes an outline of the role of pancreatic specific PAX regulators in the development of the pancreas and its associated disorders.
Collapse
Affiliation(s)
- Antojenifer Panneerselvam
- Molecular Endocrinology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Arun Kannan
- Molecular Endocrinology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Lezy Flora Mariajoseph-Antony
- Molecular Endocrinology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Chidambaram Prahalathan
- Molecular Endocrinology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, India.
| |
Collapse
|
4
|
The rs2292239 polymorphism in ERBB3 gene is associated with risk for type 1 diabetes mellitus in a Brazilian population. Gene 2017; 644:122-128. [PMID: 29109006 DOI: 10.1016/j.gene.2017.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 01/16/2023]
Abstract
The Erb-b2 receptor tyrosine kinase 3 (ERBB3) belongs to a family of epidermal growth factor receptors of protein tyrosine kinases, and regulates cell survival, differentiation and proliferation in several cell types. Previous studies have suggested that ERBB3 contributes to T1DM pathogenesis by modulating antigen presenting cell function, autoimmunity and cytokine-induced beta-cell apoptosis. Accordingly, some genome-wide association studies identified ERBB3 gene as a susceptibility locus for T1DM, with the strongest association signal being observed for the rs2292239 single nucleotide polymorphism (SNP) in intron 7 of the gene. Therefore, the aim of the present study was to replicate the association of the ERBB3 rs2292239 SNP with T1DM in a Brazilian population. We analyzed 421 T1DM patients (cases) and 510 nondiabetic subjects (controls). All subjects were self-declared as white. The ERBB3 rs2292239 (A/C) SNP was genotyped by real-time PCR using TaqMan MGB probes. Genotype (P=0.001) and allele (P=0.002) frequencies of the ERBB3 rs2292239 SNP were differently distributed between T1DM patients and nondiabetic controls. Moreover, the A allele was significantly associated with risk for T1DM when considering recessive (OR=1.58, 95% CI 1.11-2.27; P=0.015), additive (OR=1.78, 95% CI 1.21-2.62; P=0.004), and dominant (OR=1.39, 95% CI 1.07-1.81; P=0.016) models of inheritance. However, after adjustment for presence of high-risk HLA DR/DQ genotypes, the rs2292239 SNP remained independently associated with T1DM only for the additive model (OR=1.62, 95% CI 1.02-2.59; P=0.043). Our results suggest that the A/A genotype of the ERBB3 rs2292239 SNP is associated with risk for T1DM in a white Brazilian population.
Collapse
|
5
|
Cheng M, Liu X, Yang M, Han L, Xu A, Huang Q. Computational analyses of type 2 diabetes-associated loci identified by genome-wide association studies. J Diabetes 2017; 9:362-377. [PMID: 27121852 DOI: 10.1111/1753-0407.12421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/31/2016] [Accepted: 04/23/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) of type 2 diabetes (T2D) have discovered a number of loci that contribute to susceptibility to the disease. Future challenges include elucidation of functional mechanisms through which these GWAS-identified loci modulate T2D disease risk. The aim of the present study was to comprehensively characterize T2D associated single nucleotide polymorphisms (SNPs) and genes through computational approaches. METHODS Computational biology approaches used in the present study included comparative genomic analyses and functional annotation using GWAS3D and RegulomeDB, investigation of the effects of T2D-associated SNPs on miRNA binding and protein phosphorylation, and gene ontology, pathway enrichment, protein-protein interaction (PPI) networks and functional module analysis of T2D-associated genes from previously published GWAS. RESULTS Computational analysis identified a number of T2D GWAS-associated SNPs that were located at protein binding sites, including CCCTC-binding factor (CTCF), E1A binding protein p300 (EP300), hepatocyte nuclear factor 4alpha (HNF4A), transcription factor 7 like 2 (TCF7L2), forkhead box A1 (FOXA1) and A2 (FOXA2), and potentially affected the binding of miRNAs and protein phosphorylation. Pathway enrichment analysis confirmed two well-known maturity onset diabetes of the young and T2D pathways, whereas PPI network analysis identified highly interconnected "hub" genes, such as TCF7L2, melatonin receptor 1B (MTNR1B), and solute carrier family 30 (zinc transporter), member 8 (SLC30A8), that created two tight subnetworks. CONCLUSIONS The results provide objectives and clues for future experimental studies and further insights into the molecular pathogenesis of T2D.
Collapse
Affiliation(s)
- Mengrong Cheng
- College of Life Sciences, Central China Normal University, Wuhan, China
| | - Xinhong Liu
- College of Life Sciences, Central China Normal University, Wuhan, China
| | - Mei Yang
- College of Life Sciences, Central China Normal University, Wuhan, China
| | - Lanchun Han
- College of Life Sciences, Central China Normal University, Wuhan, China
- Institute of Public Health and Molecular Medicine Analysis, Central China Normal University, Wuhan, China
| | - Aimin Xu
- Li Cha Chung Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qingyang Huang
- College of Life Sciences, Central China Normal University, Wuhan, China
- Institute of Public Health and Molecular Medicine Analysis, Central China Normal University, Wuhan, China
| |
Collapse
|
6
|
Kaur S, Mirza AH, Brorsson CA, Fløyel T, Størling J, Mortensen HB, Pociot F. The genetic and regulatory architecture of ERBB3-type 1 diabetes susceptibility locus. Mol Cell Endocrinol 2016; 419:83-91. [PMID: 26450151 DOI: 10.1016/j.mce.2015.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 12/11/2022]
Abstract
The study aimed to explore the role of ERBB3 in type 1 diabetes (T1D). We examined whether genetic variation of ERBB3 (rs2292239) affects residual β-cell function in T1D cases. Furthermore, we examined the expression of ERBB3 in human islets, the effect of ERBB3 knockdown on apoptosis in insulin-producing INS-1E cells and the genetic and regulatory architecture of the ERBB3 locus to provide insights to how rs2292239 may confer disease susceptibility. rs2292239 strongly correlated with residual β-cell function and metabolic control in children with T1D. ERBB3 locus associated lncRNA (NONHSAG011351) was found to be expressed in human islets. ERBB3 was expressed and down-regulated by pro-inflammatory cytokines in human islets and INS-1E cells; knockdown of ERBB3 in INS-1E cells decreased basal and cytokine-induced apoptosis. Our data suggests an important functional role of ERBB3 and its potential regulators in the β-cells and may constitute novel targets to prevent β-cell destruction in T1D.
Collapse
Affiliation(s)
- Simranjeet Kaur
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics, Herlev University Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Aashiq H Mirza
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics, Herlev University Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Center for Non-coding RNA in Technology and Health, University of Copenhagen, Denmark
| | - Caroline A Brorsson
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics, Herlev University Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - Tina Fløyel
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics, Herlev University Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - Joachim Størling
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics, Herlev University Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - Henrik B Mortensen
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics, Herlev University Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Flemming Pociot
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics, Herlev University Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Center for Non-coding RNA in Technology and Health, University of Copenhagen, Denmark.
| |
Collapse
|
7
|
Zia A, Bhatti A, John P, Kiani AK. Data interpretation: deciphering the biological function of Type 2 diabetes associated risk loci. Acta Diabetol 2015; 52:789-800. [PMID: 25585593 DOI: 10.1007/s00592-014-0700-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
AIMS Type 2 diabetes (T2D) is a complex multifactorial disorder with more than 40 loci associated with disease susceptibility. Most of these genome-wide significant loci reside in noncoding regions, it is important to decipher the potential regulatory function of these variants and to differentiate between true and tag signals. Nowadays, databases are being developed to study and predict the function of these associated variants, and RegulomeDB is one such database. METHODS We used RegulomeDB to analyze the potential function of the associated variants reported in five genome-wide association studies (GWAS) of T2D. RESULTS We investigated the 1,567 single nucleotide polymorphisms (SNPs) with 989 SNPs with a score of 1-6. Of those 989 SNPs, only 64 returned with RegulomeDB score <3 (evidence of regulatory function), and only four of these were GWAS significant SNPs (THADA/rs10203174, score = 1b; UBE2E2/rs7612463, score = 2a; ARAP1/rs1552224 and TP53INP1/rs8996852, score = 2b). But only 63 % of the annotated SNPs showed regulatory function that is an important limitation of the RegulomeDB as this database only provides information of few regulatory elements. CONCLUSION This study further supports that some of the noncoding GWAS variants are the true associations and not the tag ones. This study also proves the utility and importance of the RegulomeDB and other such databases. Although it is an extensive database of regulatory elements but has certain limitation due to utilization of only few types of regulatory elements and pathways.
Collapse
Affiliation(s)
- Asima Zia
- Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | | | | | | |
Collapse
|
8
|
Fresán U, Cuartero S, O'Connor MB, Espinàs ML. The insulator protein CTCF regulates Drosophila steroidogenesis. Biol Open 2015; 4:852-7. [PMID: 25979705 PMCID: PMC4571099 DOI: 10.1242/bio.012344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The steroid hormone ecdysone is a central regulator of insect development. In this report we show that CTCF expression in the prothoracic gland is required for full transcriptional activation of the Halloween genes spookier, shadow and noppera-bo, which encode ecdysone biosynthetic enzymes, and for proper timing of ecdysone-responsive gene expression. Loss of CTCF results in delayed and less synchronized larval development that can only be rescued by feeding larvae with both, the steroid hormone 20-hydroxyecdysone and cholesterol. Moreover, CTCF-knockdown in prothoracic gland cells leads to increased lipid accumulation. In conclusion, the insulator protein CTCF is required for Halloween gene expression and cholesterol homeostasis in ecdysone-producing cells controlling steroidogenesis.
Collapse
Affiliation(s)
- Ujué Fresán
- Institute of Molecular Biology of Barcelona, IBMB-CSIC, and Institute for Research in Biomedicine IRB, Barcelona 08028, Spain
| | - Sergi Cuartero
- Institute of Molecular Biology of Barcelona, IBMB-CSIC, and Institute for Research in Biomedicine IRB, Barcelona 08028, Spain
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - M Lluisa Espinàs
- Institute of Molecular Biology of Barcelona, IBMB-CSIC, and Institute for Research in Biomedicine IRB, Barcelona 08028, Spain Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Balakrishnan S, Sadasivam M, Kannan A, Panneerselvam A, Prahalathan C. Glucose modulates Pax6 expression through the JNK/p38 MAP kinase pathway in pancreatic beta-cells. Life Sci 2014; 109:1-7. [PMID: 24953606 DOI: 10.1016/j.lfs.2014.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/04/2014] [Accepted: 06/07/2014] [Indexed: 02/08/2023]
Abstract
AIM The paired and homeodomain-containing transcription factor, paired box 6 (Pax6), has shown to play pivotal roles in beta-cell function, including cell survival, insulin biosynthesis and secretion. The present study investigates the signaling events that regulate the modulation of Pax6 expression by glucose and the role of this modulation in cell survival in rat insulinoma-1E (INS-1E) cells. MAIN METHODS INS-1E cells were incubated on 1mM (low) or 25 mM (high) glucose overnight. To elucidate the signaling pathways that regulate Pax6 expression, we utilized specific inhibitors. The siRNA transfection of Pax6 into INS-1E cells was performed by electroporation. The mRNA and protein levels were determined by real-time PCR and Western blotting, respectively. KEY FINDINGS We found that the mRNA and protein levels of Pax6 were reduced by approximately 4-fold in high, compared to low, glucose-treated cells. Staurosporine, the c-Jun N-terminal kinase (JNK) inhibitor SP600125 and the p38 mitogen-activated protein kinase (p38 MAPK) inhibitor SB203580 significantly increased Pax6 levels in high glucose-treated INS-1E cells compared to their respective controls. However, neither calcium ionophore nor the extracellular signal-regulated kinase (ERK) inhibitor U0126 resulted in any alteration in Pax6 protein expression. Further, a siRNA-mediated knockdown of Pax6 significantly decreased the expression of tumor-suppressor phosphatase with tensin homology (PTEN) while increasing cell viability in low glucose-treated INS-1E cells. SIGNIFICANCE This study addresses the signaling events that regulate the glucose-dependent expression of Pax6 and the role of these events in cell survival in pancreatic beta cells.
Collapse
Affiliation(s)
| | - Mohanraj Sadasivam
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Arun Kannan
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| | | | | |
Collapse
|