1
|
He J, Qing Z, Li Y, Lin J, Wang D, Xu W, Chen X, Meng X, Duan J. MiR-214 promotes the antitumor effect of NK cells in colorectal cancer liver metastasis through USP27X/Bim. Cytotechnology 2024; 76:667-681. [PMID: 39435421 PMCID: PMC11490475 DOI: 10.1007/s10616-024-00642-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/25/2024] [Indexed: 10/23/2024] Open
Abstract
Colorectal cancer (CRC) is a common tumor type, and liver metastasis reduces the long-term survival in CRC patients. Natural killer (NK) cells play an important role in anti-tumor immunity. The aim of this study was to investigate the mechanism of miR-214-5p on NK cells in CRC liver metastasis. We collected clinical samples of CRC liver metastasis and nonmetastatic tissues and purchased the human NK cell lines NK92 and liver metastatic CRC cells KM12L4 for research. RT‒qPCR, Western blot, CCK-8, Transwell, and flow cytometry methods were used to evaluate the effect of miR-214-5p/USP27X/Bim pathway regulating NK cell activity on CRC liver metastasis. In addition, we also investigated the potential targets and regulatory mechanisms of the signaling pathway of miR-214-5p. In this study, we found that miR-214-5p was downregulated in CRC liver metastasis tissues. After transfection of miR-214-5p mimic, the activity of NK cells was significantly enhanced, and the proliferation and migration ability of CRC liver metastasis cells were inhibited, while inducing tumor cell apoptosis. Further research proved that USP27X is a potential target for miR-214-5p and upregulates Bim level through deubiquitination. In addition, miR-214-5p mimic reduced the level of USP27X and Bim, thereby enhancing the antitumor effect of NK cells. In conclusion, our research results show that miR-214-5p promotes the antitumor effect of NK cells by regulating the USP27X/Bim pathway, thereby inhibiting CRC liver metastasis. This finding reveals the important role of miR-214-5p in regulating the immune function of NK cells, and provides new ideas for developing new immunotherapy strategies. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-024-00642-1.
Collapse
Affiliation(s)
- Jinlan He
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000 Yunnan China
| | - Zhe Qing
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000 Yunnan China
| | - Yifei Li
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000 Yunnan China
| | - Jie Lin
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000 Yunnan China
| | - Dan Wang
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000 Yunnan China
| | - Wanggang Xu
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000 Yunnan China
| | - Xiyuan Chen
- Department of Hepatological Surgery, The Third People’s Hospital of Honghe Hani and Yi Autonomous Prefecture, Gejiu, 661000 Yunnan China
| | - Xiangyu Meng
- Department of Hepatological Surgery, Peace Hospital Affiliated to Changzhi Medical College, Changzhi, 046000 Shanxi China
| | - Jian Duan
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000 Yunnan China
| |
Collapse
|
2
|
Taha M, Yousef E, Badr AN, Salama RA, Maurice N. Expression profile and functional analysis of miR-301b in patients with breast cancer: A bioinformatics, biochemical, and histopathological study. Pathol Res Pract 2024; 262:155536. [PMID: 39173462 DOI: 10.1016/j.prp.2024.155536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/25/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND microRNAs (miRNAs) are crucial regulators of various biological processes and molecular functions. Aberrant miRNA expression has been linked in many studies to neoplastic transformation. Among these miRNAs, dysregulation of miR-301b-5p was associated with different types of cancer including breast cancer. Although many research works have investigated the function of miR-301b in carcinogenesis, few have examined its expression, biological, and clinical implications in breast cancer. METHODS we examined the expression levels of miR-301b-5p in human cancerous breast tissue compared to normal breast controls using different bioinformatic tools and RT-qPCR analyses. RESULTS we detected that miR-301b-5p was differentially expressed in cancerous breast tissue when compared to normal controls. MiR-301b-5p was detected to be upregulated in high-grade (Grade 3) and triple-negative breast cancers. A significant strong positive correlation was detected between miR-301b and Ki-67, the commonly used proliferative marker in breast cancer. Bioinformatics analyses using the KM plotter revealed that miR-301b has significant prognostic power in assessing the OS of patients with breast cancer. The study also identified many fundamental biological processes and regulatory pathways associated with the investigated miR-301b-related hub genes. Interestingly, the expression pattern and prognostic significance of PTEN, the top hub gene regulated by miR-301b, highlighted the prognostic significance of PTEN in breast cancer. CONCLUSION The current study findings suggest the potential use of miR-301b-5p as a possible diagnostic and prognostic biomarker in breast cancer. Moreover, this study emphasized the clinical and biological relevance of miR-301b-5p in breast cancer.
Collapse
Affiliation(s)
- Mohamed Taha
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Einas Yousef
- Department of Histology and Cell Biology, Faculty of Medicine, Menoufia University, Shebin Elkom 3251, Egypt
| | | | - Rasha A Salama
- College of Medicine, Ras Al khaimah Medical and Health Science University, UAE; Department of Community Medicine, Kasr Al Ainy Faculty of Medicine, Cairo University, Egypt
| | - Nadine Maurice
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
3
|
Singh A, Vasudevan S, Palle AR, Atchuta A, Bhadauriya S. Comparative Evaluation of Scaling and Root Planing with and without Oxygen-releasing Gel in the Treatment of Chronic Periodontitis: A Split-mouth Study. J Contemp Dent Pract 2024; 25:445-452. [PMID: 39364843 DOI: 10.5005/jp-journals-10024-3689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
AIM The study aims to compare the effectiveness of scaling root planing alone and scaling root planing with oxygen-releasing gel in the treatment of chronic periodontitis. MATERIALS AND METHODS A split-mouth randomized controlled trial was designed on 25 systemically healthy participants with 50 sites having chronic periodontitis. Two sites were selected for each patient and were randomly allocated into two groups. A total of 50 sites were selected and divided into two groups with 25 test sites in group I (Test group) and 25 control sites in group II (Control group). Group I received scaling and root planing (SRP) followed by placement of BlueM oral gel, while group II received SRP alone. Probing pocket depth (PPD), clinical attachment level (CAL), gingival index (GI), and bleeding on probing (BOP) were recorded at baseline and after 6 weeks and were compared accordingly. RESULTS The results revealed a reduction in PPD, CAL, GI, and BOP in both groups. However, the test group showed a statistically significant reduction when compared with the control group in the above-mentioned clinical parameters. CONCLUSION The results suggested that the use of oxygen-releasing gel with SRP provided additional benefits in the management of chronic periodontitis by promoting greater reductions in the clinical parameters. CLINICAL SIGNIFICANCE BlueM oral gel, i.e. the oxygen-releasing gel as a local drug delivery, may be an excellent adjunct to SRP in treating chronic periodontitis. How to cite this article: Singh A, Vasudevan S, Palle AR, et al. Comparative Evaluation of Scaling and Root Planing with and without Oxygen-releasing Gel in the Treatment of Chronic Periodontitis: A Split-mouth Study. J Contemp Dent Pract 2024;25(5):445-452.
Collapse
Affiliation(s)
- Anuradha Singh
- Department of Periodontics, Army College of Dental Sciences, Secunderabad, Telangana, India, Phone: +91 8309931210, e-mail: , Orcid: https://orcid.org/0009-0009-4652-7792
| | - Sanjay Vasudevan
- Department of Periodontics, Army College of Dental Sciences, Secunderabad, Telangana, India, Orcid: https://orcid.org/0009-0004-7733-2393
| | - Ajay Reddy Palle
- Department of Periodontics, Army College of Dental Sciences, Secunderabad, Telangana, India, Orcid: https://orcid.org/0009-0008-8948-7084
| | - Abhinav Atchuta
- Department of Periodontics, Army College of Dental Sciences, Secunderabad, Telangana, India, Orcid: https://orcid.org/0000-0001-9295-0289
| | - Surabhi Bhadauriya
- Department of Periodontics, Army College of Dental Sciences, Secunderabad, Telangana, India, Orcid: https://orcid.org/0000-0003-3132-8773
| |
Collapse
|
4
|
Ji B, Zou H, Xu L, Xie X, Peng S. MUSCLE: multi-view and multi-scale attentional feature fusion for microRNA-disease associations prediction. Brief Bioinform 2024; 25:bbae167. [PMID: 38605642 PMCID: PMC11009512 DOI: 10.1093/bib/bbae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/02/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024] Open
Abstract
MicroRNAs (miRNAs) synergize with various biomolecules in human cells resulting in diverse functions in regulating a wide range of biological processes. Predicting potential disease-associated miRNAs as valuable biomarkers contributes to the treatment of human diseases. However, few previous methods take a holistic perspective and only concentrate on isolated miRNA and disease objects, thereby ignoring that human cells are responsible for multiple relationships. In this work, we first constructed a multi-view graph based on the relationships between miRNAs and various biomolecules, and then utilized graph attention neural network to learn the graph topology features of miRNAs and diseases for each view. Next, we added an attention mechanism again, and developed a multi-scale feature fusion module, aiming to determine the optimal fusion results for the multi-view topology features of miRNAs and diseases. In addition, the prior attribute knowledge of miRNAs and diseases was simultaneously added to achieve better prediction results and solve the cold start problem. Finally, the learned miRNA and disease representations were then concatenated and fed into a multi-layer perceptron for end-to-end training and predicting potential miRNA-disease associations. To assess the efficacy of our model (called MUSCLE), we performed 5- and 10-fold cross-validation (CV), which got average the Area under ROC curves of 0.966${\pm }$0.0102 and 0.973${\pm }$0.0135, respectively, outperforming most current state-of-the-art models. We then examined the impact of crucial parameters on prediction performance and performed ablation experiments on the feature combination and model architecture. Furthermore, the case studies about colon cancer, lung cancer and breast cancer also fully demonstrate the good inductive capability of MUSCLE. Our data and code are free available at a public GitHub repository: https://github.com/zht-code/MUSCLE.git.
Collapse
Affiliation(s)
- Boya Ji
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| | - Haitao Zou
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
- College of Information Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Liwen Xu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| | - Xiaolan Xie
- College of Information Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
5
|
Zhou Q, Wang F, Sun E, Liu X, Lu C. Role of miR-301b-3p/5p in breast cancer: A study based on the cancer GenomeAtlas program (TCGA) and bioinformatics analysis. Noncoding RNA Res 2023; 8:571-578. [PMID: 37602319 PMCID: PMC10432899 DOI: 10.1016/j.ncrna.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
Background Breast cancer is one of the most common cancer type of women in the world. miR-301b-3p/5p were paired miRNAs derived from the same pre-miRNA, which may have different clinical roles in tumor and requires more exploration and research. Methods In order to investigate the differential expression, clinical significance, diagnostic and prognostic value of miR-301b-3p/5p and explore their function in breast cancer, we extracted information of miRNAs from TCGA data sets for clinical correlation analysis, and the potential function was explored by GO、KEGG enrichment and immunoinfiltration analysis. Results miR-301b-3p/5p were both highly expressed in breast cancer, there is a positive correlation between them. miR-301b-3p and miR-301b-5p have different clinical features. In breast cancer, miR-301b-3p can be used as a potential diagnostic marker while miR-301b-5p can be used as a prognostic molecule. GO, KEGG enrichment and immunoinfiltration analysis reveals that miR-301b-3p focuses on molecular functions, miR-301b-5p focuses on regulation of angiogenesis, and it is correlated with immune cells. Conclusions miR-301b-3p and miR-301b-5p are both tumor promoter in breast cancer, miR-301b-3p can be used as a potential diagnostic marker, while miR-301b-5p can be used as a prognostic molecule and an underlying therapy target. Although miR-301b-3p/5p is a pair of miRNAs from two arms of the same pre-miRNA, they may promote the progression of breast cancer together through different pathway.
Collapse
Affiliation(s)
| | | | - Erhu Sun
- Department of Breast, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Xiaofeng Liu
- Department of Breast, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Cheng Lu
- Department of Breast, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| |
Collapse
|
6
|
Yang J, Liu Z, Liu B, Sun L. Silencing of circCYP51A1 represses cell progression and glycolysis by regulating miR-490-3p/KLF12 axis in osteosarcoma under hypoxia. J Bone Oncol 2022; 37:100455. [PMID: 36276300 PMCID: PMC9579499 DOI: 10.1016/j.jbo.2022.100455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/30/2022] [Accepted: 09/27/2022] [Indexed: 11/02/2022] Open
Abstract
CircCYP51A1 was up-regulated in osteosarcoma cells under hypoxia. CircCYP51A1 mediated KLF12 expression through sponging miR-490-3p. Under hypoxia condition, circCYP51A1 knockdown inhibited cell progression and glycolysis by regulating miR-490-3p/ KLF12 axis.
Background Methods Results Conclusion
Collapse
|
7
|
Ma P, Li J, Gao Y, Wu J, Men K, Li C, Men Y, Duan X. Local and Systemic Delivery of the BimS Gene Nano-Complex for Efficient Oral Squamous Cell Carcinoma Therapy. Int J Nanomedicine 2022; 17:2925-2941. [PMID: 35814613 PMCID: PMC9270013 DOI: 10.2147/ijn.s357702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/17/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Pingchuan Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Jingmei Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Yan Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Chunjie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Yi Men
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
- Correspondence: Yi Men, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan Province, People’s Republic of China, Email
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, 610072, People’s Republic of China
- Xingmei Duan, Department of Pharmacy Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China, Email
| |
Collapse
|
8
|
Li X, Wang H, Liu Z, Abudureyimu A. CircSETD3 (Hsa_circ_0000567) Suppresses Hepatoblastoma Pathogenesis via Targeting the miR-423-3p/Bcl-2-Interacting Mediator of Cell Death Axis. Front Genet 2021; 12:724197. [PMID: 34659347 PMCID: PMC8511783 DOI: 10.3389/fgene.2021.724197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/23/2021] [Indexed: 01/22/2023] Open
Abstract
Background: Up until now, the role of circSETD3 (Has_circ_0000567) in regulating cancer development has been reported in several tumors, but the role and regulatory mechanism of circSETD3 in hepatoblastoma (HB) remain unclear. Methods: The qPCR and western blotting were used to determine the mRNA and protein levels in the present study. Stability of circular RNA was detected by RNA digested experiments. The gain-of-function and rescue experiments were used to explore the function and mechanism of circSETD3 in HB. Cell counting kit-8, colony formation, transwell assay, and xenograft mice model were used to detect effects and regulatory mechanism of circSETD3/miR-423-3p/Bim axis on cell aggressive phenotype in vitro and in vivo. Results: Here, we identified that circSETD3 downregulated in both HB clinical tissues and cell lines, compared to that of normal tissues and cells. Further gain-of-function experiments validated that circSETD3 overexpression inhibited cell proliferation, viability, migration, epithelial-mesenchymal transition (EMT) and tumorigenesis, and induced cell apoptosis in HB cells. Next, we validated that miR-423-3p targeted both circSETD3 and 3' untranslated region (3'UTR) of Bim, and circSETD3 positively regulated Bim in HB cells through sponging miR-423-3p in a competing endogenous RNA (ceRNA)-dependent manner. Furthermore, through conducting reversal experiments, we evidenced that the inhibiting effects of circSETD3 overexpression on HB development were abrogated by upregulating miR-423-3p and downregulating Bim. Conclusion: Taken together, we evidenced that circSETD3 sponged miR-423-3p to upregulate Bim, resulting in the inhibition of HB development.
Collapse
|
9
|
Li X, Wu Y, Zhang R, Bai W, Ye T, Wang S. Oxygen-Based Nanocarriers to Modulate Tumor Hypoxia for Ameliorated Anti-Tumor Therapy: Fabrications, Properties, and Future Directions. Front Mol Biosci 2021; 8:683519. [PMID: 34277702 PMCID: PMC8281198 DOI: 10.3389/fmolb.2021.683519] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/10/2021] [Indexed: 12/27/2022] Open
Abstract
Over the past five years, oxygen-based nanocarriers (NCs) to boost anti-tumor therapy attracted tremendous attention from basic research and clinical practice. Indeed, tumor hypoxia, caused by elevated proliferative activity and dysfunctional vasculature, is directly responsible for the less effectiveness or ineffective of many conventional therapeutic modalities. Undeniably, oxygen-generating NCs and oxygen-carrying NCs can increase oxygen concentration in the hypoxic area of tumors and have also been shown to have the ability to decrease the expression of drug efflux pumps (e.g., P-gp); to increase uptake by tumor cells; to facilitate the generation of cytotoxic reactive oxide species (ROS); and to evoke systematic anti-tumor immune responses. However, there are still many challenges and limitations that need to be further improved. In this review, we first discussed the mechanisms of tumor hypoxia and how it severely restricts the therapeutic efficacy of clinical treatments. Then an up-to-date account of recent progress in the fabrications of oxygen-generating NCs and oxygen-carrying NCs are systematically introduced. The improved physicochemical and surface properties of hypoxia alleviating NCs for increasing the targeting ability to hypoxic cells are also elaborated with special attention to the latest nano-technologies. Finally, the future directions of these NCs, especially towards clinical translation, are proposed. Therefore, we expect to provide some valued enlightenments and proposals in engineering more effective oxygen-based NCs in this promising field in this comprehensive overview.
Collapse
Affiliation(s)
- Xianqiang Li
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yue Wu
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Rui Zhang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Wei Bai
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Tiantian Ye
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Shujun Wang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
10
|
Cohn DE, Barros-Filho MC, Minatel BC, Pewarchuk ME, Marshall EA, Vucic EA, Sage AP, Telkar N, Stewart GL, Jurisica I, Reis PP, Robinson WP, Lam WL. Reactivation of Multiple Fetal miRNAs in Lung Adenocarcinoma. Cancers (Basel) 2021; 13:2686. [PMID: 34072436 PMCID: PMC8199175 DOI: 10.3390/cancers13112686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs (miRNAs) play vital roles in the regulation of normal developmental pathways. However, cancer cells can co-opt these miRNAs, and the pathways that they regulate, to drive pro-tumourigenic phenotypes. Characterization of the miRNA transcriptomes of fetal organs is essential for identifying these oncofetal miRNAs, but it has been limited by fetal sample availability. As oncofetal miRNAs are absent from healthy adult lungs, they represent ideal targets for developing diagnostic and therapeutic strategies. We conducted small RNA sequencing of a rare collection of 25 human fetal lung (FL) samples and compared them to two independent cohorts (n = 140, n = 427), each comprised of adult non-neoplastic lung (ANL) and lung adenocarcinoma (LUAD) samples. We identified 13 oncofetal miRNAs that were expressed in FL and LUAD but not in ANL. These oncofetal miRNAs are potential biomarkers for LUAD detection (AUC = 0.963). Five of these miRNAs are derived from the imprinted C14MC miRNA cluster at the 14q32 locus, which has been associated with cancer development and abnormal fetal and placental development. Additionally, we observed the pulmonary expression of 44 previously unannotated miRNAs. The sequencing of these fetal lung samples also provides a baseline resource against which aberrant samples can be compared.
Collapse
Affiliation(s)
- David E. Cohn
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
| | - Mateus C. Barros-Filho
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
- International Research Center, A.C. Camargo Cancer Center, São Paulo, SP 01525-001, Brazil
| | - Brenda C. Minatel
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
| | - Michelle E. Pewarchuk
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
| | - Erin A. Marshall
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
| | - Emily A. Vucic
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
- NYU Langone Medical Center, New York, NY 10016, USA
| | - Adam P. Sage
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
| | - Nikita Telkar
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada;
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Greg L. Stewart
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON M5T 0S8, Canada;
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada
| | - Patricia P. Reis
- Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil;
| | - Wendy P. Robinson
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada;
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Wan L. Lam
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
| |
Collapse
|
11
|
HIF-1 Inhibitor YC-1 Reverses the Acquired Resistance of EGFR-Mutant HCC827 Cell Line with MET Amplification to Gefitinib. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6633867. [PMID: 33763171 PMCID: PMC7946473 DOI: 10.1155/2021/6633867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/30/2021] [Accepted: 02/14/2021] [Indexed: 12/28/2022]
Abstract
Background Acquired resistance occurred in the majority of nonsmall cell lung cancer (NSCLC) patients receiving epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) therapy, and this may be related to the activation of the HIF-1 pathway. Therefore, we examined the influence of the hypoxia-inducible factor-1 (HIF-1) pathway inhibition on the sensitivity of HCC827 gefitinib-resistant (HCC827 GR) cells with MET amplification to gefitinib. Methods We established HCC827 GR cell line with MET amplification and set four groups with different treatment. An MTT assay, a colony formation analysis, and a wound healing assay were performed to determine the sensitivity change of HCC827 GR cells after different treatments. HIF-1α, p-EGFR, and p-Met levels were detected with western blot. Correlations among HIF-1α, p-EGFR, and p-Met levels of HCC827 GR cells with different treatments were analyzed with Pearson's correlation analysis. Results HIF-1 inhibitor YC-1 enhanced the sensitivity of HCC827 GR cells to gefitinib. p-Met level was correlated with HIF-1α level, while there was no correlation between p-Met level and p-EGFR level. Conclusion HIF-1 inhibitor YC-1 is able to reverse the acquired resistance of HCC827 GR to gefitinib, and the regulation of the HIF-1 pathway on MET may be one of the mechanisms.
Collapse
|
12
|
Dos Santos Arcas C, Lin-Wang HT, Umeda IIK, de Sousa MG, Utiyama DMO, de Padua Mansur A, Macchione M, Hirata MH, Nakagawa NK. Smoking load reduction is insufficient to downregulate miR-301b, a lung cancer promoter. Sci Rep 2020; 10:21112. [PMID: 33273694 PMCID: PMC7713348 DOI: 10.1038/s41598-020-78242-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 11/20/2020] [Indexed: 12/23/2022] Open
Abstract
Several circulating miRNAs identified in the plasma of smokers have been implicated as promoters of nasopharyngeal and lung carcinoma. To investigate the plasma profile of miRNAs in subjects who reduces the number of smoked cigarettes and who quit after six months. We accompanied 28 individuals enrolled in a Smoking Cessation Program over 6 months. At Baseline, clinical characteristics, co-morbidities, and smoking history were similar among subjects. After 6 months, two groups were defined: who successfully quitted smoking (named "quitters", n = 18, mean age 57 years, 11 male) and who reduced the number of cigarettes smoked (20-90%) but failed to quit smoking (named "smokers", n = 10, mean age 52 years, 3 male). No significant clinical changes were observed between groups at baseline and after a 6-month period, however, quitters showed significant downregulations in seven miRNAs at baseline: miR-17 (- 2.90-fold, p = 0.029), miR-20a (- 3.80-fold, p = 0.021); miR-20b (- 4.71-fold, p = 0.027); miR-30a (- 3.95-fold, p = 0.024); miR-93 (- 3.63-fold, p = 0.022); miR-125a (- 1.70-fold, p = 0.038); and miR-195 (- 5.37-fold, p = 0.002), and after a 6-month period in 6 miRNAs: miR-17 (- 5.30-fold, p = 0.012), miR-20a (- 2.04-fold, p = 0.017), miR-20b (- 5.44-fold, p = 0.017), miR-93 (- 4.00-fold, p = 0.041), miR-101 (- 4.82-fold, p = 0.047) and miR-125b (- 3.65-fold, p = 0.025). Using time comparisons, only quitters had significant downregulation in miR-301b (- 2.29-fold, p = 0.038) after 6-month. Reductions in the number of smoked cigarettes was insufficient to change the plasma profile of miRNA after 6 months. Only quitting smoking (100% reduction) significantly downregulated miR-301b related to hypoxic conditions, promotion of cell proliferation, decreases in apoptosis, cancer development, and progression as increases in radiotherapy and chemotherapy resistance.
Collapse
Affiliation(s)
- Camila Dos Santos Arcas
- Department of Physiotherapy, LIM-54, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455 room 1150, São Paulo, São Paulo, 01246-930, Brazil
| | - Hui Tzu Lin-Wang
- Dante Pazzanese Institute of Cardiology São Paulo State, São Paulo, Brazil
| | - Iracema Ioco Kikuchi Umeda
- Department of Physiotherapy, LIM-54, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455 room 1150, São Paulo, São Paulo, 01246-930, Brazil
- Dante Pazzanese Institute of Cardiology São Paulo State, São Paulo, Brazil
| | | | | | - Antonio de Padua Mansur
- Department of Cardiopneumology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Mariangela Macchione
- Department of Pathology, LIM05, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Naomi Kondo Nakagawa
- Department of Physiotherapy, LIM-54, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455 room 1150, São Paulo, São Paulo, 01246-930, Brazil.
| |
Collapse
|
13
|
Guerriero I, Monaco G, Coppola V, Orlacchio A. Serum and Glucocorticoid-Inducible Kinase 1 (SGK1) in NSCLC Therapy. Pharmaceuticals (Basel) 2020; 13:ph13110413. [PMID: 33266470 PMCID: PMC7700219 DOI: 10.3390/ph13110413] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) remains the most prevalent and one of the deadliest cancers worldwide. Despite recent success, there is still an urgent need for new therapeutic strategies. It is also becoming increasingly evident that combinatorial approaches are more effective than single modality treatments. This review proposes that the serum and glucocorticoid-inducible kinase 1 (SGK1) may represent an attractive target for therapy of NSCLC. Although ubiquitously expressed, SGK1 deletion in mice causes only mild defects of ion physiology. The frequent overexpression of SGK1 in tumors is likely stress-induced and provides a therapeutic window to spare normal tissues. SGK1 appears to promote oncogenic signaling aimed at preserving the survival and fitness of cancer cells. Most importantly, recent investigations have revealed the ability of SGK1 to skew immune-cell differentiation toward pro-tumorigenic phenotypes. Future studies are needed to fully evaluate the potential of SGK1 as a therapeutic target in combinatorial treatments of NSCLC. However, based on what is currently known, SGK1 inactivation can result in anti-oncogenic effects both on tumor cells and on the immune microenvironment. A first generation of small molecules to inactivate SGK1 has already been already produced.
Collapse
Affiliation(s)
- Ilaria Guerriero
- Biogem Institute for Genetic Research Gaetano Salvatore, Ariano Irpino, 83031 Avellino, Italy; (I.G.); (G.M.)
| | - Gianni Monaco
- Biogem Institute for Genetic Research Gaetano Salvatore, Ariano Irpino, 83031 Avellino, Italy; (I.G.); (G.M.)
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: (V.C.); (A.O.); Tel.: +1-614-688-8038 (V.C.); +1-646-552-0641 (A.O.)
| | - Arturo Orlacchio
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: (V.C.); (A.O.); Tel.: +1-614-688-8038 (V.C.); +1-646-552-0641 (A.O.)
| |
Collapse
|
14
|
Zhang L, Yang F, Yan Q. Candesartan ameliorates vascular smooth muscle cell proliferation via regulating miR-301b/STAT3 axis. Hum Cell 2020; 33:528-536. [PMID: 32170715 DOI: 10.1007/s13577-020-00333-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 02/13/2020] [Indexed: 12/31/2022]
Abstract
Excessive vascular smooth muscle cell (VSMC) proliferation contributes to vascular remodeling and stroke during hypertension. Blockade of Angiotensin (AngII) type 1 receptor (AT1R) is shown to effectively attenuate VSMC proliferation and vascular remodeling, while the mechanisms underlying these protective effects are unclear. Here, we investigated whether the amelioration of VSMC proliferation mediated by candesartan, an AT1R blocker, could be associated with miRNA regulation. Based on the published data in rat aortic smooth muscle cells (RASMCs), we discovered that candesartan specifically reversed the AngII-induced decrease of miR-301b level in RASMCs and human aortic smooth muscle cells (HASMCs). Knockdown of miR-301b abolished candesartan-mediated inhibition of HASMC proliferation via promoting cell cycle transition. Computational analysis showed that miR-301b targets at 3'UTR of STAT3. MiR-301b upregulation inhibited the luciferase activity and protein expression of STAT3, whereas miR-301b knockdown increased STAT3 luciferase activity and expression. Furthermore, downregulation of STAT3 markedly abrogated the effects of miR-301b inhibition on candesartan-mediated HASMC proliferation, invasion, and migration. Collectively, this study suggests that miR-301b may be a novel molecular target of candesartan and provides a new understanding for the mechanisms underlying the cardiovascular effects of candesartan.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Pharmacy, Xiantao First People's Hospital, No. 29 Mianzhou Road, Xiantao, 433000, Hubei, China.
| | - Fan Yang
- Department of Pharmacy, Xiantao First People's Hospital, No. 29 Mianzhou Road, Xiantao, 433000, Hubei, China
| | - Qiong Yan
- Department of Pharmacy, Huazhong University of Science and Technology Hospital, Wuhan, 430074, Hubei, China
| |
Collapse
|
15
|
Zheng H, Bai L. Hypoxia induced microRNA-301b-3p overexpression promotes proliferation, migration and invasion of prostate cancer cells by targeting LRP1B. Exp Mol Pathol 2019; 111:104301. [PMID: 31442444 DOI: 10.1016/j.yexmp.2019.104301] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/19/2019] [Accepted: 08/20/2019] [Indexed: 01/21/2023]
Abstract
Prostate cancer is a high burden on society worldwide due to its high morbidity and mortality. Growing evidence has implicated microRNAs (miRNAs or miRs) in the occurrence and progression of prostate cancer. The present study was conducted with main emphasis put on the possible effect of hypoxia-induced miR-301b-3p on prostate cancer by targeting low-density lipoprotein receptor-related protein 1B (LRP1B). Firstly, the differentially expressed genes were identified by conducting microarray-based gene expression profiling of prostate cancer. Next, the expression of miR-301b-3p in prostate cancer cells was examined in cells treated with 1% oxygen or dimethyloxalylglycine (DMOG), and the cell line with the highest miR-301b-3p expression was selected for subsequent experiments. Subsequently, the target relationship between miR-301b-3p and LRP1B was identified. The effect of miR-301b-3p and LRP1B on cell proliferation, migration and invasion as well as tumorigenicity of transfected cells was examined using the gain- and loss-of-function approaches. Hypoxia induced miR-301b-3p was highly expressed while LRP1B was poorly expressed in prostate cancer. Moreover, miR-301b-3p could down-regulate LRP1B by interacting with LRP1B, which acted to promote the proliferation, migration and invasion abilities of prostate cancer cells in addition to tumor growth in vivo. In addition, up-regulation of LRP1B can reverse the promoting effect of miR-301b-3p on the aforementioned factors. Collectively, up-regulation of miR-301b-3p induced by hypoxia could potentially accelerate proliferation, migration and invasion of prostate cancer cells via the inhibitory effect on LRP1B expression, highlighting that miR-301b-3p may be instrumental for the therapeutic targeting of prostate cancer.
Collapse
Affiliation(s)
- Haiying Zheng
- Department of Cardiovascular Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Huhhot 010050, PR China
| | - Ligang Bai
- Department of Urology Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Huhhot 010050, PR China.
| |
Collapse
|
16
|
Ma X, Liang AL, Liu YJ. Research progress on the relationship between lung cancer drug-resistance and microRNAs. J Cancer 2019; 10:6865-6875. [PMID: 31839821 PMCID: PMC6909942 DOI: 10.7150/jca.31952] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 09/13/2019] [Indexed: 02/07/2023] Open
Abstract
Lung cancer, a malignant tumor with the highest death rate of cancer, seriously endangers human health. And its pathogenesis and mechanism of drug resistance has been partially clarified, especially for the signal pathway of epidermal growth factor receptor (EGFR). The targeting therapy of EGFR signaling pathway in non-small cell lung cancer (NSCLC) has achieved a certain effect, but the two mutation of EGFR and other mechanisms of lung cancer resistance still greatly reduce the therapeutic effect of chemotherapy on it. MicroRNA is an endogenous non coding RNA, which has a regulatory function after transcriptional level. Recent studies on the mechanism of lung cancer resistance have found that a variety of microRNAs are related to the mechanism of lung cancer drug-resistance. They can regulate lung cancer resistance by participating in signal pathways, drug resistance genes and cell apoptosis, thus affecting the sensitivity of cancer cells to drugs. Therefore, microRNAs can be used as a specific target for the treatment of lung cancer and plays a vital role in the early diagnosis, prognosis and treatment of lung cancer. This article reviews the mechanisms of lung cancer resistance and its relationship with microRNAs.
Collapse
Affiliation(s)
| | | | - Yong-Jun Liu
- Medical Molecular Diagnostics Key Laboratory of Guangdong & Departments of Biochemistry and Molecular Biology & Departments of Clinical Biochemistry, Guangdong Medical University, 523808, Dongguan, Guangdong, P.R. China
| |
Collapse
|
17
|
Fan H, Jin X, Liao C, Qiao L, Zhao W. MicroRNA-301b-3p accelerates the growth of gastric cancer cells by targeting zinc finger and BTB domain containing 4. Pathol Res Pract 2019; 215:152667. [PMID: 31585814 DOI: 10.1016/j.prp.2019.152667] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/10/2019] [Accepted: 09/24/2019] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) have been found to be aberrantly expressed and exert essential roles in the tumorigenesis and progression of gastric cancer (GC). miR-301b-3p has been recognized as a cancer-related miRNA in lung cancer, bladder cancer and hepatocellular carcinoma. However, the function of miR-301b-3p in GC progression and its underlying mechanism have not been studied yet. In this study, we found that miR-301b-3p expression was up-regulated in GC tissues compared to adjacent noncancerous tissues. Furthermore, the elevated levels of miR-301b-3p were detected in GC cell lines (SGC-7901, AGS, MKN-45 and MGC-803) as compared with GES-1 cells. Interestingly, GC tissues from patients with tumor size ≥ 5 cm and advanced tumor stages showed obvious higher levels of miR-301b-3p compared to matched controls. Functionally, miR-301b-3p knockdown prominently inhibited cell proliferation, and induced cell cycle arrest at G1 phase and apoptosis in MGC-803 cells. Meanwhile, ectopic expression of miR-301b-3p conversely regulated these biological behaviors of MKN-45 cells. Next, we found that miR-301b-3p knockdown increased, whereas miR-301b-3p overexpression reduced the expression of zinc finger and BTB domain containing 4 (ZBTB4) in GC cells. Accordingly, luciferase reporter assay identified ZBTB4 as a direct target of miR-301b-3p. ZBTB4 overexpression markedly restrained the growth of MGC-803 cells. More importantly, ZBTB4 silencing partially reversed miR-301b-3p knockdown-induced tumor suppressive effects on MGC-803 cells. In conclusion, we firstly revealed that miR-301-3p was highly expressed in GC and contributed to tumor progression via attenuating ZBTB4, which might provide a novel molecular-targeted strategy for GC treatment.
Collapse
Affiliation(s)
- Hui Fan
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Xianzhen Jin
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Chunyan Liao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Lina Qiao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China.
| | - Wei Zhao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China.
| |
Collapse
|
18
|
Guo Y, Yao B, Zhu Q, Xiao Z, Hu L, Liu X, Li L, Wang J, Xu Q, Yang L, Huang D. MicroRNA-301b-3p contributes to tumour growth of human hepatocellular carcinoma by repressing vestigial like family member 4. J Cell Mol Med 2019; 23:5037-5047. [PMID: 31207037 PMCID: PMC6653225 DOI: 10.1111/jcmm.14361] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/08/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are key regulators in the tumour growth and metastasis of human hepatocellular carcinoma (HCC). Increasing evidence suggests that miR-301b-3p functions as a driver in various types of human cancer. However, the expression pattern of miR-301b-3p and its functional role as well as underlying molecular mechanism in HCC remain poorly known. Our study found that miR-301b-3p expression was significantly up-regulated in HCC tissues compared to adjacent non-tumour tissues. Clinical association analysis revealed that the high level of miR-301b-3p closely correlated with large tumour size and advanced tumour-node-metastasis stages. Importantly, the high miR-301b-3p level predicted a prominent poorer overall survival of HCC patients. Knockdown of miR-301b-3p suppressed cell proliferation, led to cell cycle arrest at G2/M phase and induced apoptosis of Huh7 and Hep3B cells. Furthermore, miR-301b-3p knockdown suppressed tumour growth of HCC in mice. Mechanistically, miR-301b-3p directly bond to 3'UTR of vestigial like family member 4 (VGLL4) and negatively regulated its expression. The expression of VGLL4 mRNA was down-regulated and inversely correlated with miR-301b-3p level in HCC tissues. Notably, VGLL4 knockdown markedly repressed cell proliferation, resulted in G2/M phase arrest and promoted apoptosis of HCC cells. Accordingly, VGLL4 silencing rescued miR-301b-3p knockdown attenuated HCC cell proliferation, cell cycle progression and apoptosis resistance. Collectively, our results suggest that miR-301b-3p is highly expressed in HCC. miR-301b-3p facilitates cell proliferation, promotes cell cycle progression and inhibits apoptosis of HCC cells by repressing VGLL4.
Collapse
Affiliation(s)
- Yang Guo
- Graduate DepartmentBengBu Medical CollegeBengBuAnhui ProvinceChina
- Key Laboratory of Tumour Molecular Diagnosis and Individualized Medicine of Zhejiang ProvinceZhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College)HangzhouZhejiang ProvinceChina
| | - Bowen Yao
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Qiaojuan Zhu
- Department of Second Clinical Medical CollegeZhejiang Chinese Medical UniversityHangzhouZhejiang ProvinceChina
| | - Zunqiang Xiao
- Department of Second Clinical Medical CollegeZhejiang Chinese Medical UniversityHangzhouZhejiang ProvinceChina
| | - Linjun Hu
- The Medical College of Qindao UniversityQindaoShandong ProvinceChina
| | - Xin Liu
- Key Laboratory of Tumour Molecular Diagnosis and Individualized Medicine of Zhejiang ProvinceZhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College)HangzhouZhejiang ProvinceChina
| | - Lijie Li
- Key Laboratory of Tumour Molecular Diagnosis and Individualized Medicine of Zhejiang ProvinceZhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College)HangzhouZhejiang ProvinceChina
| | - Jiahui Wang
- School of Basic Medical SciencesShandong UniversityJinanShandong ProvinceChina
| | - Qiuran Xu
- Key Laboratory of Tumour Molecular Diagnosis and Individualized Medicine of Zhejiang ProvinceZhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College)HangzhouZhejiang ProvinceChina
| | - Liu Yang
- Key Laboratory of Tumour Molecular Diagnosis and Individualized Medicine of Zhejiang ProvinceZhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College)HangzhouZhejiang ProvinceChina
| | - Dongsheng Huang
- Key Laboratory of Tumour Molecular Diagnosis and Individualized Medicine of Zhejiang ProvinceZhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College)HangzhouZhejiang ProvinceChina
| |
Collapse
|
19
|
Hong X, Zhang Z, Pan L, Ma W, Zhai X, Gu C, Zhang Y, Bi X, Huang W, Pei H, Liu Z. MicroRNA-301b promotes the proliferation and invasion of glioma cells through enhancing activation of Wnt/β-catenin signaling via targeting Glypican-5. Eur J Pharmacol 2019; 854:39-47. [PMID: 30951720 DOI: 10.1016/j.ejphar.2019.03.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/14/2019] [Accepted: 03/28/2019] [Indexed: 02/08/2023]
Abstract
Accumulating evidence has suggested that Glypican-5 (GPC5) is a tumor suppressor gene in many types of cancers. However, whether GPC5 is involved in glioma remains unknown. This study was designed to explore the expression, biological function and regulatory mechanism of GPC5 in glioma. Our results demonstrated that GPC5 expression was significantly decreased in multiple glioma cell lines. Gain-of-function experiments showed that the ectopic expression of GPC5 markedly inhibited the proliferation, invasion and Wnt/β-catenin signaling of glioma cell lines. GPC5 was identified as a target gene of microRNA-301b (miR-301b). Further data showed that miR-301b expression was significantly up-regulated in glioma tissues and cell lines. In addition, miR-301b expression was inversely correlated with GPC5 expression in clinical glioma tissues. The overexpression of miR-301b promoted the proliferation, invasion and Wnt/β-catenin signaling of glioma cell lines, whereas the inhibition of miR-301b showed the opposite effect. However, the silencing of GPC5 significantly reversed the antitumor effect of miR-301b inhibition. Overall, our results revealed a tumor suppressive role of GPC5 in glioma and suggested that GPC5 expression was regulated by miR-301b. Our study indicates that the inhibition of miR-301b represses the proliferation and invasion of glioma cells by up-regulating GPC5 expression.
Collapse
Affiliation(s)
- Xin Hong
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Zhengliang Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Longfei Pan
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Wei Ma
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Xu Zhai
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Changwei Gu
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Yaru Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Xiaoju Bi
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Wan Huang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Honghong Pei
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China.
| | - Zhong Liu
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China.
| |
Collapse
|
20
|
Qi L, Gao C, Feng F, Zhang T, Yao Y, Wang X, Liu C, Li J, Li J, Sun C. MicroRNAs associated with lung squamous cell carcinoma: New prognostic biomarkers and therapeutic targets. J Cell Biochem 2019; 120:18956-18966. [PMID: 31241205 DOI: 10.1002/jcb.29216] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/31/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Lingyu Qi
- College of First Clinical MedicineShandong University of Traditional Chinese Medicine Jinan Shandong PR China
| | - Chundi Gao
- College of First Clinical MedicineShandong University of Traditional Chinese Medicine Jinan Shandong PR China
| | - Fubin Feng
- Department of OncologyWeifang Traditional Chinese Hospital Weifang Shandong PR China
| | - Tingting Zhang
- College of Traditional Chinese MedicineShandong University of Traditional Chinese Medicine Jinan Shandong PR China
| | - Yan Yao
- Clinical Medical CollegesWeifang Medical University Weifang Shandong PR China
| | - Xue Wang
- College of Basic MedicineQingdao University Qingdao Shandong PR China
| | - Cun Liu
- College of Traditional Chinese MedicineShandong University of Traditional Chinese Medicine Jinan Shandong PR China
| | - Jia Li
- Clinical Medical CollegesWeifang Medical University Weifang Shandong PR China
| | - Jie Li
- College of First Clinical MedicineShandong University of Traditional Chinese Medicine Jinan Shandong PR China
| | - Changgang Sun
- Department of OncologyAffiliated Hospital of Weifang Medical University Weifang Shandong PR China
- Department of OncologyAffiliated Hospital of Shandong University of Traditional Chinese Medicine Jinan Shandong PR China
| |
Collapse
|
21
|
Li P, Xing W, Xu J, Yuan D, Liang G, Liu B, Ma H. microRNA-301b-3p downregulation underlies a novel inhibitory role of long non-coding RNA MBNL1-AS1 in non-small cell lung cancer. Stem Cell Res Ther 2019; 10:144. [PMID: 31113460 PMCID: PMC6528355 DOI: 10.1186/s13287-019-1235-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/31/2019] [Accepted: 04/14/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the second most prevalent cause of cancer-related fatality. Long non-coding RNAs (lncRNAs) have been observed to exercise functions in NSCLC. Here, the current study aimed to explore the potential mechanism of lncRNA MBNL1-AS1 in NSCLC. METHODS Microarray analysis was performed to screen the differentially expressed lncRNA associated with NSCLC and its potential mechanism. The lncRNA MBNL1-AS1 expression was quantified in 56 paired NSCLC and adjacent normal tissue samples. In an attempt to outline the function of lncRNA MBNL1-AS1 in NSCLC and to identify the interaction among lncRNA MBNL1-AS1, microRNA-301b-3p (miR-301b-3p) and TGFBR2, ectopic expression, depletion, and reporter assay experiments were conducted to detect CSC proliferation, migration, invasion, drug resistance, and sphere formation in NSCLC. RESULTS Initially, the intersection among lncRNA MBNL1-AS1, miR-301b-3p, and TGFBR2 was observed in NSCLC. While a poor expression of lncRNA MBNL1-AS1 and TGFBR2, along with a high expression of miR-301b-3p was observed in NSCLC tissues. A demonstration of lncRNA MBNL1-AS1 restoration significantly decreased CSC proliferation, migration, invasion, drug resistance, and sphere formation in NSCLC. LncRNA MBNL1-AS1 functioned as a sponge of miR-301b-3p, which inverted the inhibitory role of lncRNA MBNL1-AS1 in CSC proliferation, migration, invasion, drug resistance, and sphere formation in NSCLC. LncRNA MBNL1-AS1 positively regulated TGFBR2 which was a target gene of miR-301b-3p. At last, upregulated lncRNA MBNL1-AS1 or depleted miR-301b-3p suppressed the xenograft tumor formation in vivo. CONCLUSION Collectively, the present study suggests an inhibitory role of lncRNA MBNL1-AS1 in CSC drug resistance of NSCLC by upregulating miR-301b-3p-targeted TGFBR2.
Collapse
Affiliation(s)
- Peng Li
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008 Henan Province People’s Republic of China
| | - Wenqun Xing
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008 Henan Province People’s Republic of China
| | - Jinliang Xu
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008 Henan Province People’s Republic of China
| | - Dongfeng Yuan
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008 Henan Province People’s Republic of China
| | - Guanghui Liang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008 Henan Province People’s Republic of China
| | - Baoxing Liu
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008 Henan Province People’s Republic of China
| | - Haibo Ma
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008 Henan Province People’s Republic of China
| |
Collapse
|
22
|
Zhou Y, Li Z, Ding Y, Zhang P, Wang J. WITHDRAWN: MicroRNA-340 suppresses pancreatic cancer growth by targeting BICD2. Pancreatology 2019:S1424-3903(19)30556-3. [PMID: 31153780 DOI: 10.1016/j.pan.2019.05.453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/05/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Yong Zhou
- Department of General Surgery, The Second Affiliated Hospital of Shandong University, Ji'nan City, Shandong Province, 250033, PR China
| | - Zhaohua Li
- Department of Medical Imaging, The Second Affiliated Hospital of Shandong University, Ji'nan City, Shandong Province, 250033, PR China.
| | - Yinglu Ding
- Department of General Surgery, The Second Affiliated Hospital of Shandong University, Ji'nan City, Shandong Province, 250033, PR China
| | - Peng Zhang
- Department of General Surgery, The Second Affiliated Hospital of Shandong University, Ji'nan City, Shandong Province, 250033, PR China
| | - Jinqing Wang
- Department of General Surgery, The Second Affiliated Hospital of Shandong University, Ji'nan City, Shandong Province, 250033, PR China
| |
Collapse
|
23
|
Ouyang P, An W, Chen R, Zhang H, Chen D, Jiang E, Zhu W, Li P, Guo H, Chen Z, Wang S. IL-37 promotes cell apoptosis in cervical cancer involving Bim upregulation. Onco Targets Ther 2019; 12:2703-2712. [PMID: 31114224 PMCID: PMC6497894 DOI: 10.2147/ott.s201664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/21/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Growing evidence has indicated that interleukin-37 (IL-37) is a potential anticancer molecule that mainly plays an inhibiting role in different kinds of cancers, but data for the role of IL-37 on cell apoptosis in cancers remains rare. The present study aimed to explore the role of IL-37 in cell apoptosis in cervical cancer, and the involved apoptosis-related molecules. Methods: IL-37 was overexpressed by transfecting the pIRES2-EGFP-IL-37 plasmid in HeLa and C33A cells. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to detect the mRNA expression of IL-37, Bcl-2, Bax and Bim. Western blotting was performed to detect the protein expression of IL-37 and Bim. Cell apoptosis was detected by flow cytometry. Results: IL-37 upregulated the mRNA expression levels of Bim by 138.40% for HeLa (P<0.05) and 58.95% for C33A (P<0.05), and increased the protein expression levels of BimL by 69.10% (P<0.05) and 56.66% (P<0.05) in HeLa and C33A, respectively. Overexpression of IL-37 increased the apoptosis rates by 152.86% for HeLa (P<0.01) and 25.4% for C33A (P<0.05). Knockdown of Bim by specific siRNA interference fragments (SiBim) reduced the apoptosis rates by 36.00% for HeLa (P<0.05) and 14.66% for C33A (P<0.05). Compared with the IL-37 overexpression group, the apoptosis rate in cotransfecting the IL-37 overexpression plasmid and SiBim group decreased by approximately 31% (P<0.05) and 24.35% (P<0.05) in HeLa and C33A, respectively. Conclusion: IL-37 upregulated Bim in cervical cancer cells. Furthermore, IL-37 can promote cervical cancer cell apoptosis, but Bim knockdown decreased this promotion through IL-37. Thus, IL-37 can promote cervical cancer cell apoptosis, which involve the upregulation of Bim.
Collapse
Affiliation(s)
- Ping Ouyang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong Province 523808, People's Republic of China
| | - Weifang An
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong Province 523808, People's Republic of China.,Pathology Department , Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong Province, 518110, People's Republic of China
| | - Renhuai Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong Province 523808, People's Republic of China.,Pathology Department, Dongguan Tungwah Hospital, Dongguan, Guangdong Province, 523110, People's Republic of China
| | - He Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong Province 523808, People's Republic of China
| | - Danrui Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong Province 523808, People's Republic of China
| | - Enping Jiang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong Province 523808, People's Republic of China.,Basic Medicine Department, Guangdong Medical University, Dongguan, Guangdong Province 523808, People's Republic of China
| | - Wei Zhu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong Province 523808, People's Republic of China.,Basic Medicine Department, Guangdong Medical University, Dongguan, Guangdong Province 523808, People's Republic of China
| | - Peng Li
- Basic Medicine Department, Guangdong Medical University, Dongguan, Guangdong Province 523808, People's Republic of China
| | - Hongsheng Guo
- Basic Medicine Department, Guangdong Medical University, Dongguan, Guangdong Province 523808, People's Republic of China
| | - Zhangquan Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong Province 523808, People's Republic of China
| | - Sen Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong Province 523808, People's Republic of China.,Basic Medicine Department, Guangdong Medical University, Dongguan, Guangdong Province 523808, People's Republic of China
| |
Collapse
|
24
|
Song H, Li D, Wu T, Xie D, Hua K, Hu J, Deng X, Ji C, Deng Y, Fang L. MicroRNA-301b promotes cell proliferation and apoptosis resistance in triple-negative breast cancer by targeting CYLD. BMB Rep 2019. [PMID: 30269739 PMCID: PMC6283026 DOI: 10.5483/bmbrep.2018.51.11.168] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aberrant expression of microRNAs (miRNAs) plays important roles in carcinogenesis and tumor progression. However, the expression and biological role of miR-301b in triple-negative breast cancer (TNBC) remains unclear. Here we aimed to evaluate the roles and mechanisms of miR-301b in TNBC cells. miR-301b expression was assessed in TNBC specimens and cell lines by quantitative Real-Time PCR (qRT-PCR). TNBC cells were transfected with miR-301b mimics, inhibitors or Cylindromatosis (CYLD) small interfering RNA (siRNA) using Lipofectamine 2000. The functional roles of miR-301b were determined by cell proliferation, colony formation, and apoptosis assays. Western blots and qRT-PCR were used to measure the expression of mRNAs and proteins in the cells. We found that miR-301b was upregulated in TNBC specimens and cell lines. Overexpression of miR-301b promoted cell proliferation in TNBC cells, while inhibited the apoptosis induced by 5-FU. CYLD was downregulated by miR-301b at both mRNA and protein levels in TNBC cells. Dual-luciferase report assay confirmed that miR-301b downregulated CYLD by direct interaction with the 3′-untranslated region(3′-UTR) of CYLD mRNA. NF-κB activation was mechanistically associated with miR-301b-mediated downregulation of CYLD. However, inhibition of miR-301b reversed all the effects of miR-301b. In conclusion, miR-301b plays an oncogenic role in TNBC possibly by downregulating CYLD and subsequently activating NF-κB p65, and this may provide a novel therapeutic approach for TNBC.
Collapse
Affiliation(s)
- Hongming Song
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Dengfeng Li
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Tianqi Wu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Dan Xie
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Kaiyao Hua
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jiashu Hu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Xiaochong Deng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Changle Ji
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yijun Deng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Lin Fang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
25
|
Jin Q, Zhou J, Xu X, Huang F, Xu W. Hypoxia-inducible factor-1 signaling pathway influences the sensitivity of HCC827 cells to gefitinib. Oncol Lett 2019; 17:4034-4043. [PMID: 30881515 DOI: 10.3892/ol.2019.10025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 01/11/2019] [Indexed: 12/25/2022] Open
Abstract
The majority of patients with non-small cell lung cancer (NSCLC) with activating epidermal growth factor receptor (EGFR) mutations inevitably progress in stage despite an initial substantial and rapid response to EGFR-tyrosine kinase inhibitors (EGFR-TKIs). Previous research indicates that hypoxia may be associated with resistance to EGFR-TKIs in EGFR mutation-positive NSCLC. Therefore, the present study regulated the activity of hypoxia-inducible factor-1 (HIF-1) signaling pathway to observe if it is able to alter the sensitivity of lung cancer cells to gefitinib. The present study selected 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) and dimethyloxalylglycine (DMOG) as a HIF-1 signaling pathway inhibitor and activator, respectively, on HCC827 cells. Cells were incubated with different treatments for different durations: A blank control, DMOG, gefitinib, or DMOG and gefitinib combined, for 36 and 48 h; and then a blank control, YC-1, gefitinib, or YC-1 and gefitinib combined, for 16 and 28 h. A western blot analysis assay was performed to evaluate the protein expression levels of HIF-1α and phosphorylated hepatocyte growth factor receptor (p-MET), an MTT assay was used to determine cell proliferation, a colony formation assay was used to investigate the colony-forming ability and a wound healing assay was used to test the cell migration ability. Additionally, Pearson's correlation analysis was used to evaluate the correlation between p-Met and HIF-1α expression levels. Finally, it was identified that gefitinib and DMOG combined notably improve the growth and cell migration ability of HCC827 cells, compared with gefitinib alone. When gefitinib and YC-1 were combined, the inhibiting effect on the growth and cell migration ability of HCC827 cells was substantially enhanced, compared with the control cells. Pearson's correlation analysis revealed that the p-Met expression level had a strong positive correlation with HIF-1α expression levels. Thus, it was concluded that the HIF-1 signaling pathway influences the sensitivity of HCC827 cells to gefitinib. The positive correlation between p-Met and HIF-1α expression levels may be the underlying mechanism of the HIF-1 signaling pathway influencing the sensitivity of HCC827 cells to gefitinib.
Collapse
Affiliation(s)
- Qian Jin
- Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China.,Department of Respiratory Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Jianying Zhou
- Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xianrong Xu
- Department of Respiratory Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Feihua Huang
- Department of Respiratory Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Weihua Xu
- Department of Respiratory Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| |
Collapse
|
26
|
Song H, Li D, Wu T, Xie D, Hua K, Hu J, Deng X, Ji C, Deng Y, Fang L. MicroRNA-301b promotes cell proliferation and apoptosis resistance in triple-negative breast cancer by targeting CYLD. BMB Rep 2018; 51:602-607. [PMID: 30269739 PMCID: PMC6283026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/28/2018] [Accepted: 09/27/2018] [Indexed: 12/17/2023] Open
Abstract
Aberrant expression of microRNAs (miRNAs) plays important roles in carcinogenesis and tumor progression. However, the expression and biological role of miR-301b in triple-negative breast cancer (TNBC) remains unclear. Here we aimed to evaluate the roles and mechanisms of miR-301b in TNBC cells. miR-301b expression was assessed in TNBC specimens and cell lines by quantitative Real-Time PCR (qRT-PCR). TNBC cells were transfected with miR-301b mimics, inhibitors or Cylindromatosis (CYLD) small interfering RNA (siRNA) using Lipofectamine 2000. The functional roles of miR-301b were determined by cell proliferation, colony formation, and apoptosis assays. Western blots and qRT-PCR were used to measure the expression of mRNAs and proteins in the cells. We found that miR-301b was upregulated in TNBC specimens and cell lines. Overexpression of miR-301b promoted cell proliferation in TNBC cells, while inhibited the apoptosis induced by 5-FU. CYLD was downregulated by miR-301b at both mRNA and protein levels in TNBC cells. Dual-luciferase report assay confirmed that miR-301b downregulated CYLD by direct interaction with the 3'-untranslated region(3'-UTR) of CYLD mRNA. NF-κB activation was mechanistically associated with miR-301b-mediated downregulation of CYLD. However, inhibition of miR-301b reversed all the effects of miR-301b. In conclusion, miR-301b plays an oncogenic role in TNBC possibly by downregulating CYLD and subsequently activating NF-κB p65, and this may provide a novel therapeutic approach for TNBC. [BMB Reports 2018; 51(11): 602-607].
Collapse
Affiliation(s)
- Hongming Song
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072,
China
| | - Dengfeng Li
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072,
China
| | - Tianqi Wu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072,
China
| | - Dan Xie
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072,
China
| | - Kaiyao Hua
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072,
China
| | - Jiashu Hu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072,
China
| | - Xiaochong Deng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072,
China
| | - Changle Ji
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072,
China
| | - Yijun Deng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072,
China
| | - Lin Fang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072,
China
| |
Collapse
|
27
|
Huang S, Zhou D, Li YX, Ming ZY, Li KZ, Wu GB, Chen C, Zhao YN. In vivo and in vitro effects of microRNA-221 on hepatocellular carcinoma development and progression through the JAK-STAT3 signaling pathway by targeting SOCS3. J Cell Physiol 2018; 234:3500-3514. [PMID: 30370582 DOI: 10.1002/jcp.26863] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC), as the third leading cancer-caused deaths, prevails with high mortality, and affects more than half a million individuals per year worldwide. A former study revealed that microRNA-221 (miR-221) was involved in cell proliferation of liver cancer and HCC development. The current study aims to evaluate whether miR-221 targeting SOCS3 affects HCC through JAK-STAT3 signaling pathway. A series of miR-221 mimic, miR-221 inhibitor, siRNA against SOCS3, and SOCS3 plasmids were introduced to SMMC7721 cells with the highest miR-221 expression assessed. The expression of JAK-STAT3 signaling pathway-related genes and proteins was determined by Western blot analysis. Cell apoptosis, viability, migration, and invasion were evaluated by means of flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide, and transwell assays, respectively. HCC xenograft in nude mice was performed to measure HCC tumor growth. miR-221 was found to be highly expressed but SOCS3 was poorly expressed in HCC tissues. miR-221 expression was correlated with lymph node metastasis (LNM) and tumor node metastasis (TNM) of HCC, and SOCS3 expression was correlated with LNM, differentiation and TNM of HCC. SOCS3 is a target gene of miR-221. MiR-221 mimic or si-SOCS3 exposure was found to induce cell viability, migration, and invasion, and reduce apoptosis. MiR-221 inhibitor was observed to have inhibitory effects on HCC cell proliferation, migration, and invasion. Moreover, the expression of JAK-STAT3 signaling pathway was suppressed by miR-221 inhibitor. Downregulated miR-221 expression could promote its target gene SOCS3 to inhibit the proliferation, invasion and migration of HCC cells by repressing JAK-STAT3 signaling pathway.
Collapse
Affiliation(s)
- Shan Huang
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, China
| | - Da Zhou
- Department of Hematology Oncology, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, China
| | - Yu-Xuan Li
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, China
| | - Zhi-Yong Ming
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, China
| | - Ke-Zhi Li
- Department of Experimental Research, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, China
| | - Guo-Bin Wu
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, China
| | - Chuang Chen
- Department of Traditional Chinese Medicine, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, China
| | - Yin-Nong Zhao
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
28
|
Li S, Liu Y, Rui Y, Tang L, Achilefu S, Gu Y. Dual target gene therapy to EML4-ALK NSCLC by a gold nanoshell-based system. Am J Cancer Res 2018; 8:2621-2633. [PMID: 29774063 PMCID: PMC5956997 DOI: 10.7150/thno.24469] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/22/2018] [Indexed: 11/05/2022] Open
Abstract
Although EML4-ALK transforming fusion gene is represented in only 8% of non-small cell lung cancer (NSCLC) cases, its expression is partly responsive for the failure of current NSCLC treatments. Preventing secondary mutation of the ALK protein through direct gene manipulation could overcome NSCLC drug resistance. Method: In this study, we developed a gold nanoshell (HAuNs) drug carrier for delivery and selective photo-thermal release of genes that target ALK and microRNA-301 in NSCLC. Additionally, the densely-coated nanoshell adsorbed high amounts of the positively-charged anticancer drug doxorubicin (DOX), generating an exciting multidimensional treatment strategy that includes gene-, thermal- and chemo- therapy. Results: The ALK mRNA and microRNA-301 genes as the double targets exhibited the combined effect. The drug carrier system significantly improved the drug accumulation in tumor tissues due to the enhanced vascular permeability by photothermal effect, dense spherical structure and RGD peptide modification. In vitro and in vivo results demonstrated the multiple therapeutic effects of the gold nanoshell-based system was better than the monotherapy. Conclusion: The above results indicated the gold nanoshell-based system would be a promising translational nano-formulation platform for effective treatment of EML4-ALK-positive NSCLC.
Collapse
|
29
|
Fadejeva I, Olschewski H, Hrzenjak A. MicroRNAs as regulators of cisplatin-resistance in non-small cell lung carcinomas. Oncotarget 2017; 8:115754-115773. [PMID: 29383199 PMCID: PMC5777811 DOI: 10.18632/oncotarget.22975] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 11/15/2017] [Indexed: 12/29/2022] Open
Abstract
With more than 80% of all diagnosed lung cancer cases, non-small cell lung cancer (NSCLC) remains the leading cause of cancer death worldwide. Exact diagnosis is mostly very late and advanced-stage NSCLCs are inoperable at admission. Tailored therapies with tyrosine kinase inhibitors are only available for a minority of patients. Thus, chemotherapy is often the treatment of choice. As first-line chemotherapy for NSCLCs, platinum-based substances (e.g. cisplatin, CDDP) are mainly used. Unfortunately, the positive effects of CDDP are frequently diminished due to development of drug resistance and negative influence of microenvironmental factors like hypoxia. MicroRNAs (miRNAs) are small, non-coding molecules involved in the regulation of gene expression and modification of biological processes like cell proliferation, apoptosis and cell response to chemotherapeutics. Expression of miRNAs is often deregulated in lung cancer compared to corresponding non-malignant tissue. In this review we summarize the present knowledge about the effects of miRNAs on CDDP-resistance in NSCLCs. Further, we focus on miRNAs deregulated by hypoxia, which is an important factor in the development of CDDP-resistance in NSCLCs. This review will contribute to the general understanding of miRNA-regulated biological processes in NSCLC, with special focus on the role of miRNA in CDDP-resistance.
Collapse
Affiliation(s)
- Irina Fadejeva
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.,Ludwig Boltzmann Institute of Lung Vascular Research, Medical University of Graz, Graz, Austria
| | - Andelko Hrzenjak
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.,Ludwig Boltzmann Institute of Lung Vascular Research, Medical University of Graz, Graz, Austria
| |
Collapse
|
30
|
MiR-301b-3p/3584-5p enhances low-dose mono-n-butyl phthalate (MBP)-induced proliferation by targeting Rasd1 in Sertoli cells. Toxicol In Vitro 2017; 47:79-88. [PMID: 29162477 DOI: 10.1016/j.tiv.2017.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/09/2017] [Accepted: 11/15/2017] [Indexed: 02/02/2023]
Abstract
To investigate the possible molecular mechanism of low concentration plasticizer mono-n-butyl phthalate (MBP) -induced juvenile Sertoli cells (SCs) proliferation, we evaluated global alterations of miRNA and mRNA expression in rat SCs treated with 0.1mM MBP. Microarray analysis revealed that miR-3584-5p and miR-301b-3p were up-regulated and their common target gene Dexamethasone-induced Ras-related protein 1 (Rasd1) was down-regulated. Further work suggested that SCs proliferation induced by low concentration MBP in vitro might be mediated by Rasd1 regulating ERK1/2 signaling pathway. The present study is first to investigate the effect of low-dose MBP on SCs proliferation and may enhance our understanding on the modes of action of low concentration MBP on male reproductive system. We hope the results will contribute to explain the causes of precocious puberty and testicular tumors induced by exogenous chemicals.
Collapse
|
31
|
Yan L, Wang Y, Liang J, Liu Z, Sun X, Cai K. MiR-301b promotes the proliferation, mobility, and epithelial-to-mesenchymal transition of bladder cancer cells by targeting EGR1. Biochem Cell Biol 2017; 95:571-577. [PMID: 28521108 DOI: 10.1139/bcb-2016-0232] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We investigated the role of miR-301b in the modulation of the proliferation, migration, and invasion of bladder cancer (BLCA) cells. The expression of miR-301b and EGR1 (early growth response gene 1) mRNA were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). A dual-luciferase reporter gene system was used to identify the target relationship between miR-301b and EGR1. Cell proliferation, cell cycle, and apoptosis were analyzed by MTT assay, colony-forming assay, and flow cytometry, respectively. Cell motility and invasiveness were assessed by wound healing and Transwell assays. The expression of proteins involved in epithelial-to-mesenchymal transition (EMT) and EGR1 were determined by Western blot. Our results showed that miR-301b was up-regulated while EGR1 was down-regulated in BLCA tissues compared with adjacent normal tissues. The proliferation, migration, and invasiveness of T24 cells (a kind of human BLCA cell) were suppressed by decreasing miR-301b expression or increasing EGR1 expression. In addition, miR-301b promoted EMT signaling by influencing the expression of related proteins. In conclusion, miR-301b promotes the proliferation, migration, and aggressiveness of human BLCA cells by inhibiting the expression of EGR1.
Collapse
Affiliation(s)
- Lei Yan
- a Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| | - Yan Wang
- b Department of Pathogenic Microbiology and Immunology, Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| | - Jun Liang
- a Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| | - Zhixin Liu
- a Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| | - Xiaodong Sun
- a Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| | - Kerui Cai
- a Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| |
Collapse
|
32
|
Yu DL, Zhang T, Wu K, Li Y, Wang J, Chen J, Li XQ, Peng XG, Wang JN, Tan LG. MicroRNA-448 suppresses metastasis of pancreatic ductal adenocarcinoma through targeting JAK1/STAT3 pathway. Oncol Rep 2017; 38:1075-1082. [PMID: 28677798 DOI: 10.3892/or.2017.5781] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 06/26/2017] [Indexed: 11/06/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of malignant pancreatic tumor. MicroRNAs (miRNAs) are a group of small, non-protein coding, endogenous RNAs that play critical roles in tumorigenesis and progression of PDAC. In the present study, we demonstrated that miR-448 expression was downregulated in PDAC tissues and cell lines. Clinical association analysis indicated that low expression of miR-448 was associated with poor prognostic features and conferred a significant reduced survival of PDAC patients. Overexpression of miR-448 suppressed PDAC cell migration and invasion, while its loss showed the opposite effects on these cellular processes. In vivo experiments revealed that miR-488 restoration prohibited liver metastasis of PDAC in nude mice. Moreover, we found that Janus kinase 1 (JAK1) was a direct target gene of miR-448 in PDAC cells. We further demonstrated that the expression of JAK1 mRNA was upregulated in PDAC tissues. Notably, the expression of JAK1 mRNA was inversely correlated with the level of miR-448 in PDAC tissues. In addition, JAK1 knockdown showed similar effects of miR-448 on the metastasis of PDAC cells. JAK1/STAT3 pathway may be involved in the function of miR-448 in PDAC cells. Taken together, these findings suggest that miR-448 functions as a tumor suppressor in the development of PDAC through targeting the JAK1/STAT3 pathway.
Collapse
Affiliation(s)
- Dan-Li Yu
- Department of Emergency, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Tao Zhang
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Kun Wu
- The 2nd Department of Internal Medicine, Dongfeng Huaguo Hospital of Shiyan City, Shiyan, Hubei 442049, P.R. China
| | - Yan Li
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Juan Wang
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jun Chen
- Department of Emergency, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xiao-Quan Li
- Department of Emergency, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xing-Guo Peng
- Department of Emergency, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jia-Ning Wang
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Li-Guo Tan
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
33
|
Wu X, Yan L, Liu Y, Xian W, Wang L, Ding X. MicroRNA-448 suppresses osteosarcoma cell proliferation and invasion through targeting EPHA7. PLoS One 2017; 12:e0175553. [PMID: 28604772 PMCID: PMC5467824 DOI: 10.1371/journal.pone.0175553] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/28/2017] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma is the most common type of malignant bone tumor, often affecting adolescents and children. MicroRNAs (miRNAs) are a group of small, non-protein coding, endogenous RNAs that play critical roles in osteosarcoma tumorigenesis. In our study, we demonstrated that miR-448 expression was downregulated in osteosarcoma tissues and cell lines. Overexpression of miR-448 suppressed osteosarcoma cell proliferation, colony formation and migration. Moreover, we found that EPHA7 was a direct target gene of miR-448 in osteosarcoma cells. We further demonstrated that the EPHA7 expression level was upregulated in osteosarcoma tissues. Interestingly, the expression level of EPHA7 was inversely correlated with the expression level of miR-448 in osteosarcoma tissues. In addition, elevated expression of miR-448 suppressed osteosarcoma cell proliferation and invasion through targeting EPHA7. Taken together, these findings suggest that miR-448 functioned as a tumor suppressor gene in the development of osteosarcoma through targeting EPHA7.
Collapse
Affiliation(s)
- Xiangkun Wu
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang, Henan, China
| | - Lihua Yan
- Department of Medical Oncology, Nanyang Second People's Hospital, Nanyang, Henan, China
- * E-mail:
| | - Yongxi Liu
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang, Henan, China
| | - Wenfeng Xian
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang, Henan, China
| | - Liuyu Wang
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang, Henan, China
| | - Xunmeng Ding
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang, Henan, China
| |
Collapse
|