1
|
Zeng S, Zhu Y, Su C, Jiang Z, You Y, Zhu D, Fan Q. Integrating serum metabolomics analysis and network pharmacology to reveal the potential mechanism of Shengmai Jianghuang San in the treatment of nasopharyngeal carcinoma. Biomed Chromatogr 2024; 38:e5981. [PMID: 39113411 DOI: 10.1002/bmc.5981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 10/19/2024]
Abstract
Shengmai Jianghuang San (SMJHS) is a traditional Chinese herbal compound reported to inhibit Nasopharyngeal Carcinoma (NPC) progression and enhance radiosensitivity. However, the specific active ingredients and regulatory mechanisms of SMJHS against NPC, particularly under hypoxic conditions, remain unclear. In this study, Sprague-Dawley (SD) rats were gavaged with Shengmai Jianghuang San (SMJHS), and their blood was collected from the abdominal aorta. UHPLC-Q-Exactive orbitrap MS/MS was used to identify the metabolite profiles of SMJHS drug-containing serum. A molecular network of the active compositions in SMJHS targeting NPC was constructed through network pharmacology and molecular docking. The HIF-1α/VEGF pathway was in key positions. The effects of SMJHS on the proliferation, migration, and radiosensitivity of hypoxic NPC cells were assessed by in vitro experiments. NPC cell lines stably overexpressing HIF-1α were established using a lentivirus to investigate the regulation of HIF-1α/VEGF signaling in hypoxic NPC cells by SMJHS. Through a combination of network pharmacological analysis, cellular biofunctional validation, and molecular biochemical experiments, our study found that SMJHS had an anti-proliferative effect on NPC cells cultured under hypoxic conditions, inhibiting their migration and increasing their radiosensitivity. Additionally, SMJHS suppressed the expression of HIF-1α and VEGFA, exhibiting potential as an effective option for improving NPC treatment.
Collapse
Affiliation(s)
- Siying Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuanchao Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chao Su
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ziqing Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yanyi You
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Daoqi Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Thoracic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Qin Fan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Luo C, Chen G, Li R, Peng S, Zhang P, Wang F, Yu S, Zhu Y, Zhang J. Juglone suppresses vasculogenic mimicry in glioma through inhibition of HuR-mediated VEGF-A expression. Biochem Pharmacol 2024; 227:116458. [PMID: 39102993 DOI: 10.1016/j.bcp.2024.116458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/05/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Vasculogenic mimicry (VM) serves as a vascular-like channel that provides important substances for tumor growth and is a primary factor in glioblastoma (GBM) drug resistance. Human Antigen R (HuR)-an mRNA-binding protein-is highly expressed in GBM, closely related to tumor progression, and deemed a potential drug target. Although some small-molecule compounds have been identified to disrupt HuR binding to target mRNA, they remain in the preclinical research stage, suggesting the need for further validation and development of HuR inhibitors. In our study, we aim to screen for potential HuR inhibitors and investigate their efficacy and molecular mechanisms in GBM. We employed the fluorescence polarization method to identify HuR inhibitors from a natural compound library, confirming the efficacy of juglone in effectively inhibiting the binding of HuR to AREVegf-a. Further validation of the binding of juglone to HuR at the protein level was conducted through electrophoretic mobility shift analysis, surface plasmon resonance, and molecular docking. Furthermore, juglone demonstrated inhibitory effects on glioma growth and VM formation in vitro and in vivo. Moreover, it was observed that juglone reversed epithelial-mesenchymal transition by inhibiting the VEGF-A/VEGFR2/AKT/SNAIL signaling pathway. Finally, we established the capability of juglone to target HuR in U251 cells through HuR knockdown, mRNA stability, and cell thermal shift assays. Therefore, this study identifies juglone as a novel HuR inhibitor, potentially offering promise as a lead compound for anti-VM therapy in GBM by targeting HuR. Abbreviations: AKT, protein kinase B; ARE, adenine-and uridine-rich elements; CETSA, cellular thermal shift assay; DMEM, Dulbecco's modified Eagle's medium; ELISA, enzyme linked immune sorbent assay; EMSA, electrophoretic mobility shift assay; EMT, epithelial mesenchymal transition; FP, fluorescence polarization; GBM, glioblastoma; HTS, high-throughput screening; HuR, human antigen R; IF, Immunofluorescence; PAS, periodic acid-Schiff; PI3K, phosphoinositide-3 kinase; qRT-PCR, quantitative real-time PCR; RRMs, RNA recognition motifs; SPR, surface plasmon resonance. TMZ, temozolomide; VM, vasculogenic mimicry; VEGF-A, Vascular endothelial growth factor-A; VEGFR2, Vascular endothelial growth factor receptor-2.
Collapse
Affiliation(s)
- Chunying Luo
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Guzhou Chen
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Ruixiang Li
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Shoujiao Peng
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Pei Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Feiyun Wang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Shaopeng Yu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yuying Zhu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Jiange Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
3
|
Peng J, Chen Y, Yin A. JAM3 promotes cervical cancer metastasis by activating the HIF-1α/VEGFA pathway. BMC Womens Health 2024; 24:293. [PMID: 38760803 PMCID: PMC11100123 DOI: 10.1186/s12905-024-03127-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/02/2024] [Indexed: 05/19/2024] Open
Abstract
Cervical cancer is the fourth most common cancer and the leading cause of mortality among women worldwide. Tumor metastasis is an important cause of poor prognosis. Determining the exact mechanisms of metastasis and potential targeted therapies is urgently needed. Junctional adhesion molecule 3 (JAM3) is an important member of the TJ tight junction (TJ) family, and its biological function in cervical cancer needs to be further clarified. We found that JAM3 was highly expressed in cervical cancer patients with lymph node metastasis and that high expression of JAM3 promoted cervical cancer cell metastasis both in vitro and in vivo. In addition, overexpression of JAM3 induces epithelial-mesenchymal transition (EMT). Moreover, silencing JAM3 suppressed cervical cancer cell migration and invasion in vitro. Finally, JAM3 overexpression activated the HIF-1α/VEGFA pathway. In conclusion, our results suggested that JAM3 promotes cervical cancer cell migration and invasion by activating the HIF-1α/VEGFA pathway. JAM3 may be a promising biomarker and effective therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Jiali Peng
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, P. R. China
| | - Yao Chen
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, P. R. China
| | - Aijun Yin
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, P. R. China.
| |
Collapse
|
4
|
Zhang J, Ouyang F, Gao A, Zeng T, Li M, Li H, Zhou W, Gao Q, Tang X, Zhang Q, Ran X, Tian G, Quan X, Tang Z, Zou J, Zeng Y, Long Y, Li Y. ESM1 enhances fatty acid synthesis and vascular mimicry in ovarian cancer by utilizing the PKM2-dependent warburg effect within the hypoxic tumor microenvironment. Mol Cancer 2024; 23:94. [PMID: 38720298 PMCID: PMC11077861 DOI: 10.1186/s12943-024-02009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND The hypoxic tumor microenvironment is a key factor that promotes metabolic reprogramming and vascular mimicry (VM) in ovarian cancer (OC) patients. ESM1, a secreted protein, plays an important role in promoting proliferation and angiogenesis in OC. However, the role of ESM1 in metabolic reprogramming and VM in the hypoxic microenvironment in OC patients has not been determined. METHODS Liquid chromatography coupled with tandem MS was used to analyze CAOV3 and OV90 cells. Interactions between ESM1, PKM2, UBA2, and SUMO1 were detected by GST pull-down, Co-IP, and molecular docking. The effects of the ESM1-PKM2 axis on cell glucose metabolism were analyzed based on an ECAR experiment. The biological effects of the signaling axis on OC cells were detected by tubule formation, transwell assay, RT‒PCR, Western blot, immunofluorescence, and in vivo xenograft tumor experiments. RESULTS Our findings demonstrated that hypoxia induces the upregulation of ESM1 expression through the transcription of HIF-1α. ESM1 serves as a crucial mediator of the interaction between PKM2 and UBA2, facilitating the SUMOylation of PKM2 and the subsequent formation of PKM2 dimers. This process promotes the Warburg effect and facilitates the nuclear translocation of PKM2, ultimately leading to the phosphorylation of STAT3. These molecular events contribute to the promotion of ovarian cancer glycolysis and vasculogenic mimicry. Furthermore, our study revealed that Shikonin effectively inhibits the molecular interaction between ESM1 and PKM2, consequently preventing the formation of PKM2 dimers and thereby inhibiting ovarian cancer glycolysis, fatty acid synthesis and vasculogenic mimicry. CONCLUSION Our findings demonstrated that hypoxia increases ESM1 expression through the transcriptional regulation of HIF-1α to induce dimerization via PKM2 SUMOylation, which promotes the OC Warburg effect and VM.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Fan Ouyang
- Department of Cardiology, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Anbo Gao
- Department of Cardiology, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
- Clinical Research Institute, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tian Zeng
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ming Li
- Trauma Center, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Hui Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Wenchao Zhou
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qing Gao
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xing Tang
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Qunfeng Zhang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaomin Ran
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Gang Tian
- Department of Rehabilitation, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Xiyun Quan
- Department of Pathology, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Zhenzi Tang
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Juan Zou
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yifei Zeng
- Department of Oncology, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong, China.
| | - Yunzhu Long
- Department of Infectious Disease, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| |
Collapse
|
5
|
Xu ZY, Han J, Yang K, Zhang GM, Jiao MN, Liang SX, Yan YB, Chen W. HSP27 promotes vasculogenic mimicry formation in human salivary adenoid cystic carcinoma via the AKT-MMP-2/9 pathway. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 137:515-528. [PMID: 38553306 DOI: 10.1016/j.oooo.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 01/06/2024] [Accepted: 02/20/2024] [Indexed: 04/30/2024]
Abstract
PURPOSE To explore the role and mechanism of heat shock protein 27 (HSP27) in SACC VM formation. STUDY DESIGN Immunohistochemistry and double staining with cluster of differentiation 31 (CD31) and periodic acid-Schiff (PAS) were used to detect HSP27 expression and VM in 70 SACC tissue samples separately. Quantitative real-time polymerase chain reaction (qRT-PCR), western blot analysis, and immunofluorescence were used to detect gene and protein expression. HSP27 in SACC cells were overexpression or downregulated by transfecting HSP27 or short hairpin RNA target HSP27 (sh-HSP27). The migration and invasion abilities of SACC cells were detected using wound healing and Transwell invasion assays. The VM formation ability of the cells in vitro was detected using a Matrigel 3-dimensional culture. RESULTS HSP27 expression was positively correlated with VM formation and affected the prognosis of patients. In vitro, HSP27 upregulation engendered VM formation and the invasion and migration of SACC cells. Mechanistically, HSP27 upregulation increased Akt phosphorylation and subsequently increased downstream matrix metalloproteinase 2 and 9 expressions. CONCLUSION HSP27 may plays an important role in VM formation in SACC via the AKT-MMP-2/9 signalling pathway.
Collapse
Affiliation(s)
- Zhao-Yuan Xu
- Department of Oral Medical Center, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241000, China; Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241000, China; Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin 300041, China; Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin 300041, China
| | - Jing Han
- Department of Oral Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin 300041, China; Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin 300041, China
| | - Kun Yang
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin 300041, China; Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin 300041, China
| | - Guan-Meng Zhang
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin 300041, China; Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin 300041, China
| | - Mai-Ning Jiao
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin 300041, China; Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin 300041, China
| | - Su-Xia Liang
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin 300041, China.
| | - Ying-Bin Yan
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin 300041, China; Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin 300041, China.
| | - Wei Chen
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin 300041, China; Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin 300041, China.
| |
Collapse
|
6
|
Tang H, Chen L, Liu X, Zeng S, Tan H, Chen G. Pan-cancer dissection of vasculogenic mimicry characteristic to provide potential therapeutic targets. Front Pharmacol 2024; 15:1346719. [PMID: 38694917 PMCID: PMC11061449 DOI: 10.3389/fphar.2024.1346719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/30/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction Vasculogenic mimicry (VM) represents a novel form of tumor angiogenesis that is associated with tumor invasiveness and drug resistance. However, the VM landscape across cancer types remains poorly understood. In this study, we elucidate the characterizations of VM across cancers based on multi-omics data and provide potential targeted therapeutic strategies. Methods Multi-omics data from The Cancer Genome Atlas was used to conduct comprehensive analyses of the characteristics of VM related genes (VRGs) across cancer types. Pan-cancer vasculogenic mimicry score was established to provide a depiction of the VM landscape across cancer types. The correlation between VM and cancer phenotypes was conducted to explore potential regulatory mechanisms of VM. We further systematically examined the relationship between VM and both tumor immunity and tumor microenvironment (TME). In addition, cell communication analysis based on single-cell transcriptome data was used to investigate the interactions between VM cells and TME. Finally, transcriptional and drug response data from the Genomics of Drug Sensitivity in Cancer database were utilized to identify potential therapeutic targets and drugs. The impact of VM on immunotherapy was also further clarified. Results Our study revealed that VRGs were dysregulated in tumor and regulated by multiple mechanisms. Then, VM level was found to be heterogeneous among different tumors and correlated with tumor invasiveness, metastatic potential, malignancy, and prognosis. VM was found to be strongly associated with epithelial-mesenchymal transition (EMT). Further analyses revealed cancer-associated fibroblasts can promote EMT and VM formation. Furthermore, the immune-suppressive state is associated with a microenvironment characterized by high levels of VM. VM score can be used as an indicator to predict the effect of immunotherapy. Finally, seven potential drugs targeting VM were identified. Conclusion In conclusion, we elucidate the characteristics and key regulatory mechanisms of VM across various cancer types, underscoring the pivotal role of CAFs in VM. VM was further found to be associated with the immunosuppressive TME. We also provide clues for the research of drugs targeting VM. Our study provides an initial overview and reference point for future research on VM, opening up new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Haibin Tang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liuxun Chen
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xvdong Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengjie Zeng
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Tan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Zhu Q, Zhang X, Lu F, Miao S, Zhang C, Liu Z, Gao Z, Qi M, An X, Geng P, Wang S, Ren H, Han F, Zhang R, Zha D. RUNX1-BMP2 promotes vasculogenic mimicry in laryngeal squamous cell carcinoma via activation of the PI3K-AKT signaling pathway. Cell Commun Signal 2024; 22:227. [PMID: 38610001 PMCID: PMC11010429 DOI: 10.1186/s12964-024-01605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Laryngeal squamous cell carcinoma (LSCC) is one of the most common malignant tumors of the head and neck. Vasculogenic mimicry (VM) is crucial for tumor growth and metastasis and refers to the formation of fluid channels by invasive tumor cells rather than endothelial cells. However, the regulatory mechanisms underlying VM during the malignant progression of LSCC remain largely unknown. METHODS Gene expression and clinical data for LSCC were obtained from the TCGA and Gene GEO (GSE27020) databases. A risk prediction model associated with VM was established using LASSO and Cox regression analyses. Based on their risk scores, patients with LSCC were categorized into high- and low-risk groups. The disparities in immune infiltration, tumor mutational burden (TMB), and functional enrichment between these two groups were examined. The core genes in LSCC were identified using the machine learning (SVM-RFE) and WGCNA algorithms. Subsequently, the involvement of bone morphogenetic protein 2 (BMP2) in VM and metastasis was investigated both in vitro and in vivo. To elucidate the downstream signaling pathways regulated by BMP2, western blotting was performed. Additionally, ChIP experiments were employed to identify the key transcription factors responsible for modulating the expression of BMP2. RESULTS We established a new precise prognostic model for LSCC related to VM based on three genes: BMP2, EPO, and AGPS. The ROC curves from both TCGA and GSE27020 validation cohorts demonstrated precision survival prediction capabilities, with the nomogram showing some net clinical benefit. Multiple algorithm analyses indicated BMP2 as a potential core gene. Further experiments suggested that BMP2 promotes VM and metastasis in LSCC. The malignant progression of LSCC is promoted by BMP2 via the activation of the PI3K-AKT signaling pathway, with the high expression of BMP2 in LSCC resulting from its transcriptional activation by runt-related transcription factor 1 (RUNX1). CONCLUSION BMP2 predicts poor prognosis in LSCC, promotes LSCC VM and metastasis through the PI3K-AKT signaling pathway, and is transcriptionally regulated by RUNX1. BMP2 may be a novel, precise, diagnostic, and therapeutic biomarker of LSCC.
Collapse
Affiliation(s)
- Qingwen Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xinyu Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Fei Lu
- Department of Otorhinolaryngology Head and Neck Surgery, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Siyu Miao
- Department of Otorhinolaryngology Head and Neck Surgery, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Chunyang Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Zhenzhen Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Zejun Gao
- Department of Otorhinolaryngology Head and Neck Surgery, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Meihao Qi
- Department of Otorhinolaryngology Head and Neck Surgery, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Xiaogang An
- Department of Otorhinolaryngology Head and Neck Surgery, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Panling Geng
- Department of Otorhinolaryngology Head and Neck Surgery, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Sufang Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Hongbo Ren
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Fugen Han
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Ruyue Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - DingJun Zha
- Department of Otorhinolaryngology Head and Neck Surgery, Xijing Hospital, The Air Force Military Medical University, Xi'an, China.
| |
Collapse
|
8
|
Murugesan A, Bharath C, Balakrishnan S, Kandasamy S, Priyadharshini I, Ravi S. Expression of HIF-1α and Nestin in oral squamous cell carcinoma and its association with vasculogenic mimicry. J Cancer Res Ther 2024; 20:176-180. [PMID: 38554317 DOI: 10.4103/jcrt.jcrt_1834_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 04/01/2024]
Abstract
AIM To evaluate and correlate the expression of HIF1-α and Nestin in tumor center and periphery of nonmetastatic, and recurrent oral squamous cell carcinoma (OSCC) and its association with vasculogenic mimicry. MATERIALS AND METHODS About 60 histopathological proven cases of OSCC with proper tumor center and periphery were collected. Among them 25 are nonmetastatic, 25 metastatic, and 10 recurrent cases of OSCC. Immunohistochemical analysis of HIF, Nestin, and CD31/PAS (periodic acid Schiff) was done. RESULTS Based on the extent of tumor cells stained, staining intensity and index score, expression of both HIF and Nestin was highly significant in periphery of metastatic OSCC with a P value of 0.003* and 0.001*. The total number of vessels expressed in nonmetastatic, metastatic, and recurrent OSCC was not significant but the overall expression of CD31/PAS was significant in the periphery of the tumor with a P value of 0.024*. Correlating the overall expression, HIF showed a positive relation with Nestin and CD31/PAS with a P value of 0.026* and 0.038* in nonmetastatic OSCC using Pearson's correlation coefficient analysis. CONCLUSION Based on the above results hypoxia plays a vital role in cancer stem cells maintenance with the formation of vessel-like structures by tumor cells at an early stage of cancer development.
Collapse
Affiliation(s)
- Ambika Murugesan
- Department of Oral Pathology and Oral Microbiology, Vinayaka Mission's Sankarachariyar Dental College, VMRF (DU) Salem, Tamil Nadu, India
| | - C Bharath
- Department of Community Dentistry, Vinayaka Mission's Sankarachariyar Dental College, VMRF (DU) Salem, Tamil Nadu, India
| | - Sekar Balakrishnan
- Department of Oral Pathology and Oral Microbiology, Vinayaka Mission's Sankarachariyar Dental College, VMRF (DU) Salem, Tamil Nadu, India
| | - Saravanan Kandasamy
- Department of Oral and Maxillofacial Surgery, Vivekananda Dental College for Women, Elaiyampalayam, Tiruchengode, Namakkal, Tamil Nadu, India
| | - Indra Priyadharshini
- Department of Oral Pathology and Oral Microbiology, Vinayaka Mission's Sankarachariyar Dental College, VMRF (DU) Salem, Tamil Nadu, India
| | - Saranyan Ravi
- Department of Periodontics, Vinayaka Mission's Sankarachariyar Dental College, VMRF (DU) Salem, Tamil Nadu, India
| |
Collapse
|
9
|
Huang J, Wang C, Hou Y, Tian Y, Li Y, Zhang H, Zhang L, Li W. Molecular mechanisms of Thrombospondin-2 modulates tumor vasculogenic mimicry by PI3K/AKT/mTOR signaling pathway. Biomed Pharmacother 2023; 167:115455. [PMID: 37696083 DOI: 10.1016/j.biopha.2023.115455] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023] Open
Abstract
Vasculogenic mimicry (VM) differs from the classical tumor angiogenesis model. VM does not depend on endothelial cells; instead, highly aggressive tumor cells mimic endothelial cells to form a vascular-like channel structure. VM mediated by tumor cells is significantly and positively associated with a poor prognosis and low survival rates in patients with highly aggressive cancer. In the treatment of highly aggressive malignancies, the presence of VM is considered an important reason for the unsatisfactory clinical efficacy of anti-tumor-angiogenesis therapy (e.g., therapy targeting vascular endothelial growth factor A). Many targeted therapeutic drugs based on traditional tumor blood vessels have been used clinically. Although some progress has been made in certain tumors, problems such as drug resistance have restricted the expected therapeutic effects. Thrombospondin 2 (THBS2) is one of the most important genes associated with angiogenesis, and this gene exerts angiogenesis-related functions through the PI3K/AKT signaling pathway. Although the PI3K/AKT/mTOR signaling pathway is closely related to the progression of VM, the mechanism by which the promising biomarker THBS2 participates in and regulates tumor VM by activating the PI3K/AKT/mTOR signaling pathway is unclear. In this review, we analyze the monomer structure and biological activity of THBS2, the structure and potential synthesis mechanisms of VM, and the complex mechanisms between THBS2, the PI3K/AKT/mTOR signaling pathway, and VM.
Collapse
Affiliation(s)
- Ju Huang
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Congcong Wang
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yixuan Hou
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yuanyuan Tian
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yanru Li
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Haiying Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Lihong Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Wei Li
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
10
|
Tian X, Si Q, Liu M, Shi J, Zhao R, Xiong Y, Yu L, Cui H, Guan H. Advance in vasculogenic mimicry in ovarian cancer (Review). Oncol Lett 2023; 26:456. [PMID: 37736556 PMCID: PMC10509778 DOI: 10.3892/ol.2023.14043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
Ovarian cancer (OC) is a common and highly prevalent malignant tumor in women, associated with a high mortality rate, easy recurrence and easy metastasis, which is predominantly at an advanced stage when detected in patients. This renders the cancer more difficult to treat, and consequently it is also associated with a low survival rate, being the malignancy with the highest mortality rate among the various gynecological tumors. As an important factor affecting the development and metastasis of OC, understanding the underlying mechanism(s) through which it is formed and developed is crucial in terms of its treatment. At present, the therapeutic methods of angiogenic mimicry for OC remain in the preliminary stages of exploration and have not been applied in actual clinical practice. In the present review, various signaling pathways and factors affecting angiogenic mimicry in OC were described, and the chemical synthetic drugs, natural compound extracts, small-molecule protein antibodies and their associated targets, and so on, that target angiogenic mimicry in the treatment of OC, were discussed. The purpose of this review was to provide new research ideas and potential theoretical support for the discovery of novel therapeutic targets for OC that may be applied in the clinic, with the aim of effectively reducing its metastasis and recurrence rates.
Collapse
Affiliation(s)
- Xinyuan Tian
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, P.R. China
| | - Qin Si
- Scientific Research Department, Inner Mongolia Cancer Hospital and Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010020, P.R. China
| | - Menghe Liu
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, P.R. China
| | - Jianping Shi
- School of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, P.R. China
| | - Rongwei Zhao
- Department of Obstetrics and Gynecology, Inner Mongolia Medical University, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Yang Xiong
- Department of Hepatobiliary Surgery, General Surgery Department of Ordos Central Hospital, Ordos, Inner Mongolia Autonomous Region 017000, P.R. China
| | - Lei Yu
- Department of Pharmacy, Traditional Chinese Medicine Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia Autonomous Region 010020, P.R. China
| | - Hongwei Cui
- Scientific Research Department, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Haibin Guan
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, P.R. China
| |
Collapse
|
11
|
Saha D, Mitra D, Alam N, Sen S, Mustafi SM, Majumder PK, Majumder B, Murmu N. Lupeol and Paclitaxel cooperate in hindering hypoxia induced vasculogenic mimicry via suppression of HIF-1α-EphA2-Laminin-5γ2 network in human oral cancer. J Cell Commun Signal 2023; 17:591-608. [PMID: 36063341 PMCID: PMC10409936 DOI: 10.1007/s12079-022-00693-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022] Open
Abstract
Vasculogenic mimicry (VM), defined as an endothelial cell independent alternative mechanism of blood and nutrient supply by dysregulated tumor cells, is associated with poor prognosis in oral squamous cell carcinoma (OSCC). Here we aim to investigate the underlying molecular mechanism of the synergistic effect of phytochemical Lupeol and standard microtubule inhibitor Paclitaxel in reversing the hypoxia induced VM formation in OSCC. The results demonstrated that the hypoxia induced upregulation of HIF-1α led to augmentation of signaling cascade associated with extracellular matrix remodeling and EMT phenotypes that are mechanistically linked to VM. Induction of HIF-1α altered the expression of EMT/CSC markers (E-Cadherin, Vimentin, Snail, Twist and CD133) and enhanced the ability of cell migration/invasion and spheroid formation. Subsequently, the targeted knockdown of HIF-1α by siRNA led to the perturbation of matrigel mediated tube formation as well as of Laminin-5γ2 expression with the down-regulation of VE-Cadherin, total and phosphorylated (S-897) EphA2, pERK1/2 and MMP2. We also observed that Lupeol in association with Paclitaxel resulted to apoptosis and the disruption of VM associated phenotypes in vitro. We further validated the impact of this novel interventional approach in a patient derived tumor explant culture model of oral malignancy. The ex vivo tumor model mimicked the in vitro anti-VM potential of Lupeol-Paclitaxel combination through down-regulating HIF-1α/EphA2/Laminin-5γ2 cascade. Together, our findings elucidated mechanistic underpinning of hypoxia induced Laminin-5γ2 driven VM formation highlighting that Lupeol-Paclitaxel combination may serve as novel therapeutic intervention in perturbation of VM in human OSCC.
Collapse
Affiliation(s)
- Depanwita Saha
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Debarpan Mitra
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Neyaz Alam
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Sagar Sen
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Saunak Mitra Mustafi
- Department of Pathology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Pradip K Majumder
- Department of Cancer Biology, Praesidia Biotherapeutics, 1167 Massachusetts Avenue, Arlington, MA, 02476, USA
| | - Biswanath Majumder
- Departments of Cancer Biology, Molecular Profiling and Molecular Pathology, Mitra Biotech, Bangalore, India
- Oncology Division, Bugworks Research, C-CAMP, Bangalore, India
| | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India.
| |
Collapse
|
12
|
Ma X, Geng Z, Wang S, Yu Z, Liu T, Guan S, Du S, Zhu C. The driving mechanism and targeting value of mimicry between vascular endothelial cells and tumor cells in tumor progression. Biomed Pharmacother 2023; 165:115029. [PMID: 37343434 DOI: 10.1016/j.biopha.2023.115029] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023] Open
Abstract
The difficulty and poor prognosis of malignant tumor have always been a difficult problem to be solved. The internal components of solid tumor are complex, including tumor cells, stromal cells and immune cells, which play an important role in tumor proliferation, migration, metastasis and drug resistance. Hence, targeting of only the tumor cells will not likely improve survival. Various studies have reported that tumor cells and endothelial cells have high plasticity, which is reflected in the fact that they can simulate each other's characteristics by endothelial-mesenchymal transition (EndMT) and vasculogenic mimicry (VM). In this paper, this mutual mimicry concept was integrated and reviewed for the first time, and their similarities and implications for tumor development are discussed. At the same time, possible therapeutic methods are proposed to provide new directions and ideas for clinical targeted therapy and immunotherapy of tumor.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Clinical Medicine, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, Liaoning 110001, China
| | - Ziang Geng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Sanhao Street 36, Heping District, Shenyang, Liaoning 110004, China
| | - Siqi Wang
- Department of Radiation Oncology, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, Liaoning 110001, China
| | - Zhongxue Yu
- Department of Cardiovascular Ultrasound, The First hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, Liaoning 110001, China
| | - Tiancong Liu
- Department of Otolaryngology, Shengjing Hospital of China Medical University, Sanhao Street 36, Heping District, Shenyang, Liaoning 110004, China.
| | - Shu Guan
- Department of Surgical Oncology and Breast Surgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, Liaoning 110001, China.
| | - Shaonan Du
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Sanhao Street 36, Heping District, Shenyang, Liaoning 110004, China.
| | - Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, Liaoning 110001, China.
| |
Collapse
|
13
|
Hoch CC, Stögbauer F, Wollenberg B. Unraveling the Role of Epithelial-Mesenchymal Transition in Adenoid Cystic Carcinoma of the Salivary Glands: A Comprehensive Review. Cancers (Basel) 2023; 15:cancers15112886. [PMID: 37296849 DOI: 10.3390/cancers15112886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Salivary adenoid cystic carcinoma (SACC) is considered a challenging malignancy; it is characterized by a slow-growing nature, yet a high risk of recurrence and distant metastasis, presenting significant hurdles in its treatment and management. At present, there are no approved targeted agents available for the management of SACC and systemic chemotherapy protocols that have demonstrated efficacy remain to be elucidated. Epithelial-mesenchymal transition (EMT) is a complex process that is closely associated with tumor progression and metastasis, enabling epithelial cells to acquire mesenchymal properties, including increased mobility and invasiveness. Several molecular signaling pathways have been implicated in the regulation of EMT in SACC, and understanding these mechanisms is crucial to identifying new therapeutic targets and developing more effective treatment approaches. This manuscript aims to provide a comprehensive overview of the latest research on the role of EMT in SACC, including the molecular pathways and biomarkers involved in EMT regulation. By highlighting the most recent findings, this review offers insights into potential new therapeutic strategies that could improve the management of SACC patients, especially those with recurrent or metastatic disease.
Collapse
Affiliation(s)
- Cosima C Hoch
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Fabian Stögbauer
- Institute of Pathology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Barbara Wollenberg
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| |
Collapse
|
14
|
Fan X, Huang J, Hu B, Zhou J, Chen L. Tumor-expressed B7-H3 promotes vasculogenic mimicry formation rather than angiogenesis in non-small cell lung cancer. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04790-3. [PMID: 37129607 DOI: 10.1007/s00432-023-04790-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Vasculogenic mimicry (VM), an alternative microvascular circulation independent of angiogenesis, is formed by aggressive cancer cells. Tumor-expressed B7-H3 has been reported to promote VM formation in hepatocellular carcinoma and modulate angiogenesis in breast cancer and colorectal cancer. However, its effects on VM generation and angiogenesis in non-small cell Lung cancer (NSCLC) remained to be elucidated. METHODS CRISPR/Cas9-mediated B7-H3 knockout (KO) was conducted in NSCLC A549 and H3255 cells. The expression of VM-related proteins, including vascular endothelial (VE)-cadherin and matrix metalloproteinase 14 (MMP14), and the secretion of vascular endothelial growth factor (VEGF) were measured by western blotting and chemiluminescence assay in both B7-H3 KO and mock-edited A549 and H3255 cells. To examine VM formation, a three-dimensional (3D) culture model was used for B7-H3 KO and mock A549 and H3255 cells. For in vivo analysis, xenograft mice models were established using B7-H3 KO and mock-edited A549 cells, and immunohistochemical (CD31) and histochemical (periodic acid-Schiff, PAS) double staining were performed to identify VM and endothelial vessels in tumor tissues. Finally, specific signaling inhibitors were used to analyze B7-H3-induced signaling pathway responsible for VE-cadherin and MMP14 expression and VM generation. RESULTS Higher expression of B7-H3 was associated with a worse prognosis and more advanced T-category in NSCLC. CRISPR/Cas9-mediated B7-H3 KO in A549 and H3255 cells led to decreased expression of VE-cadherin and MMP14; however, the secretion of VEGF by the two cell lines remained unchanged. In the 3D cell culture model, both B7-H3 KO A549 and H3255 cells showed a significant reduction in the formation of capillary-like tubular structures compared to mock-edited cells. In the in vivo xenograft model, mock-edited A549 cells formed excessive PAS+ CD31- VM channels, while B7-H3 KO restrained VM formation in the xenograft tumors. However, no significant differences were found in CD31+ endothelial vessels between xenografts formed by B7-H3 KO and mock-edited A549 cells. Finally, we analyzed the signaling pathway responsible for B7-H3-induced VM formation and found that selective inhibition of the phosphoinositide 3-kinase(PI3K)/protein kinase B (AKT) hyperactivation by LY294002 was associated with decreased expression of MMP14 and VE-cadherin, and in vitro VM formation by both A549 and H3255 cells. CONCLUSIONS Tumor-expressed B7-H3 acts via PI3K/AKT signaling pathway to promote VM formation by NSCLC cells while bears no effects on angiogenesis in NSCLC.
Collapse
Affiliation(s)
- Xingyu Fan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Junfeng Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bingqi Hu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Zhou
- Department of Laboratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liwen Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
15
|
Dong ZX, Chan SH, Chen SN, Li M, Zhang XD, Liu XQ. TJP1 promotes vascular mimicry in bladder cancer by facilitating VEGFA expression and transcriptional activity through TWIST1. Transl Oncol 2023; 32:101666. [PMID: 37031603 PMCID: PMC10119961 DOI: 10.1016/j.tranon.2023.101666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 04/11/2023] Open
Abstract
Tight junction protein 1 (TJP1) is a recently identified prominent regulator of bladder cancer (BLCA) angiogenesis and tumorigenesis. Vascular mimicry (VM) is a newly described tumor feature and is correlated with an increased risk of tumor metastasis. However, the relationship between TJP1 expression and VM in bladder cancer remains elusive. In the present study, we report a novel function for TJP1 in accommodating VM to promote tumor progression. We found that the elevated TJP1 expression was positively related to VM in patients and xenograft tumor models in bladder cancer. Enforced expression of TJP1 increased VM of BLCA cells in vitro and in vivo by elevating Vascular endothelial growth factor A (VEGFA) levels. Furthermore, VM induced by TJP1 overexpression was significantly blocked by the VEGFA and VEGFR inhibitors (Bevacizumab and Sunitinib). Mechanistically, TJP1 promoted VEGFA transcriptional and protein level in a TWIST1-dependent manner. Taken together, our study reveals that TJP1-regulated VEGFA overexpression may indicate a potential therapeutic target for clinical intervention in the early tumor neovascularization of bladder cancer.
Collapse
Affiliation(s)
- Zhao-Xia Dong
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Sze-Hoi Chan
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Shu-Na Chen
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Miao Li
- Department of Hematology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.
| | - Xing-Ding Zhang
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China.
| | - Xue-Qi Liu
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|
16
|
Shi J, Sha R, Yang X. Role of the human solute carrier family 14 member 1 gene in hypoxia-induced renal cell carcinoma occurrence and its enlightenment to cancer nursing. BMC Mol Cell Biol 2023; 24:10. [PMID: 36934247 PMCID: PMC10024409 DOI: 10.1186/s12860-023-00473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Hypoxia is considered a critical contributor to renal cell carcinoma progression, including invasion and metastasis. However, the potential mechanisms by which it promotes invasion and metastasis have not yet been clarified. The purpose of this study was to investigate the role and mechanism of hypoxia-induced renal cell carcinoma and provide evidence-based medical proof for improvements to postoperative nursing of renal cell carcinoma patients. A total of 64 patients with renal cell carcinoma were divided into the observation group (nursing based on oxygen administration) and the control group (conventional nursing). Renal function indexes, serum inflammatory factors, and tumor markers were evaluated. The human renal cell carcinoma cell line A498 under hypoxia/normoxia was used as an experimental model in vitro and the biological characteristics and mitochondrial function of the cells were assessed. RESULTS Nursing based on oxygen administration decreased the value of renal function indexes, serum inflammatory factors, and tumor markers in renal cell carcinoma patients. Hypoxia was found to induce A498 cell invasion, migration, and the release of inflammatory cytokines, while repressing human solute carrier family 14 member 1 gene expression. Elevated levels of solute carrier family 14 member 1 expression induced mitochondrial reactive oxygen species accumulation, diminished the intracellular adenosine triphosphate level, and destroyed both mitochondrial membrane potential integrity and mitochondrial morphology. Overexpression of the solute carrier family 14 member 1 gene could abolish hypoxia-induced invasion, reduce the migration of A498 cells, inhibit the hypoxia-induced release of inflammatory cytokines, and arrest the cell cycle at the G1/S checkpoint. CONCLUSIONS These data reveal that nursing based on oxygen administration can improve the clinical efficacy of renal cell carcinoma therapies, being safe and effective. The results elucidate a mechanism wherein the solute carrier family 14 member 1 gene participates in the occurrence and development of hypoxia-induced renal cell carcinoma in a mitochondria-dependent manner.
Collapse
Affiliation(s)
- Jing Shi
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Qinhuai District, 68 Changle Road, Nanjing, 210012, China
| | - Ruili Sha
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Qinhuai District, 68 Changle Road, Nanjing, 210012, China
| | - Xilan Yang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Qinhuai District, 68 Changle Road, Nanjing, 210012, China.
| |
Collapse
|
17
|
Gao L, Chen W, Li L, Li J, Kongling W, Zhang Y, Yang X, Zhao Y, Bai J, Wang F. Targeting soluble epoxide hydrolase promotes osteogenic-angiogenic coupling via activating SLIT3/HIF-1α signalling pathway. Cell Prolif 2023:e13403. [PMID: 36636821 DOI: 10.1111/cpr.13403] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/14/2023] Open
Abstract
Type H vessels have recently been identified to modulate osteogenesis. Epoxyeicostrioleic acids (EETs) have an essential contribution to vascular homeostasis. However, whether increased EETs with soluble epoxide hydrolase (sEH) inhibitor TPPU enhance the coupling of angiogenesis and osteogenesis remains largely unknown. The effects of TPPU on cross-talk between co-cultured human umbilical vein endothelial cells (HUVECs) and human dental pulp stem cells (hDPSCs), and on long bone growth and calvarial defect repair in mice were investigated in vitro and in vivo. TPPU enhanced osteogenic differentiation of co-cultured HUVECs and hDPSCs in vitro and increased type H vessels, and long bone growth and bone repair of calvarial defect. Mechanistically, TPPU promoted cell proliferation and angiogenesis, reclined cell apoptosis, and significantly increased CD31hi EMCNhi endothelial cells (ECs) and SLIT3 and HIF-1α expression levels in co-cultured HUVECs and hDPSCs. Knockdown of Slit3 in hDPSCs or Hif-1α in HUVECs impaired the formation of CD31hi EMCNhi ECs and reversed TPPU-induced osteogenesis. We defined a previously unidentified effect of TPPU coupling angiogenesis and osteogenesis. TPPU induced type H vessels by upregulating the expression of hDPSCs-derived SLIT3, which resulted in the activation of ROBO1/YAP1/HIF-1α signalling pathway in ECs. Targeting metabolic pathways of EETs represents a new strategy to couple osteogenesis and angiogenesis, sEH is a promising therapeutic target for bone regeneration and repair.
Collapse
Affiliation(s)
- Lu Gao
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China.,The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, China
| | - Weixian Chen
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Lijun Li
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Juanjuan Li
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Wenyao Kongling
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Yaoyang Zhang
- School of Stomatology, Dalian Medical University, Dalian, China.,The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, China
| | - Xueping Yang
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Yanrong Zhao
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Jie Bai
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Fu Wang
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China.,The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, China
| |
Collapse
|
18
|
Wang H, Mi K. Emerging roles of endoplasmic reticulum stress in the cellular plasticity of cancer cells. Front Oncol 2023; 13:1110881. [PMID: 36890838 PMCID: PMC9986440 DOI: 10.3389/fonc.2023.1110881] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Cellular plasticity is a well-known dynamic feature of tumor cells that endows tumors with heterogeneity and therapeutic resistance and alters their invasion-metastasis progression, stemness, and drug sensitivity, thereby posing a major challenge to cancer therapy. It is becoming increasingly clear that endoplasmic reticulum (ER) stress is a hallmark of cancer. The dysregulated expression of ER stress sensors and the activation of downstream signaling pathways play a role in the regulation of tumor progression and cellular response to various challenges. Moreover, mounting evidence implicates ER stress in the regulation of cancer cell plasticity, including epithelial-mesenchymal plasticity, drug resistance phenotype, cancer stem cell phenotype, and vasculogenic mimicry phenotype plasticity. ER stress influences several malignant characteristics of tumor cells, including epithelial-to-mesenchymal transition (EMT), stem cell maintenance, angiogenic function, and tumor cell sensitivity to targeted therapy. The emerging links between ER stress and cancer cell plasticity that are implicated in tumor progression and chemoresistance are discussed in this review, which may aid in formulating strategies to target ER stress and cancer cell plasticity in anticancer treatments.
Collapse
Affiliation(s)
- Hao Wang
- Breast Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Kun Mi
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
19
|
Barcellini A, Fontana G, Filippini DM, Ronchi S, Bonora M, Vischioni B, Ingargiola R, Camarda AM, Loap P, Facchinetti N, Licitra L, Baroni G, Orlandi E. Exploring the role of neutrophil-to-lymphocyte ratio and blood chemistry in head and neck adenoid cystic carcinomas treated with carbon ion radiotherapy. Radiother Oncol 2022; 177:143-151. [PMID: 36328091 DOI: 10.1016/j.radonc.2022.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/26/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND PURPOSE In recent years, there is an emerging interest in the prognostic role of chemistry blood biomarkers in oncological patients but their role in adenoid cystic carcinomas (ACCs) is still unknown. This study aims to assess the prognostic significance of baseline neutrophil-to-lymphocyte ratio (NLR) and blood chemistry in a series of head and neck ACC patients treated with carbon ion radiotherapy (CIRT). MATERIAL AND METHODS We retrospectively retrieved the data of 49 consecutive head and neck ACC patients treated with CIRT. Univariable and multivariable Cox proportional hazard regression (Cox-ph) analyses were performed to look for a potential association of NLR, and other blood biomarker values, with disease-free survival (DFS), Local Control (LC), Metastasis Free Survival (MFS) and overall survival (OS). RESULTS No significant association between NLR > 2,5 and DFS, LC, MFS and OS was found with univariable analysis although a trend was reported for DFS (Hazard ratio [HR]: 2,10, 95 % CI: 0,85 - 5,08, p-value = 0,11). Patients with hemoglobin (hb) ≤ 14 g/dL showed significantly better DFS, MFS and OS. Multivariable regression Cox-ph analysis for DFS, adjusted for margin status, clinical target volume and Absolute Number of Monocytes, reported the following statistically significant HRs, for both NLR > 2,5 and hb > 14 g/dL respectively: 4,850 (95 % CI = 1,408 - 16,701, p = 0,012) and 3,032 (95 % CI = 1,095 - 8,393, p = 0,033). Moreover, hb > 14 with HR = 3,69 (95 % CI: 1,23 - 11,07, p-value = 0,02), was a negative independent prognostic predictor for MFS. CONCLUSIONS Pre-treatment NLR and hb values seem to be independent prognostic predictor for clinical outcomes in head and neck ACC patients. If their role will be validated in a larger prospective cohort, they might be worthwhile for a pre-treatment risk stratification in patients treated with CIRT.
Collapse
Affiliation(s)
- Amelia Barcellini
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Giulia Fontana
- Clinical Bioengineering Unit, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Daria Maria Filippini
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Policlinico Sant'Orsola Malpighi, Bologna, Italy
| | - Sara Ronchi
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy.
| | - Maria Bonora
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Barbara Vischioni
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Rossana Ingargiola
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Anna Maria Camarda
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Pierre Loap
- Department of Radiation Oncology, Institut Curie, Paris, France
| | - Nadia Facchinetti
- Scientific Direction, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Lisa Licitra
- Scientific Direction, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy; Head and Neck Medical Oncology 3 Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Guido Baroni
- Clinical Bioengineering Unit, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy; Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milan, Italy
| | - Ester Orlandi
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| |
Collapse
|
20
|
Wu S, Li Z, Yao C, Dong S, Gao J, Ke S, Zhu R, Huang S, Wang S, Xu L, Ye C, Kong J, Sun W. Progression of hepatocellular carcinoma after radiofrequency ablation: Current status of research. Front Oncol 2022; 12:1032746. [PMID: 36483051 PMCID: PMC9723167 DOI: 10.3389/fonc.2022.1032746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/04/2022] [Indexed: 05/27/2024] Open
Abstract
Hepatocellular carcinoma (HCC) remains an important disease for health care systems in view of its high morbidity, mortality, and increasing incidence worldwide. Radiofrequency ablation (RFA) is preferred to surgery as a local treatment for HCC because it is safer, less traumatic, less painful, better tolerated, causes fewer adverse reactions, and allows more rapid postoperative recovery. The biggest shortcoming of RFA when used to treat HCC is the high incidence of residual tumor, which is often attributed to the vascular thermal deposition effect, the wide infiltration zone of peripheral venules, and the distance between satellite foci and the main focus of the cancer. Recurrence and progression of the residual tumor is the most important determinant of the prognosis. Therefore, it is important to be aware of the risk of recurrence and to improve the efficacy of RFA. This review summarizes the relevant literature and the possible mechanisms involved in progression of HCC after RFA. Current studies have demonstrated that multimodal treatments which RFA combined with other anti-cancer approaches can prevent progression of HCC after RFA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jian Kong
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Wenbing Sun
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Wei Y, Li Y, Chen Y, Liu P, Huang S, Zhang Y, Sun Y, Wu Z, Hu M, Wu Q, Wu H, Liu F, She T, Ning Z. ALDH1: A potential therapeutic target for cancer stem cells in solid tumors. Front Oncol 2022; 12:1026278. [PMID: 36387165 PMCID: PMC9650078 DOI: 10.3389/fonc.2022.1026278] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022] Open
Abstract
Solid tumors can be divided into benign solid tumors and solid malignant tumors in the academic community, among which malignant solid tumors are called cancers. Cancer is the second leading cause of death in the world, and the global incidence of cancer is increasing yearly New cancer patients in China are always the first. After the concept of stem cells was introduced in the tumor community, the CSC markers represented by ALDH1 have been widely studied due to their strong CSC cell characteristics and potential to be the driving force of tumor metastasis. In the research results in the past five years, it has been found that ALDH1 is highly expressed in various solid cancers such as breast cancer, lung cancer, colorectal cancer, liver cancer, gastric cancer, cervical cancer, esophageal cancer, ovarian cancer, head,and neck cancer. ALDH1 can activate and transform various pathways (such as the USP28/MYC signaling pathway, ALDH1A1/HIF-1α/VEGF axis, wnt/β-catenin signaling pathway), as well as change the intracellular pH value to promote formation and maintenance, resulting in drug resistance in tumors. By targeting and inhibiting ALDH1 in tumor stem cells, it can enhance the sensitivity of drugs and inhibit the proliferation, differentiation, and metastasis of solid tumor stem cells to some extent. This review discusses the relationship and pathway of ALDH1 with various solid tumors. It proposes that ALDH1 may serve as a diagnosis and therapeutic target for CSC, providing new insights and new strategies for reliable tumor treatment.
Collapse
Affiliation(s)
- Yaolu Wei
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yan Li
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yenan Chen
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Pei Liu
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Sheng Huang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yuping Zhang
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanling Sun
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhe Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Hongnian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Fuxing Liu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Tonghui She
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Zhifeng Ning
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| |
Collapse
|
22
|
Chen SN, Wang Z, Zhou DS, Liu XQ, Mai TY, Dong ZX, Li M, Zhang XD, Qi L. Case report: ISL2 is involved in malignant transformation in a patient with multiple relapsed oligodendroglioma. Front Oncol 2022; 12:969191. [PMID: 35965581 PMCID: PMC9366390 DOI: 10.3389/fonc.2022.969191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/04/2022] [Indexed: 11/22/2022] Open
Abstract
The majority of oligodendrogliomas exhibit an intrinsic tendency to develop into malignant high-grade tumors. Angiogenesis is a major factor contributing to the malignant transformation of oligodendroglioma, and its molecular regulatory mechanism needs further study. We provide a case report of an oligodendroglioma patient with two recurrences whose disease progressed from WHO grade II to grade III. We showed that the expression of insulin gene enhancer protein (ISL2) and its angiogenic ability were positively correlated with the progression of oligodendroglioma. In Low-grade glioma (LGG) patients, including oligodendroglioma patients, overexpression of ISL2 was correlated with poor prognosis, and this correlation was not affected by gender or isocitrate dehydrogenase 1(IDH1) mutation status. ISL2 expression and ISL2-mediated angiogenic pathway activity are ideal biomarkers for the malignant transformation of oligodendroglioma. Anti-ISL2 therapy is also a potential treatment option for malignantly transformed oligodendroglioma.
Collapse
Affiliation(s)
- Shu-Na Chen
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Zhongyong Wang
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Di-Sheng Zhou
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Xue-Qi Liu
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Tao-Yi Mai
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhao-Xia Dong
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Miao Li
- Department of Hematology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Xing-Ding Zhang
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Lin Qi, ; Xing-Ding Zhang,
| | - Lin Qi
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Lin Qi, ; Xing-Ding Zhang,
| |
Collapse
|
23
|
Cuzziol CI, Marzochi LL, Possebon VS, Kawasaki-Oyama RS, Mattos MF, Junior VS, Ferreira LAM, Pavarino ÉC, Castanhole-Nunes MMU, Goloni-Bertollo EM. Regulation of VEGFA, KRAS, and NFE2L2 Oncogenes by MicroRNAs in Head and Neck Cancer. Int J Mol Sci 2022; 23:7483. [PMID: 35806488 PMCID: PMC9267745 DOI: 10.3390/ijms23137483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations and alterations in the expression of VEGFA, KRAS, and NFE2L2 oncogenes play a key role in cancer initiation and progression. These genes are enrolled not only in cell proliferation control, but also in angiogenesis, drug resistance, metastasis, and survival of tumor cells. MicroRNAs (miRNAs) are small, non-coding regulatory RNA molecules that can regulate post-transcriptional expression of multiple target genes. We aimed to investigate if miRNAs hsa-miR-17-5p, hsa-miR-140-5p, and hsa-miR-874-3p could interfere in VEGFA, KRAS, and NFE2L2 expression in cell lines derived from head and neck cancer (HNC). FADU (pharyngeal cancer) and HN13 (oral cavity cancer) cell lines were transfected with miR-17-5p, miR-140-5p, and miR-874-3p microRNA mimics. RNA and protein expression analyses revealed that miR-17-5p, miR-140-5p and miR-874-3p overexpression led to a downregulation of VEGFA, KRAS, and NFE2L2 gene expression in both cell lines analyzed. Taken together, our results provide evidence for the establishment of new biomarkers in the diagnosis and treatment of HNC.
Collapse
Affiliation(s)
- Caroline Izak Cuzziol
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto 15090-000, Brazil; (C.I.C.); (L.L.M.); (R.S.K.-O.); (M.F.M.); (L.A.M.F.); (É.C.P.); (M.M.U.C.-N.)
| | - Ludimila Leite Marzochi
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto 15090-000, Brazil; (C.I.C.); (L.L.M.); (R.S.K.-O.); (M.F.M.); (L.A.M.F.); (É.C.P.); (M.M.U.C.-N.)
| | - Vitória Scavacini Possebon
- Institute of Biosciences, Humanities and Exact Sciences, Campus Sao Jose do Rio Preto, São Paulo State University (Unesp), Sao Jose do Rio Preto 15054-000, Brazil; (V.S.P.); (V.S.J.)
| | - Rosa Sayoko Kawasaki-Oyama
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto 15090-000, Brazil; (C.I.C.); (L.L.M.); (R.S.K.-O.); (M.F.M.); (L.A.M.F.); (É.C.P.); (M.M.U.C.-N.)
| | - Marlon Fraga Mattos
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto 15090-000, Brazil; (C.I.C.); (L.L.M.); (R.S.K.-O.); (M.F.M.); (L.A.M.F.); (É.C.P.); (M.M.U.C.-N.)
| | - Vilson Serafim Junior
- Institute of Biosciences, Humanities and Exact Sciences, Campus Sao Jose do Rio Preto, São Paulo State University (Unesp), Sao Jose do Rio Preto 15054-000, Brazil; (V.S.P.); (V.S.J.)
| | - Letícia Antunes Muniz Ferreira
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto 15090-000, Brazil; (C.I.C.); (L.L.M.); (R.S.K.-O.); (M.F.M.); (L.A.M.F.); (É.C.P.); (M.M.U.C.-N.)
| | - Érika Cristina Pavarino
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto 15090-000, Brazil; (C.I.C.); (L.L.M.); (R.S.K.-O.); (M.F.M.); (L.A.M.F.); (É.C.P.); (M.M.U.C.-N.)
| | - Márcia Maria Urbanin Castanhole-Nunes
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto 15090-000, Brazil; (C.I.C.); (L.L.M.); (R.S.K.-O.); (M.F.M.); (L.A.M.F.); (É.C.P.); (M.M.U.C.-N.)
| | - Eny Maria Goloni-Bertollo
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto 15090-000, Brazil; (C.I.C.); (L.L.M.); (R.S.K.-O.); (M.F.M.); (L.A.M.F.); (É.C.P.); (M.M.U.C.-N.)
| |
Collapse
|
24
|
miR-138-5p Inhibits Vascular Mimicry by Targeting the HIF-1α/VEGFA Pathway in Hepatocellular Carcinoma. J Immunol Res 2022; 2022:7318950. [PMID: 35669101 PMCID: PMC9167126 DOI: 10.1155/2022/7318950] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 12/24/2022] Open
Abstract
Tumour vascular mimicry (VM) is the process by which new blood vessels are formed by tumour cells rather than endothelial cells. An increasing number of studies have revealed that the VM process is associated with cancer progression and metastasis. MiR-138-5p has been reported to act as a tumour suppressor in many cancers. However, the role and underlying mechanism of miR-138-5p in hepatocellular carcinoma (HCC) VM remain unclear. In this study, VM density was detected by CD31/periodic acid-Schiff double staining in HCC clinical specimens. We found that miR-138-5p expression correlated strongly and negatively with microvessel density. Additionally, the miR-138-5p mimic or inhibitor decreased or increased, respectively, tube formation capacity in HepG2 and Hep3B cells. Consistent with this finding, miR-138-5p repressed vessel density in vivo. Moreover, miR-138-5p targeted hypoxia-inducible factor 1α (HIF-1α) and regulated the expression of HIF-1α and vascular endothelial growth factor A (VEGFA), which are established classical master regulators for angiogenesis. Consistent with these findings, the HIF-1α inhibitor CAY10585 effectively blocked HCC cell VM and VEGFA expression. In conclusion, miR-138-5p inhibits HepG2 and Hep3B cell VM by blocking the HIF-1α/VEGFA pathway. Therefore, miR-138-5p may serve as a useful therapeutic target for miRNA-based HCC therapy.
Collapse
|
25
|
Hou CX, Sun NN, Han W, Meng Y, Wang CX, Zhu QH, Tang YT, Ye JH. Exosomal microRNA-23b-3p promotes tumor angiogenesis and metastasis by targeting PTEN in Salivary adenoid cystic carcinoma. Carcinogenesis 2022; 43:682-692. [PMID: 35380635 DOI: 10.1093/carcin/bgac033] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNA(miR)-23b-3p is known to target various genes that are involved in cancer-related pathways. Exosomes are emerging intercellular communication agents. Exosomes secreted by cancer cells can deliver active molecules to the surrounding stromal cells, thereby influencing the recipient cells and promoting the development of cancers. However, the role of exosomal miR-23b-3p in salivary adenoid cystic carcinoma (SACC) is not yet clear. In this study, we set out to investigate the potential role of cancer-derived exosomal miR-23b-3p-related PTEN in the alteration of angiogenesis and vascular permeability in SACC. We investigated the effect of exosomal miR-23b-3p on the progression of SACC. In vitro experiments indicated that exosomal miR-23b-3p led to an up-regulation of vascular permeability, and reduced expression of tight junction proteins. In addition, exosomal miR-23b-3p also enhanced angiogenesis and migration. Next, the angiogenic effect of exosomal miR-23b-3p was validated in vivo, as it led to an increase in the tumor microvasculature. Furthermore, the growth rate of SACC was faster after injection of exosomes loaded with cholesterol- modified miR-23b-3p in mice. In conclusion, these results revealed that SACC cells-derived exosomes play an important role in promoting angiogenesis and local vascular microleakage of SACC by transporting miR-23b-3p, which suggests that miR-23b-3p in the exosomes may be a potential biomarker for distant metastasis of SACC. This suggests the potential of a novel therapeutic target by delivering anti-miR-23b-3p that focuses on exosomes.
Collapse
Affiliation(s)
- Chen-Xing Hou
- Jiangsu Key Laboratory of Oral Disease, & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Nan-Nan Sun
- Jiangsu Key Laboratory of Oral Disease, & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Han
- Jiangsu Key Laboratory of Oral Disease, & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Meng
- Jiangsu Key Laboratory of Oral Disease, & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Chen-Xing Wang
- Jiangsu Key Laboratory of Oral Disease, & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Qing-Hai Zhu
- Jiangsu Key Laboratory of Oral Disease, & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Ting Tang
- Jiangsu Key Laboratory of Oral Disease, & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Jin-Hai Ye
- Jiangsu Key Laboratory of Oral Disease, & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Jiang X, Deng X, Wang J, Mo Y, Shi L, Wei F, Zhang S, Gong Z, He Y, Xiong F, Wang Y, Guo C, Xiang B, Zhou M, Liao Q, Li X, Li Y, Li G, Xiong W, Zeng Z. BPIFB1 inhibits vasculogenic mimicry via downregulation of GLUT1-mediated H3K27 acetylation in nasopharyngeal carcinoma. Oncogene 2022; 41:233-245. [PMID: 34725462 DOI: 10.1038/s41388-021-02079-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 01/08/2023]
Abstract
Nasopharyngeal carcinoma (NPC) demonstrates significant regional differences and a high incidence in Southeast Asia and Southern China. Bactericidal/permeability-increasing-fold- containing family B member 1 (BPIFB1) is a relatively specific and highly expressed protein in the nasopharyngeal epithelium. BPIFB1 expression is substantially downregulated in NPC and is significantly associated with poor prognosis in patients with NPC. However, the specific molecular mechanism by which BPIFB1 regulates NPC is not well understood. In this study, we found that BPIFB1 inhibits vasculogenic mimicry by regulating the metabolic reprogramming of NPC. BPIFB1 decreases GLUT1 transcription by downregulating the JNK/AP1 signaling pathway. Altered glycolysis reduces the acetylation level of histone and decreases the expression of vasculogenic mimicry-related genes, VEGFA, VE-cadherin, and MMP2, ultimately leading to the inhibition of vasculogenic mimicry. To our knowledge, this is the first report on the role and specific mechanism of BPIFB1 as a tumor suppressor gene involved in regulating glycolysis and vasculogenic mimicry in NPC. Overall, these results provide a new therapeutic target for NPC diagnosis and treatment.
Collapse
Affiliation(s)
- Xianjie Jiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiangying Deng
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jie Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Lei Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Wei
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi He
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| |
Collapse
|
27
|
Loap P, Vischioni B, Bonora M, Ingargiola R, Ronchi S, Vitolo V, Barcellini A, Goanta L, De Marzi L, Dendale R, Pacelli R, Locati L, Calugaru V, Mammar H, Cavalieri S, Kirova Y, Orlandi E. Biological Rationale and Clinical Evidence of Carbon Ion Radiation Therapy for Adenoid Cystic Carcinoma: A Narrative Review. Front Oncol 2021; 11:789079. [PMID: 34917512 PMCID: PMC8668942 DOI: 10.3389/fonc.2021.789079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Adenoid cystic carcinoma (ACC) is a rare, basaloid, epithelial tumor, arising mostly from salivary glands. Radiation therapy can be employed as a single modality for unresectable tumors, in an adjuvant setting after uncomplete resection, in case of high-risk pathological features, or for recurrent tumors. Due to ACC intrinsic radioresistance, high linear energy transfer (LET) radiotherapy techniques have been evaluated for ACC irradiation: while fast neutron therapy has now been abandoned due to toxicity concerns, charged particle beams such as protons and carbon ions are at present the beams used for hadron therapy. Carbon ion radiation therapy (CIRT) is currently increasingly used for ACC irradiation. The aim of this review is to describe the immunological, molecular and clinicopathological bases that support ACC treatment with CIRT, as well as to expose the current clinical evidence that reveal the advantages of using CIRT for treating ACC.
Collapse
Affiliation(s)
- Pierre Loap
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy.,Department of Radiation Oncology, Institut Curie, Paris, France.,Proton Therapy Center, Institut Curie, Orsay, France
| | - Barbara Vischioni
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Maria Bonora
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Rossana Ingargiola
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Sara Ronchi
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Viviana Vitolo
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Amelia Barcellini
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Lucia Goanta
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Napoli, Italy
| | - Ludovic De Marzi
- Department of Radiation Oncology, Institut Curie, Paris, France.,Proton Therapy Center, Institut Curie, Orsay, France.,Institut Curie, PSL Research University, University Paris Saclay, INSERM LITO, Orsay, France
| | - Remi Dendale
- Department of Radiation Oncology, Institut Curie, Paris, France.,Proton Therapy Center, Institut Curie, Orsay, France
| | - Roberto Pacelli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Napoli, Italy
| | - Laura Locati
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Valentin Calugaru
- Department of Radiation Oncology, Institut Curie, Paris, France.,Proton Therapy Center, Institut Curie, Orsay, France
| | - Hamid Mammar
- Department of Radiation Oncology, Institut Curie, Paris, France.,Proton Therapy Center, Institut Curie, Orsay, France
| | - Stefano Cavalieri
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Youlia Kirova
- Department of Radiation Oncology, Institut Curie, Paris, France.,Proton Therapy Center, Institut Curie, Orsay, France
| | - Ester Orlandi
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| |
Collapse
|
28
|
Liu H, Wang H, Chen D, Gu C, Huang J, Mi K. Endoplasmic reticulum stress inhibits 3D Matrigel-induced vasculogenic mimicry of breast cancer cells via TGF-β1/Smad2/3 and β-catenin signaling. FEBS Open Bio 2021; 11:2607-2618. [PMID: 34320274 PMCID: PMC8409287 DOI: 10.1002/2211-5463.13259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/21/2021] [Accepted: 07/27/2021] [Indexed: 11/10/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is a cellular stress condition involving disturbance in the folding capacity of the ER caused by endogenous and exogenous factors. ER stress signaling pathways affect tumor malignant growth, angiogenesis and progression, and promote the antitumor effects of certain drugs. However, the impact of ER stress on the vasculogenic mimicry (VM) phenotype of cancer cells has not been well addressed. VM is a phenotype that mimics vasculogenesis by forming patterned tubular networks, which are related to stemness and aggressive behaviors of cancer cells. In this study, we used tunicamycin (TM), the unfolded protein response (UPR)-activating agent, to induce ER stress in aggressive triple-negative MDA-MB-231 breast cancer cells, which exhibit a VM phenotype in 3D Matrigel cultures. TM-induced ER stress was able to inhibit the VM phenotype. In addition to the tumor spheroid phenotype observed upon inhibiting the VM phenotype, we observed alterations in glycosylation of integrin β1, loss of VE-cadherin and a decrease in stem cell marker Bmi-1. Further study revealed decreased activated transforming growth factor β1, Smad2/3, Phospho-Smad2 and β-catenin. β-Catenin knockdown markedly inhibited the VM phenotype and resulted in the loss of VE-cadherin. The data suggest that the activation of ER stress inhibited VM phenotype formation of breast cancer cells via both the transforming growth factor β1/Smad2/3 and β-catenin signaling pathways. The discovery of prospective regulatory mechanisms involved in ER stress and VM in breast cancer could lead to more precisely targeted therapies that inhibit vessel formation and affect tumor progression.
Collapse
Affiliation(s)
- Huifen Liu
- Radiation Oncology Key Laboratory of Sichuan ProvinceSichuan Cancer Hospital & InstituteSichuan Cancer CenterSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Hao Wang
- Breast SurgerySichuan Cancer Hospital & InstituteSichuan Cancer CenterSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Dan Chen
- Radiation Oncology Key Laboratory of Sichuan ProvinceSichuan Cancer Hospital & InstituteSichuan Cancer CenterSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Cuirong Gu
- Radiation Oncology Key Laboratory of Sichuan ProvinceSichuan Cancer Hospital & InstituteSichuan Cancer CenterSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jianming Huang
- Radiation Oncology Key Laboratory of Sichuan ProvinceSichuan Cancer Hospital & InstituteSichuan Cancer CenterSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Kun Mi
- Radiation Oncology Key Laboratory of Sichuan ProvinceSichuan Cancer Hospital & InstituteSichuan Cancer CenterSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
29
|
Andreucci E, Laurenzana A, Peppicelli S, Biagioni A, Margheri F, Ruzzolini J, Bianchini F, Fibbi G, Del Rosso M, Nediani C, Serratì S, Fucci L, Guida M, Calorini L. uPAR controls vasculogenic mimicry ability expressed by drug-resistant melanoma cells. Oncol Res 2021; 28:873-884. [PMID: 34315564 PMCID: PMC8790129 DOI: 10.3727/096504021x16273798026651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Malignant melanoma is a highly aggressive skin cancer characterized by an elevated grade of tumor cell plasticity. Such plasticity allows melanoma cells adaptation to different hostile conditions and guarantees tumor survival and disease progression, including aggressive features such as drug resistance. Indeed, almost 50% of melanoma rapidly develop resistance to the BRAFV600E inhibitor vemurafenib, with fast tumor dissemination, a devastating consequence for patients' outcomes. Vasculogenic mimicry (VM), the ability of cancer cells to organize themselves in perfused vascular-like channels, might sustain tumor spread by providing vemurafenib-resistant cancer cells with supplementary ways to enter into circulation and disseminate. Thus, this research aims to determine if vemurafenib resistance goes with the acquisition of VM ability by aggressive melanoma cells, and identify a driving molecule for both vemurafenib resistance and VM. We used two independent experimental models of drug-resistant melanoma cells, the first one represented by a chronic adaptation of melanoma cells to extracellular acidosis, known to drive a particularly aggressive and vemurafenib-resistant phenotype, the second one generated with chronic vemurafenib exposure. By performing in vitro tube formation assay and evaluating the expression levels of the VM markers EphA2 and VE-cadherin by western blotting and flow cytometer analyses, we demonstrated that vemurafenib-resistant cells obtained by both models are characterized by an increased ability to perform VM. Moreover, by exploiting the CRISPR-Cas9 technique and using the urokinase plasminogen activator receptor (uPAR) inhibitor M25, we identified uPAR as a driver of VM expressed by vemurafenib-resistant melanoma cells. Thus, uPAR targeting may be successfully leveraged as a new complementary therapy to inhibit VM in drug-resistant melanoma patients, to counteract the rapid progression and dissemination of the disease.
Collapse
Affiliation(s)
- Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
| | - Silvia Peppicelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
| | - Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
| | - Jessica Ruzzolini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
| | - Gabriella Fibbi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
| | - Mario Del Rosso
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy.,Center of Excellence for Research, Transfer and High Education DenoTHE University of Florence, 50134, Florence, Italy
| | - Chiara Nediani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
| | - Simona Serratì
- Laboratory of Nanotecnology, IRCCS Istituto Tumori "Giovanni Paolo II", 70124, Bari, Italy
| | - Livia Fucci
- Pathology Department, IRCCS IstitutoTumori "Giovanni Paolo II", 70124, Bari, Italy
| | - Michele Guida
- Rare tumors and Melnaoma Unit, IRCCS IstitutoTumori "Giovanni Paolo II", 70124, Bari, Italy
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy.,Center of Excellence for Research, Transfer and High Education DenoTHE University of Florence, 50134, Florence, Italy
| |
Collapse
|
30
|
Li H, Wang D, Yi B, Cai H, Wang Y, Lou X, Xi Z, Li Z. SUMOylation of IGF2BP2 promotes vasculogenic mimicry of glioma via regulating OIP5-AS1/miR-495-3p axis. Int J Biol Sci 2021; 17:2912-2930. [PMID: 34345216 PMCID: PMC8326132 DOI: 10.7150/ijbs.58035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Rationale: Glioma is the most common primary malignant tumor of human central nervous system, and its rich vascular characteristics make anti-angiogenic therapy become a therapeutic hotspot. However, the existence of glioma VM makes the anti-angiogenic therapy ineffective. SUMOylation is a post-translational modification that affects cell tumorigenicity by regulating the expression and activity of substrate proteins. Methods: The binding and modification of IGF2BP2 and SUMO1 were identified using Ni2+-NTA agarose bead pull-down assays, CO-IP and western blot; and in vitro SUMOylation assays combined with immunoprecipitation and immunofluorescence staining were performed to explore the detail affects and regulations of the SUMOylation on IGF2BP2. RT-PCR and western blot were used to detect the expression levels of IGF2BP2, OIP5-AS1, and miR-495-3p in glioma tissues and cell lines. CCK-8 assays, cell transwell assays, and three-dimensional cell culture methods were used for evaluating the function of IGF2BP2, OIP5-AS1, miR-495-3p, HIF1A and MMP14 in biological behaviors of glioma cells. Meantime, RIP and luciferase reporter assays were used for inquiring into the interactions among IGF2BP2, OIP5-AS1, miR-495-3p, HIF1A and MMP14. Eventually, the tumor xenografts in nude mice further as certained the effects of IGF2BP2 SUMOylation on glioma cells. Results: This study proved that IGF2BP2 mainly binds to SUMO1 and was SUMOylated at the lysine residues K497, K505 and K509 sites, which can be reduced by SENP1. SUMOylation increased IGF2BP2 protein expression and blocked its degradation through ubiquitin-proteasome pathway, thereby increasing its stability. The expressions of IGF2BP2 and OIP5-AS1 were up-regulated and the expression of miR-495-3p was down-regulated in both glioma tissues and cells. IGF2BP2 enhances the stability of OIP5-AS1, thereby increasing the binding of OIP5-AS1 to miR-495-3p, weakening the binding of miR-495-3p to the 3'UTR of HIF1A and MMP14 mRNA, and ultimately promoting the formation of VM in glioma. Conclusions: This study first revealed that SUMOylation of IGF2BP2 regulated OIP5-AS1/miR-495-3p axis to promote VM formation in glioma cells and xenografts growth in nude mice, providing a new idea for molecular targeted therapy of glioma.
Collapse
Affiliation(s)
- Hao Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Bolong Yi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Yipeng Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Xin Lou
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Zhuo Xi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| |
Collapse
|
31
|
Treps L, Faure S, Clere N. Vasculogenic mimicry, a complex and devious process favoring tumorigenesis – Interest in making it a therapeutic target. Pharmacol Ther 2021; 223:107805. [DOI: 10.1016/j.pharmthera.2021.107805] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Nisar MA, Zheng Q, Saleem MZ, Ahmmed B, Ramzan MN, Ud Din SR, Tahir N, Liu S, Yan Q. IL-1β Promotes Vasculogenic Mimicry of Breast Cancer Cells Through p38/MAPK and PI3K/Akt Signaling Pathways. Front Oncol 2021; 11:618839. [PMID: 34055597 PMCID: PMC8160375 DOI: 10.3389/fonc.2021.618839] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Vasculogenic mimicry (VM), a micro vessel-like structure formed by the cancer cells, plays a pivotal role in cancer malignancy and progression. Interleukin-1 beta (IL-1β) is an active pro-inflammatory cytokine and elevated in many tumor types, including breast cancer. However, the effect of IL-1β on the VM of breast cancer has not been clearly elucidated. In this study, breast cancer cells (MCF-7 and MDA-MB-231) were used to study the effect of IL-1β on the changes that can promote VM. The evidence for VM stimulated by IL-1β was acquired by analyzing the expression of VM-associated biomarkers (VE-cadherin, VEGFR-1, MMP-9, MMP-2, c-Fos, and c-Jun) via western blot, immunofluorescent staining, and Immunohistochemistry (IHC). Additionally, morphological evidence was collected via Matrigel-based cord formation assay under normoxic/hypoxic conditions and microvessel examination through Hematoxylin and Eosin staining (H&E). Furthermore, the STRING and Gene Ontology database was also used to analyze the VM-associated interacting molecules stimulated by IL-β. The results showed that the expression of VM biomarkers was increased in both MCF-7 and MDA-MB-231 cells after IL-1β treatment. The increase in VM response was observed in IL-1β treated cells under both normoxia and hypoxia. IL-1β also increased the activation of transcription factor AP-1 complex (c-Fos/c-Jun). The bioinformatics data indicated that p38/MAPK and PI3K/Akt signaling pathways were involved in the IL-1β stimulation. It was further confirmed by the downregulated expression of VM biomarkers and reduced formation of the intersections upon the addition of the signaling pathway inhibitors. The study suggests that IL-1β stimulates the VM and its associated events in breast cancer cells via p38/MAPK and PI3K/Akt signaling pathways. Aiming the VM-associated molecular targets promoted by IL-1β may offer a novel anti-angiogenic therapeutic strategy to control the aggressiveness of breast cancer cells.
Collapse
Affiliation(s)
- Muhammad Azhar Nisar
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Qin Zheng
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Muhammad Zubair Saleem
- Department of Pathology and Pathophysiology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Bulbul Ahmmed
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Muhammad Noman Ramzan
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Syed Riaz Ud Din
- Department of Microbiology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Naeem Tahir
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Shuai Liu
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Qiu Yan
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, China
| |
Collapse
|
33
|
Zhou H, Yuan Y, Qian H. Expression of STAT3 and vasculogenic mimicry in gallbladder carcinoma promotes invasion and metastasis. Exp Ther Med 2021; 22:738. [PMID: 34055055 PMCID: PMC8138270 DOI: 10.3892/etm.2021.10170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/14/2021] [Indexed: 11/29/2022] Open
Abstract
Surgical treatment of gallbladder carcinoma remains challenging, while targeted therapy has been demonstrated to have potential. In the present study, the effect of signal transducer and activator of transcription 3 (STAT3) expression and vasculogenic mimicry (VM) on the occurrence and development of gallbladder carcinoma was evaluated. A total of 72 patients with gallbladder carcinoma and 10 patients with chronic cholecystitis were examined. Immunohistochemical staining was performed to determine the positive expression rates of STAT3. Periodic acid Schiff CD34 double staining was performed to detect VM in the gallbladder carcinoma group. STAT3 expression and VM in gallbladder carcinoma tissues was compared among patients with different clinical characteristics. In postoperative patients with gallbladder cancer, the relationship of the postoperative recurrence time with STAT3 expression and VM was assessed. STAT3 expression in gallbladder carcinoma tissue was significantly higher than that in cholecystitis tissue (P<0.05). STAT3 expression levels and VM were positively correlated in gallbladder carcinoma tissue. STAT3 protein expression in gallbladder carcinoma tissues differed significantly among patients with different degrees of differentiation and clinical stages (P<0.05). Among the 51 patients who completed the 3-year follow-up, the mean time to relapse was 17.353 and 35.647 months in those with high and low STAT3 expression, respectively, with significant differences (P<0.05). The VM structure was detected in 47 cases (92.15%) and not detected in four cases (7.84%), which exhibited no immediate recurrence after surgery, and the difference in the mean postoperative recurrence time was significant (22.38 vs. 36.00 months, respectively; P<0.05). In gallbladder carcinoma tissues, a lower degree of differentiation, higher malignancy degree and higher clinical stage were associated with higher expression of STAT3 and VM. Thus, STAT3 may promote VM formation in the process of tumor occurrence, development and metastasis. Therefore, STAT3 as a regulatory target, may inhibit the proliferation and invasion of tumor cells and block the development of VM, thereby representing a suitable target for antitumor angiogenesis therapy.
Collapse
Affiliation(s)
- Hongbing Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.,Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of The Medical School of Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Yin Yuan
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of The Medical School of Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Haixin Qian
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
34
|
Fu R, Du W, Ding Z, Wang Y, Li Y, Zhu J, Zeng Y, Zheng Y, Liu Z, Huang JA. HIF-1α promoted vasculogenic mimicry formation in lung adenocarcinoma through NRP1 upregulation in the hypoxic tumor microenvironment. Cell Death Dis 2021; 12:394. [PMID: 33850110 PMCID: PMC8044151 DOI: 10.1038/s41419-021-03682-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Neovascularization is a key factor that contributes to tumor metastasis, and vasculogenic mimicry (VM) is an important form of neovascularization found in highly invasive tumors, including lung cancer. Despite the increasing number of studies focusing on VM, the mechanisms underlying VM formation remain unclear. Herein, our study explored the role of the HIF-1α/NRP1 axis in mediating lung adenocarcinoma metastasis and VM formation. HIF-1α, NRP1 expression, and VM in lung adenocarcinoma (LUAD) patient samples were examined by immunohistochemical staining. Quantitative real-time (qRT-PCR), western blot, transwell assay, wound healing assay, and tube formation assay were performed to verify the role of HIF-1α/NRP1 axis in LUAD metastasis and VM formation. ChIP and luciferase reporter assay were used to confirm whether NRP1 is a direct target of HIF-1α. In LUAD tissues, we confirmed a positive relationship between HIF-1α and NRP1 expression. Importantly, high HIF-1α and NRP1 expression and the presence of VM were correlated with poor prognosis. We also found that HIF-1α could induce LUAD cell migration, invasion, and VM formation by regulating NRP1. Moreover, we demonstrated that HIF-1α can directly bind to the NRP1 promoter located between −2009 and −2017 of the promoter. Mechanistically, MMP2, VE-cadherin, and Vimentin expression were affected. HIF-1α plays an important role in inducing lung adenocarcinoma cell metastasis and VM formation via upregulation of NRP1. This study highlights the potential therapeutic value of targeting NRP1 for suppressing lung adenocarcinoma metastasis and progression.
Collapse
Affiliation(s)
- Ran Fu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.,Department of Respiratory Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002, China
| | - Wenwen Du
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Zongli Ding
- Department of Respiratory Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002, China
| | - Yi Wang
- Department of Respiratory Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002, China
| | - Yue Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China
| | - Jianjie Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Yuanyuan Zeng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Yulong Zheng
- Department of Respiratory Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002, China
| | - Zeyi Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China. .,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China. .,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China.
| | - Jian-An Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China. .,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China. .,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
35
|
Jin L, Chen C, Huang L, Bu L, Zhang L, Yang Q. Salvianolic acid A blocks vasculogenic mimicry formation in human non-small cell lung cancer via PI3K/Akt/mTOR signalling. Clin Exp Pharmacol Physiol 2021; 48:508-514. [PMID: 33529404 DOI: 10.1111/1440-1681.13464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/07/2020] [Accepted: 12/29/2020] [Indexed: 12/28/2022]
Abstract
Vasculogenic mimicry (VM) is associated with aggressive cancer cells. Salvianolic acid A (Sal-A), an antioxidant and anti-inflammatory agent, has bioactive properties from Salvia miltiorrhiza Bunge. Current investigation aspired to explore the activity of Sal-A in the VM formation of non-small cell lung cancer (NSCLC) and the mechanism underling this function. The CCK8, the scratch and boyden chemotaxis assay were presented to describe NSCLC cells viability, migration and invasion capabilities, respectively. The protein expression was verified by western blotting. In this report, Sal-A caused a reduction in viability, metastasis and capillaries structure formation of NSCLC cells. Additionally, Sal-A markedly prevented the key VM related proteins, containing EphA2, VE-cadherin and MMP2. Besides, Sal-A significantly diminished p-PI3K, p-Akt and p-mTOR level in NSCLC cells. More importantly, SC79 pretreatment reversed Sal-A inhibits NSCLC cells viability, metastasis and VM formation. These data exhibit that Sal-A could block VM network formation in NSCLC cells through modulating the PI3K/Akt/mTOR signalling pathway.
Collapse
Affiliation(s)
- Luming Jin
- Department of Thoracic Surgery, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Chaoyang Chen
- Department of Thoracic Surgery, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Lipeng Huang
- Department of Thoracic Surgery, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Liang Bu
- Department of Thoracic Surgery, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Libin Zhang
- Department of Thoracic Surgery, First People's Hospital of Yunnan Province, Kunming, China
| | - Qiuju Yang
- Operation Center, The First People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
36
|
He X, You J, Ding H, Zhang Z, Cui L, Shen X, Bian X, Liu Y, Chen J. Vasculogenic mimicry, a negative indicator for progression free survival of lung adenocarcinoma irrespective of first line treatment and epithelial growth factor receptor mutation status. BMC Cancer 2021; 21:132. [PMID: 33549061 PMCID: PMC7866877 DOI: 10.1186/s12885-021-07863-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Background Vascular mimicry (VM) was associated with the prognosis of cancers. The aim of the study was to explore the association between VM and anticancer therapy response in patients with lung adenocarcinoma. Methods This was a single-center retrospective study of patients with lung adenocarcinoma between March 1st, 2013, to April 1st, 2019, at the Second People’s Hospital of Taizhou City. All included patients were divided into the VM and no-VM groups according to whether VM was observed or not in the specimen. Vessels with positive PAS and negative CD34 staining were confirmed as VM. The main outcome was progression-free survival (PFS). Results Sixty-six (50.4%) patients were male. Eighty-one patients received chemotherapy as the first-line treatment, and 50 patients received TKIs. Forty-five (34.4%) patients were confirmed with VM. There was no difference regarding the first-line treatment between the VM and no-VM groups (P = 0.285). The 86 patients without VM had a median PFS of 279 (range, 90–1095) days, and 45 patients with VM had a median PFS of 167 (range, 90–369) days (P < 0.001). T stage (hazard ratio (HR) = 1.37, 95% confidence interval (CI): 1.10–1.71), N stage (HR = 1.43, 95%CI: 1.09–1.86), M stage (HR = 2.85, 95%CI: 1.76–4.61), differentiation (HR = 1.85, 95%CI: 1.29–2.65), therapy (HR = 0.32, 95%CI: 0.21–0.49), VM (HR = 2.12, 95%CI: 1.33–3.37), and ECOG (HR = 1.41, 95%CI: 1.09–1.84) were independently associated with PFS. Conclusion The benefits of first-line TKIs for NSCLC with EGFR mutation are possibly better than those of platinum-based regimens in patients without VM, but there is no difference in the benefit of chemotherapy or target therapy for VM-positive NSCLC harboring EGFR mutations.
Collapse
Affiliation(s)
- Xuejun He
- Oncology Department, the Second People's Hospital of Taizhou affiliated to Medical College of Yangzhou University, No. 27, Jiangyan District, Taizhou, 225500, China
| | - Jijun You
- Orthopaedic Department, the Second People's Hospital of Taizhou Affiliated to Medical College of Yangzhou University, Taizhou, China
| | - Haibing Ding
- Orthopaedic Department, the Second People's Hospital of Taizhou Affiliated to Medical College of Yangzhou University, Taizhou, China
| | - Zhisheng Zhang
- Oncology Department, the Second People's Hospital of Taizhou affiliated to Medical College of Yangzhou University, No. 27, Jiangyan District, Taizhou, 225500, China
| | - Lin Cui
- Oncology Department, the Second People's Hospital of Taizhou affiliated to Medical College of Yangzhou University, No. 27, Jiangyan District, Taizhou, 225500, China
| | - Xiaomei Shen
- Oncology Department, the Second People's Hospital of Taizhou affiliated to Medical College of Yangzhou University, No. 27, Jiangyan District, Taizhou, 225500, China
| | - Xiaoxia Bian
- Oncology Department, the Second People's Hospital of Taizhou affiliated to Medical College of Yangzhou University, No. 27, Jiangyan District, Taizhou, 225500, China
| | - Yanqing Liu
- Institute of Medicine, Yangzhou University, No. 88, South Daxue Road, Yangzhou, 225001, China
| | - Jue Chen
- Oncology Department, the Second People's Hospital of Taizhou affiliated to Medical College of Yangzhou University, No. 27, Jiangyan District, Taizhou, 225500, China. .,Institute of Medicine, Yangzhou University, No. 88, South Daxue Road, Yangzhou, 225001, China. .,Respiratory Department, the Second People's Hospital of Taizhou Affiliated to Medical College of Yangzhou University, Taizhou, China.
| |
Collapse
|
37
|
Wang K, Fan HY, Pang X, Zhang M, Yu XH, Wu JS, Chen BJ, Jiang J, Liang XH, Tang YL. Dll4/Notch1 signalling pathway is required in collective invasion of salivary adenoid cystic carcinoma. Oncol Rep 2021; 45:1011-1022. [PMID: 33469672 PMCID: PMC7859997 DOI: 10.3892/or.2021.7939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/14/2020] [Indexed: 02/05/2023] Open
Abstract
High expression of δ‑like ligand 4 (Dll4) is reportedly related to the invasion, metastasis, and clinical prognosis of various malignant tumours. Our previous study revealed that collective cell invasion was a common pattern in salivary adenoid cystic carcinoma (SACC). However, the roles of the Dll4/Notch1 signalling pathway in the collective invasion of SACC remain unclear. The present study revealed that Dll4 expression was higher at the invasive front of SACC, and that this upregulation was associated with solid tumour type, high TNM grade, and high rates of metastasis and recurrence. Furthermore, the expression levels of Notch1 and Dll4 were positively correlated at the invasive front, and a three‑dimensional (3D) culture model revealed that leader cells showed high expression of Dll4, while follower cells showed high expression of Notch1. Moreover, silencing of Dll4 expression using small interfering RNA reduced the migration, invasion, and collective invasion of SACC cells, and these abilities were rescued by Notch1 overexpression. Finally, SACC collective invasion was increased via the Dll4/Notch1 signalling pathway in experiments that involved a stiff 3D gel, hypoxia and co‑culture with human endothelial cells. These findings indicated that the Dll4/Notch1 signalling pathway may be involved in the collective invasion of SACC, which may help to provide possible targets for the treatment of SACC.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hua-Yang Fan
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xing Pang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiang-Hua Yu
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jia-Shun Wu
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bing-Jun Chen
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jian Jiang
- Department of Head and Neck Surgery, Sichuan Cancer Institute, Sichuan Cancer Center, Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases, Department of Oral Pathology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
38
|
Xiong YW, Xu XF, Zhu HL, Cao XL, Yi SJ, Shi XT, Zhu KH, Nan Y, Zhao LL, Zhang C, Gao L, Chen YH, Xu DX, Wang H. Environmental exposure to cadmium impairs fetal growth and placental angiogenesis via GCN-2-mediated mitochondrial stress. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123438. [PMID: 32763717 DOI: 10.1016/j.jhazmat.2020.123438] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/15/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd), a well-known environmental pollutant, can lead to placental insufficiency and fetal growth restriction. However, the underlying mechanism is unknown. The purpose of our study is to explore the effect of Cd on placental angiogenesis and its mechanism using in vitro and in vivo models. Results found that gestational Cd exposure obviously decreased placental weight and impaired placental vascular development in mice. Correspondingly, Cd exposure evidently downregulated the expression of VEGF-A protein (a key indicator of angiogenesis) and progesterone receptor (PR) in placental trophoblasts. Further experiment showed that lentivirus PR overexpression reversed Cd-caused the reduction of VEGF-A level in human placental trophoblasts. In addition, Cd significantly reduced progesterone level, down-regulated the expression of key progesterone synthase (StAR, CYP11A1), and activated mitochondrial stress response and GCN-2/p-eIF2α signaling in placental trophoblasts. Additional experiment showed that GCN-2 siRNA pretreatment markedly alleviated Cd-activated mitochondrial stress response, restored Cd-downregulated the expression of CYP11A1, reversed Cd-reduced the level of progesterone and VEGF-A in human placental trophoblasts. Finally, our case-control study confirmed that impaired placental angiogenesis and reduced progesterone level occurred in all-cause small for gestational age placenta. Taken together, environmental exposure to Cd impairs fetal growth and placental angiogenesis via GCN-2-mediated mitochondrial stress.
Collapse
Affiliation(s)
- Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xiao-Feng Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract,Anhui, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xue-Lin Cao
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Song-Jia Yi
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xue-Ting Shi
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Kai-Heng Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yuan Nan
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Ling-Li Zhao
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Chen Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Lan Gao
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yuan-Hua Chen
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China.
| |
Collapse
|
39
|
Wei X, Chen Y, Jiang X, Peng M, Liu Y, Mo Y, Ren D, Hua Y, Yu B, Zhou Y, Liao Q, Wang H, Xiang B, Zhou M, Li X, Li G, Li Y, Xiong W, Zeng Z. Mechanisms of vasculogenic mimicry in hypoxic tumor microenvironments. Mol Cancer 2021; 20:7. [PMID: 33397409 PMCID: PMC7784348 DOI: 10.1186/s12943-020-01288-1] [Citation(s) in RCA: 209] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
Background Vasculogenic mimicry (VM) is a recently discovered angiogenetic process found in many malignant tumors, and is different from the traditional angiogenetic process involving vascular endothelium. It involves the formation of microvascular channels composed of tumor cells; therefore, VM is considered a new model for the formation of new blood vessels in aggressive tumors, and can provide blood supply for tumor growth. Many studies have pointed out that in recent years, some clinical treatments against angiogenesis have not been satisfactory possibly due to the activation of VM. Although the mechanisms underlying VM have not been fully elucidated, increasing research on the soil “microenvironment” for tumor growth suggests that the initial hypoxic environment in solid tumors is inseparable from VM. Main body In this review, we describe that the stemness and differentiation potential of cancer stem cells are enhanced under hypoxic microenvironments, through hypoxia-induced epithelial-endothelial transition (EET) and extracellular matrix (ECM) remodeling to form the specific mechanism of vasculogenic mimicry; we also summarized some of the current drugs targeting VM through these processes, suggesting a new reference for the clinical treatment of tumor angiogenesis. Conclusion Overall, the use of VM inhibitors in combination with conventional anti-angiogenesis treatments is a promising strategy for improving the effectiveness of targeted angiogenesis treatments; further, considering the importance of hypoxia in tumor invasion and metastasis, drugs targeting the hypoxia signaling pathway seem to achieve good results.
Collapse
Affiliation(s)
- Xiaoxu Wei
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yunhua Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xianjie Jiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Miao Peng
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yiduo Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Daixi Ren
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yuze Hua
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Boyao Yu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yujuan Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
40
|
Ju R, Huang Y, Guo Z, Han L, Ji S, Zhao L, Long J. The circular RNAs differential expression profiles in the metastasis of salivary adenoid cystic carcinoma cells. Mol Cell Biochem 2020; 476:1269-1282. [PMID: 33237453 DOI: 10.1007/s11010-020-03989-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
In order to reveal circular RNAs (circRNAs) differential expression profiles and investigate the function and mechanism of circRNAs in the metastasis of salivary adenoid cystic carcinoma (SACC), microarray was used to detect differentially expressed circRNAs in SACC-83 and SACC-lung metastasis (LM) cell lines. Up-regulated circRNAs were analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses to further predict their function. Expression of candidate circRNA and microRNA (miRNA) was determined using quantitative real-time polymerase chain reaction (qRT-PCR). Constructed circRNA-miRNA-mRNA co-expression network was based on TargetScan, miRanda databases. Wound healing and transwell assays were completed to examine the effects of hsa_circRNA_001982 and miR-181a-5p on cell migration and invasion. qRT-PCR confirmed hsa_circRNA_092556, hsa_circRNA_101379, and hsa_circRNA_001982 up-regulation in SACC-LM. miR-181a-5p was down-regulated in SACC-LM and correlated with up-regulated hsa_circRNA_001982. Wound healing and transwell assays indicated that silencing hsa_circRNA_001982 inhibited the migration and invasion of the SACC-LM cells. Furthermore, over-expression of hsa_circRNA_001982 promoted the migration and invasion of SACC-83 cells. Interestingly, up-regulation or down-regulation of miR-181a-5p led to the opposite result in wound healing and transwell assays. Overall, differential expression circRNA profiles in SACC-83 and SACC-LM cells may reveal potential targets and a novel mechanism of circRNAs in the metastasis of SACC. Moreover, the interaction of hsa_circRNA_001982/miR-181a-5p is closely related to the metastasis of SACC cells.
Collapse
Affiliation(s)
- Rui Ju
- The State Key Laboratory of Oral Diseases, Sichuan University, 14, The 3rd Section of South People's Road, Chengdu, 610041, Sichuan, China.,Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yanling Huang
- The State Key Laboratory of Oral Diseases, Sichuan University, 14, The 3rd Section of South People's Road, Chengdu, 610041, Sichuan, China.,Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zeyou Guo
- The State Key Laboratory of Oral Diseases, Sichuan University, 14, The 3rd Section of South People's Road, Chengdu, 610041, Sichuan, China.,Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lu Han
- The State Key Laboratory of Oral Diseases, Sichuan University, 14, The 3rd Section of South People's Road, Chengdu, 610041, Sichuan, China.,Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Suhui Ji
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Luyang Zhao
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jie Long
- The State Key Laboratory of Oral Diseases, Sichuan University, 14, The 3rd Section of South People's Road, Chengdu, 610041, Sichuan, China. .,Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
41
|
Sarnella A, D’Avino G, Hill BS, Alterio V, Winum JY, Supuran CT, De Simone G, Zannetti A. A Novel Inhibitor of Carbonic Anhydrases Prevents Hypoxia-Induced TNBC Cell Plasticity. Int J Mol Sci 2020; 21:ijms21218405. [PMID: 33182416 PMCID: PMC7664880 DOI: 10.3390/ijms21218405] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Cell plasticity is the ability that cells have to modify their phenotype, adapting to the environment. Cancer progression is under the strict control of the the tumor microenvironment that strongly determines its success by regulating the behavioral changes of tumor cells. The cross-talk between cancer and stromal cells and the interactions with the extracellular matrix, hypoxia and acidosis contribute to trigger a new tumor cell identity and to enhance tumor heterogeneity and metastatic spread. In highly aggressive triple-negative breast cancer, tumor cells show a significant capability to change their phenotype under the pressure of the hypoxic microenvironment. In this study, we investigated whether targeting the hypoxia-induced protein carbonic anhydrase IX (CA IX) could reduce triple-negative breast cancer (TNBC) cell phenotypic switching involved in processes associated with poor prognosis such as vascular mimicry (VM) and cancer stem cells (CSCs). The treatment of two TNBC cell lines (BT-549 and MDA-MB-231) with a specific CA IX siRNA or with a novel inhibitor of carbonic anhydrases (RC44) severely impaired their ability to form a vascular-like network and mammospheres and reduced their metastatic potential. In addition, the RC44 inhibitor was able to hamper the signal pathways involved in triggering VM and CSC formation. These results demonstrate that targeting hypoxia-induced cell plasticity through CA IX inhibition could be a new opportunity to selectively reduce VM and CSCs, thus improving the efficiency of existing therapies in TNBC.
Collapse
Affiliation(s)
- Annachiara Sarnella
- CNR Istituto di Biostrutture e Bioimmagini, 80122 Napoli, Italy; (A.S.); (G.D.); (B.S.H.); (V.A.); (G.D.S.)
| | - Giuliana D’Avino
- CNR Istituto di Biostrutture e Bioimmagini, 80122 Napoli, Italy; (A.S.); (G.D.); (B.S.H.); (V.A.); (G.D.S.)
| | - Billy Samuel Hill
- CNR Istituto di Biostrutture e Bioimmagini, 80122 Napoli, Italy; (A.S.); (G.D.); (B.S.H.); (V.A.); (G.D.S.)
| | - Vincenzo Alterio
- CNR Istituto di Biostrutture e Bioimmagini, 80122 Napoli, Italy; (A.S.); (G.D.); (B.S.H.); (V.A.); (G.D.S.)
| | - Jean-Yves Winum
- IBMM, Universite Montpellier, CNRS, ENSCM, 34296 Montpellier, France;
| | - Claudiu T. Supuran
- Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche, Università di Firenze, Sesto Fiorentino, 50139 Firenze, Italy;
| | - Giuseppina De Simone
- CNR Istituto di Biostrutture e Bioimmagini, 80122 Napoli, Italy; (A.S.); (G.D.); (B.S.H.); (V.A.); (G.D.S.)
| | - Antonella Zannetti
- CNR Istituto di Biostrutture e Bioimmagini, 80122 Napoli, Italy; (A.S.); (G.D.); (B.S.H.); (V.A.); (G.D.S.)
- Correspondence: ; Tel.: +39-3666115319
| |
Collapse
|
42
|
Zhang WL, Wang SS, Jiang YP, Liu Y, Yu XH, Wu JB, Wang K, Pang X, Liao P, Liang XH, Tang YL. Fatty acid synthase contributes to epithelial-mesenchymal transition and invasion of salivary adenoid cystic carcinoma through PRRX1/Wnt/β-catenin pathway. J Cell Mol Med 2020; 24:11465-11476. [PMID: 32820613 PMCID: PMC7576276 DOI: 10.1111/jcmm.15760] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/19/2020] [Accepted: 08/05/2020] [Indexed: 02/05/2023] Open
Abstract
Fatty acid synthase (FASN) has been shown to be selectively up‐regulated in cancer cells to drive the development of cancer. However, the role and associated mechanism of FASN in regulating the malignant progression of salivary adenoid cystic carcinoma (SACC) still remains unclear. In this study, we demonstrated that FASN inhibition attenuated invasion, metastasis and EMT of SACC cells as well as the expression ofPRRX1, ZEB1, Twist, Slug and Snail, among which the level of PRRX1 changed the most obviously. Overexpression of PRRX1 restored migration and invasion in FASN knockdown cells, indicating that PRRX1 is an important downstream target of FASN signalling. Levels of cyclin D1 and c‐Myc, targets of Wnt/β‐catenin pathway, were significantly decreased by FASN silencing and restored by PRRX1 overexpression. In addition, FASN expression was positively associated with metastasis and poor prognosis of SACC patients as well as with the expression of PRRX1, cyclin D1 and c‐Myc in SACC tissues. Our findings revealed that FASN in SACC progression may induce EMT in a PRRX1/Wnt/β‐catenin dependent manner.
Collapse
Affiliation(s)
- Wei-Long Zhang
- Department of Oral Pathology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Sha-Sha Wang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Ya-Ping Jiang
- Department of Oral Pathology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China.,Department of Implant, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Liu
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Xiang-Hua Yu
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Jing-Biao Wu
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Ke Wang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Xin Pang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Peng Liao
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Xin-Hua Liang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Ya-Ling Tang
- Department of Oral Pathology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| |
Collapse
|
43
|
Bordbar F, Jensen J, Du M, Abied A, Guo W, Xu L, Gao H, Zhang L, Li J. Identification and validation of a novel candidate gene regulating net meat weight in Simmental beef cattle based on imputed next-generation sequencing. Cell Prolif 2020; 53:e12870. [PMID: 32722873 PMCID: PMC7507581 DOI: 10.1111/cpr.12870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/19/2022] Open
Abstract
Objectives Genome‐wide association studies (GWAS) represent a powerful approach to detecting candidate genes for economically important traits in livestock. Our aim was to identify promising candidate muscle development genes that affect net meat weight (NMW) and validate these candidate genes in cattle. Materials and methods Using a next‐generation sequencing (NGS) dataset, we applied ~ 12 million imputed single nucleotide polymorphisms (SNPs) from 1,252 Simmental cattle to detect genes influencing net meat yield by way of a linear mixed model method. Haplotype and linkage disequilibrium (LD) blocks were employed to augment support for identified genes. To investigate the role of MTPN in bovine muscle development, we isolated myoblasts from the longissimus dorsi of a bovine foetus and treated the cells during proliferation, differentiation and hypertrophy. Results We identified one SNP (rs100670823) that exceeded our stringent significance threshold (P = 8.58 × 10−8) for a putative NMW‐related quantitative trait locus (QTL). We identified a promising candidate gene, myotrophin (MTPN), in the region around this SNP Myotrophin had a stimulatory effect on six muscle‐related markers that regulate differentiation and myoblast fusion. During hypertrophy, myotrophin promoted myotube hypertrophy and increased myotube diameters. Cell viability assay and flow cytometry showed that myotrophin inhibited myoblast proliferation. Conclusions The present experiments showed that myotrophin increases differentiation and hypertrophy of skeletal muscle cells, while inhibiting their proliferation. Our examination of GWAS results with in vitro biological studies provides new information regarding the potential application of myotrophin to increase meat yields in cattle and helpful information for further studies.
Collapse
Affiliation(s)
- Farhad Bordbar
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Just Jensen
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Min Du
- Department of Animal Sciences, Washington Center for Muscle Biology, Washington State University, Pullman, WA, USA
| | - Adam Abied
- Animal Genetic Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Guo
- Meat Science and Muscle Biology, Animal and Diary Science, University of Wisconsin-Madison, Madison, USA
| | - Lingyang Xu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huijiang Gao
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lupei Zhang
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junya Li
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
44
|
2-Methoxy-5((3,4,5-trimethosyphenyl)seleninyl) phenol (SQ) inhibits cancer cell metastasis behavior of TNBC via suppressing EMT and VEGF. Chem Biol Interact 2020; 329:109202. [PMID: 32717189 DOI: 10.1016/j.cbi.2020.109202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 11/20/2022]
Abstract
Triple-negative breast cancer (TNBC) is highly metastatic and lacks effective therapeutic targets among several subtypes of breast cancer. Cancer metastasis promotes the malignancy of TNBC and is closely related to the poor prognosis of the TNBC patients. We aim to explore novel agents that effectively inhibit cancer metastasis to treat TNBC. In our study, 2-Methoxy-5((3,4,5-trimethosyphenyl)seleninyl) phenol (SQ), a CA-4 analogue, could inhibit cell motility and invasion in MDA-MB-231 cells, and the mechanism is closely associated to the inhibition of epithelial-to-mesenchymal transition (EMT). Meanwhile, SQ significantly inhibited the expression and secretion of vascular endothelial growth factor (VEGF) in MDA-MB-231 cells. Moreover, the conditioned medium from SQ-treated MDA-MB-231 cells significantly inhibited the motility and invasion of human umbilical vein endothelial cells (HUVECs), which was correlated with the inhibition of EMT process in HUVECs. In addition, exogenous application of VEGF reversed the occurrence of EMT in HUVECs which stimulated by conditioned medium from SQ-treated cells. Furthermore, SQ inhibited vasculogenic mimicry (VM) formation in MDA-MB-231 cells, which was associated with VE-cadherin and EphA2 down-regulation. This study indicates that SQ inhibits MDA-MB-231 cell metastasis through suppressing EMT and VEGF, thereby implicating this compound might be a potential therapeutic agent against metastatic TNBC.
Collapse
|
45
|
Yuan C, Luo X, Zhan X, Zeng H, Duan S. EMT related circular RNA expression profiles identify circSCYL2 as a novel molecule in breast tumor metastasis. Int J Mol Med 2020; 45:1697-1710. [PMID: 32236616 PMCID: PMC7169655 DOI: 10.3892/ijmm.2020.4550] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Substantial evidence indicates that circular RNAs (circRNAs) play vital roles in several diseases, especially in cancer development. However, the functions of circRNAs in breast cancer metastasis remain to be investigated. This study aimed to identify the key circRNAs involved in epithelial mesenchymal transition (EMT) of breast cancer and evaluated their molecular function and roles in pathways that may be associated with tumor metastasis. An EMT model was constructed by treating breast cancer cells MCF‑7 and MDA‑MB‑231 with transforming growth factor‑β1. High‑throughput RNA sequencing was used to identify the differentially expressed circRNAs in EMT and blank groups of two cells, and reverse transcription‑quantitative PCR was used to validate the expression of circSCYL2 in human breast cancer tissues and cells. The effects of circSCYL2 on breast cancer cells were explored by transfecting with plasmids and the biological roles were assessed using transwell assays. EMT groups of breast cancer cells exhibited the characteristics of mesenchymal cells. Furthermore, the present study found that 7 circRNAs were significantly upregulated in both the MCF‑7 EMT and MDA‑MB‑231 EMT groups, while 16 circRNAs were significantly downregulated. The current study identified that circSCYL2 was downregulated in breast cancer tissues and cell lines, and that circSCYL2 overexpression inhibited cell migration and invasion. This study provides expression profiles of circRNAs in EMT groups of breast cancer cells. circSCYL2, which is downregulated in breast cancer tissues and cells, may play an important role in breast cancer EMT progression.
Collapse
Affiliation(s)
- Chunlei Yuan
- Department of Breast Surgery, The Second Affiliated Hospital of Nanchang University
| | - Xuliang Luo
- Medical College of Nanchang University, Nanchang, Jiangxi 330000
| | - Xiang Zhan
- Department of General Surgery, The People's Hospital of Le 'An County, Fuzhou, Jiangxi 344000, P.R. China
| | - Huihui Zeng
- Department of General Surgery, The People's Hospital of Le 'An County, Fuzhou, Jiangxi 344000, P.R. China
| | - Sijia Duan
- Department of Breast Surgery, The Second Affiliated Hospital of Nanchang University
| |
Collapse
|
46
|
Fathi Maroufi N, Taefehshokr S, Rashidi MR, Taefehshokr N, Khoshakhlagh M, Isazadeh A, Mokarizadeh N, Baradaran B, Nouri M. Vascular mimicry: changing the therapeutic paradigms in cancer. Mol Biol Rep 2020; 47:4749-4765. [PMID: 32424524 DOI: 10.1007/s11033-020-05515-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
Cancer is a major problem in the health system, and despite many efforts to effectively treat it, none has yet been fully successful. Angiogenesis and metastasis are considered as major challenges in the treatment of various cancers. Researchers have struggled to succeed with anti-angiogenesis drugs for the effective treatment of cancer, although new challenges have emerged in the treatment with the emergence of resistance to anti-angiogenesis and anti-metastatic drugs. Numerous studies have shown that different cancers can resist anti-angiogenesis drugs in a new process called vascular mimicry (VM). The studies have revealed that cells resistant to anti-angiogenesis cancer therapies are more capable of forming VMs in the in vivo and in vitro environment, although there is a link between the presence of VM and poor clinical outcomes. Given the importance of the VM in the challenges facing cancer treatment, researchers are trying to identify factors that prevent the formation of these structures. In this review article, it is attempted to provide a comprehensive overview of the molecules and main signaling pathways involved in VM phenomena, as well as the agents currently being identified as anti-VM and the role of VM in response to treatment and prognosis of cancer patients.
Collapse
Affiliation(s)
- Nazila Fathi Maroufi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON, Canada
| | - Mahdieh Khoshakhlagh
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narmin Mokarizadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
47
|
Zou J, Pang L, Lv X. Network Pharmacology Systematically Uncovers Multiple Mechanisms of Zhisousan (止嗽散) for Treatment of Chronic Cough. Eur J Integr Med 2020. [DOI: 10.1016/j.eujim.2020.101071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
M2 Receptor Activation Counteracts the Glioblastoma Cancer Stem Cell Response to Hypoxia Condition. Int J Mol Sci 2020; 21:ijms21051700. [PMID: 32131421 PMCID: PMC7084794 DOI: 10.3390/ijms21051700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant brain tumor. Hypoxic condition is a predominant feature of the GBM contributing to tumor growth and resistance to conventional therapies. Hence, the identification of drugs able to impair GBM malignancy and aggressiveness is considered of great clinical relevance. Previously, we demonstrated that the activation of M2 muscarinic receptors, through the agonist arecaidine propargyl ester (Ape), arrests cell proliferation in GBM cancer stem cells (GSCs). In the present work, we have characterized the response of GSCs to hypoxic condition showing an upregulation of hypoxia-inducible factors and factors involved in the regulation of GSCs survival and proliferation. Ape treatment in hypoxic conditions is however able to inhibit cell cycle progression, causing a significant increase of aberrant mitosis with consequent decreased cell survival. Additionally, qRT-PCR analysis suggest that Ape downregulates the expression of stemness markers and miR-210 levels, one of the main regulators of the responses to hypoxic condition in different tumor types. Our data demonstrate that Ape impairs the GSCs proliferation and survival also in hypoxic condition, negatively modulating the adaptive response of GSCs to hypoxia.
Collapse
|
49
|
Hujanen R, Almahmoudi R, Karinen S, Nwaru BI, Salo T, Salem A. Vasculogenic Mimicry: A Promising Prognosticator in Head and Neck Squamous Cell Carcinoma and Esophageal Cancer? A Systematic Review and Meta-Analysis. Cells 2020; 9:cells9020507. [PMID: 32102317 PMCID: PMC7072765 DOI: 10.3390/cells9020507] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022] Open
Abstract
Vasculogenic mimicry (VM) is an intratumoral microcirculation pattern formed by aggressive cancer cells, which mediates tumor growth. In this study, we compiled the evidence from studies evaluating whether positive VM status can serve as a prognostic factor to patients with squamous cell carcinoma of the head and neck (HNSCC) or esophagus (ESCC). Comprehensive systematic searches were conducted using Cochrane Library, Ovid Medline, PubMed, and Scopus databases. We appraised the quality of studies and the potential for bias, and performed random-effect meta-analysis to assess the prognostic impact of VM on the overall survival (OS). Seven studies with 990 patients were eligible, where VM was detected in 34.24% of patients. Positive-VM was strongly associated with poor OS (hazard ratio = 0.50; 95% confidence interval: 0.38-0.64), which remained consistent following the subgroup analysis of the studies. Furthermore, VM was associated with more metastasis to local lymph nodes and more advanced stages of HNSCC and ESCC. In conclusion, this study provides clear evidence showing that VM could serve as a promising prognosticator for patients with either HNSCC or ESCC. Further studies are warranted to assess how VM can be implemented as a reliable staging element in clinical practice and whether it could provide a new target for therapeutic intervention.
Collapse
Affiliation(s)
- Roosa Hujanen
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland
| | - Rabeia Almahmoudi
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland
| | - Sini Karinen
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland
| | - Bright I. Nwaru
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, 40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, Institute of Medicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014 Helsinki, Finland
- Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland
- Medical Research Centre, Oulu University Hospital, 90220 Oulu, Finland
- Helsinki University Hospital (HUS), 00029 Helsinki, Finland
| | - Abdelhakim Salem
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014 Helsinki, Finland
- Correspondence:
| |
Collapse
|
50
|
Pang X, Fan HY, Tang YL, Wang SS, Cao MX, Wang HF, Dai LL, Wang K, Yu XH, Wu JB, Tang YJ, Liang XH. Myeloid derived suppressor cells contribute to the malignant progression of oral squamous cell carcinoma. PLoS One 2020; 15:e0229089. [PMID: 32092078 PMCID: PMC7039453 DOI: 10.1371/journal.pone.0229089] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/29/2020] [Indexed: 02/05/2023] Open
Abstract
Purpose The tumor-related myeloid derived suppressor cells (MDSCs), important immunosuppressive cells in tumor microenvironment, play an important role in the cancer progression. This study is aimed to investigate the crosstalk between MDSCs and oral squamous cell carcinoma (OSCC) cells and their role in the malignant progression of OSCC. Methods Immunochemistry (IHC) was used to investigate the expression of CD33 in 200 OSCC, 36 premalignant. CD33+ MDSCs were sorted and enriched via magnetic-activated cell sorting (MACS) from OSCC patients or health donor, and their phenotypes were identified by flow cytometry. With a co-culture system of MDSCs and OSCC, the effects of MDSCs on OSCC proliferation, apoptosis, migration invasion, epithelial-mesenchymal transition (EMT), and vasculogenic mimicry formation (VM) formation were assessed, respectively. Besides, peripheral blood mononuclear cells (PBMCs) from health donor were cultured with OSCC supernatant, the level of MDSCs and expressions of Arginase (Arg-1) and inducible nitric oxide synthase (iNOS) were measured. Results The number of MDSCs was increased in tumor tissues of OSCC patients, and was positively related to the T stage, pathological grade, lymph node metastasis and poor prognosis. Tumor-related MDSCs of the co-culture system promoted OSCC progression by contributing to cell proliferation, migration and invasion as well as inducing EMT and VM. In turn, OSCC cells had potential to induce MDSCs differentiation from PBMCs and increase the expression of Arg-1 and iNOS. Conclusion These indicated that the crosstalk between MDSCs and tumor cells facilitated the malignant progression of OSCC cells and the immune suppressive properties of MDSCs, which may provide new insights into tumor treatment on targeting tumor-associated immunosuppressive cells.
Collapse
Affiliation(s)
- Xin Pang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hua-yang Fan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ya-ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Sha-sha Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ming-xin Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hao-fan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Lu-ling Dai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ke Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiang-hua Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jing-biao Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- * E-mail: (YJT); (XHL)
| | - Xin-hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- * E-mail: (YJT); (XHL)
| |
Collapse
|