1
|
Xun J, Ma Y, Wang B, Jiang X, Liu B, Gao R, Zhai Q, Cheng R, Wu X, Wu Y, Zhang Q. RGS1 targeted by miR-191-3p inhibited the stemness properties of esophageal cancer cells by suppressing CXCR4/PI3K/AKT signaling. Acta Histochem 2024; 126:152190. [PMID: 39173233 DOI: 10.1016/j.acthis.2024.152190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/27/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Esophageal cancer is one of the most common malignant tumors in the world. It is urgent to prevent the development and progression of esophageal cancer. Cancer stem cells (CSCs) were reported to have the ability to initiate tumorigenesis, and reducing the stem cell-like characteristics of tumors is an important strategy to inhibit the occurrence and development of tumors. miRNAs are key regulators of the stemness of cancer. Here, we aimed to investigate the role and regulatory mechanism of miR-191-3p in the stemness properties of esophageal cancer cells. METHODS Esophageal cancer cells with stable expression of miR-191-3p were established by lentivirus system. CCK-8 assay, transwell assay, wound healing assay were used to evaluate the effect of miR-191-3p on proliferation and metastasis of esophageal cancer cells. The expression of stemness-related markers (NANOG, OCT4, SOX2), ALDH activity, sphere-forming assay and subcutaneous tumor model in nude mice were performed to evaluate the stemness properties of esophageal cancer cells in vitro and in vivo. Dual-luciferase reporter assay was used to verify the molecular mechanism. RESULT Here we found that overexpression of miR-191-3p promoted the stemness properties of esophageal cancer cells in vitro and in vivo, including increasing esophageal cancer cell proliferation and metastasis ability, the expression of stemness-related markers NANOG, OCT4, and SOX2, ALDH activity, the number of spheres formed and tumor growth. Bioinformatic analysis and dual-luciferase assay demonstrated that regulator of G protein signaling 1 (RGS1) was the directed target gene of miR-191-3p and attenuated the promotion effect of miR-191-3p on the stemness of esophageal cancer cells. Furthermore, we found that RGS1 knockdown activated the PI3K/AKT pathway by negatively regulating CXCR4 to promote the stemness of esophageal cancer cells. CONCLUSIONS Our findings revealed that RGS1 targeted by miR-191-3p inhibited the stemness of esophageal cancer cells by suppressing the CXCR4/PI3K/AKT pathway, which provide potential prognostic markers and therapeutic targets in the future.
Collapse
Affiliation(s)
- Jing Xun
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin 300100, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Yuan Ma
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin 300100, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China; Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Botao Wang
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China; Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Xiaolin Jiang
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin 300100, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Bin Liu
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin 300100, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Ruifang Gao
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin 300020, China
| | - Qiongli Zhai
- Department of Pathology, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital,Tianjin 300060, China
| | - Runfen Cheng
- Department of Pathology, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital,Tianjin 300060, China
| | - Xueliang Wu
- The First Affiliated Hospital of Hebei North University, Hebei 075000, China
| | - Yu Wu
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin 300100, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China.
| | - Qi Zhang
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin 300100, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China.
| |
Collapse
|
2
|
Capuano C, Moccia V, Molinari A, Torrigiani F, Ferro L, Ferraresso S, Bonsembiante F, Leo C, Zappulli V. Free circulating versus extracellular vesicle-associated microRNA expression in canine T-cell lymphoma. Front Vet Sci 2024; 11:1461506. [PMID: 39268522 PMCID: PMC11390581 DOI: 10.3389/fvets.2024.1461506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Canine lymphoma (cL) is one of the most frequent cancers in dogs. The T-cell lymphoma (TcL) is not the most common phenotype but presents an aggressive behavior. MicroRNAs (miRNAs), are small, single-stranded, non-coding RNA molecules which can circulate freely in blood or be associated with extracellular vesicles (EVs). The dysregulation of certain miRNAs has been identified in numerous types of human cancers and they have been largely investigated as possible tumors biomarkers in human medicine, while research in veterinary oncology is still scarce. The aim of this study was to compare the expression patterns of free circulating and EV-associated miRNAs in dogs with T-cell lymhoma (TcL) and healthy dogs. Methods Eight dogs with TcL were selected as the lymphoma group (LG) and eight dogs were included as controls (Ctrl). Plasma samples were collected at the time of the diagnosis and EVs isolated with ultracentrifugation. miRNAs were extracted from both the circulating EVs and the plasma supernatant, obtaining EV-associated and free-miRNAs. Quantitative real-time PCR was performed to analyze the expression of 88 target miRNAs. Results Ten and seven differentially expressed miRNAs between LG and Ctrl were detected in EV-associated and free-miRNAs, respectively. Among EV-associated and free-miRNAs, only has-miR-222-3p was overexpressed in both conditions. Discussion All the differentially expressed miRNAs detected in this study, have been already described as dysregulated in other human or canine cancers. The EV-associated miRNAs, which appear to be more stable and better conserved than free-miRNAs, could be investigated in further larger studies to better assess their use as possible biomarkers for TcL.
Collapse
Affiliation(s)
- Cecilia Capuano
- Anicura Istituto Veterinario di Novara, Granozzo Monticello, Italy
| | - Valentina Moccia
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Antonella Molinari
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Filippo Torrigiani
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Livia Ferro
- Anicura Istituto Veterinario di Novara, Granozzo Monticello, Italy
| | - Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Federico Bonsembiante
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, Italy
| | - Chiara Leo
- Anicura Istituto Veterinario di Novara, Granozzo Monticello, Italy
| | - Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| |
Collapse
|
3
|
Mahboobnia K, Beveridge DJ, Yeoh GC, Kabir TD, Leedman PJ. MicroRNAs in Hepatocellular Carcinoma Pathogenesis: Insights into Mechanisms and Therapeutic Opportunities. Int J Mol Sci 2024; 25:9393. [PMID: 39273339 PMCID: PMC11395074 DOI: 10.3390/ijms25179393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Hepatocellular carcinoma (HCC) presents a significant global health burden, with alarming statistics revealing its rising incidence and high mortality rates. Despite advances in medical care, HCC treatment remains challenging due to late-stage diagnosis, limited effective therapeutic options, tumor heterogeneity, and drug resistance. MicroRNAs (miRNAs) have attracted substantial attention as key regulators of HCC pathogenesis. These small non-coding RNA molecules play pivotal roles in modulating gene expression, implicated in various cellular processes relevant to cancer development. Understanding the intricate network of miRNA-mediated molecular pathways in HCC is essential for unraveling the complex mechanisms underlying hepatocarcinogenesis and developing novel therapeutic approaches. This manuscript aims to provide a comprehensive review of recent experimental and clinical discoveries regarding the complex role of miRNAs in influencing the key hallmarks of HCC, as well as their promising clinical utility as potential therapeutic targets.
Collapse
Affiliation(s)
- Khadijeh Mahboobnia
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Dianne J Beveridge
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - George C Yeoh
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Tasnuva D Kabir
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Peter J Leedman
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
4
|
Thamjamrassri P, Ariyachet C. Circular RNAs in Cell Cycle Regulation of Cancers. Int J Mol Sci 2024; 25:6094. [PMID: 38892280 PMCID: PMC11173060 DOI: 10.3390/ijms25116094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer has been one of the most problematic health issues globally. Typically, all cancers share a common characteristic or cancer hallmark, such as sustaining cell proliferation, evading growth suppressors, and enabling replicative immortality. Indeed, cell cycle regulation in cancer is often found to be dysregulated, leading to an increase in aggressiveness. These dysregulations are partly due to the aberrant cellular signaling pathway. In recent years, circular RNAs (circRNAs) have been widely studied and classified as one of the regulators in various cancers. Numerous studies have reported that circRNAs antagonize or promote cancer progression through the modulation of cell cycle regulators or their associated signaling pathways, directly or indirectly. Mostly, circRNAs are known to act as microRNA (miRNA) sponges. However, they also hold additional mechanisms for regulating cellular activity, including protein binding, RNA-binding protein (RBP) recruitment, and protein translation. This review will discuss the current knowledge of how circRNAs regulate cell cycle-related proteins through the abovementioned mechanisms in different cancers.
Collapse
Affiliation(s)
- Pannathon Thamjamrassri
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Biochemistry Program, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chaiyaboot Ariyachet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Hashemi M, Daneii P, Asadalizadeh M, Tabari K, Matinahmadi A, Bidoki SS, Motlagh YSM, Jafari AM, Ghorbani A, Dehghanpour A, Nabavi N, Tan SC, Rashidi M, Taheriazam A, Entezari M, Goharrizi MASB. Epigenetic regulation of hepatocellular carcinoma progression: MicroRNAs as therapeutic, diagnostic and prognostic factors. Int J Biochem Cell Biol 2024; 170:106566. [PMID: 38513802 DOI: 10.1016/j.biocel.2024.106566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/28/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
Hepatocellular carcinoma (HCC), a significant challenge for public healthcare systems in developed Western countries including the USA, Canada, and the UK, is influenced by different risk factors including hepatitis virus infections, alcoholism, and smoking. The disruption in the balance of microRNAs (miRNAs) plays a vital function in tumorigenesis, given their function as regulators in numerous signaling networks. These miRNAs, which are mature and active in the cytoplasm, work by reducing the expression of target genes through their impact on mRNAs. MiRNAs are particularly significant in HCC as they regulate key aspects of the tumor, like proliferation and invasion. Additionally, during treatment phases such as chemotherapy and radiotherapy, the levels of miRNAs are key determinants. Pre-clinical experiments have demonstrated that altered miRNA expression contributes to HCC development, metastasis, drug resistance, and radio-resistance, highlighting related molecular pathways and processes like MMPs, EMT, apoptosis, and autophagy. Furthermore, the regulatory role of miRNAs in HCC extends beyond their immediate function, as they are also influenced by other epigenetic factors like lncRNAs and circular RNAs (circRNAs), as discussed in recent reviews. Applying these discoveries in predicting the prognosis of HCC could mark a significant advancement in the therapy of this disease.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahya Asadalizadeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiana Tabari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun, Poland
| | - Seyed Shahabadin Bidoki
- Faculty of medicine, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Ali Moghadas Jafari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | | |
Collapse
|
6
|
Yang H, Yue B, Yang S, Qi A, Yang Y, Tang J, Ren G, Jiang X, Lan X, Pan C, Chen H. circUBE3C modulates myoblast development by binding to miR-191 and upregulating the expression of p27. J Cell Physiol 2024; 239:e31159. [PMID: 38212939 DOI: 10.1002/jcp.31159] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/16/2023] [Accepted: 11/06/2023] [Indexed: 01/13/2024]
Abstract
Noncoding RNAs, including miRNAs (microRNAs) and circRNAs (circular RNA), are crucial regulators of myoblast proliferation and differentiation during muscle development. However, the specific roles and molecular mechanisms of circRNAs in muscle development remain poorly understood. Based on the existing circRNA-miRNA-mRNA network, our study focuses on circUBE3C, exploring its differential expression in fetal and adult muscle tissue of the cattle and investigating its impact on myoblast proliferation, apoptosis, and differentiation. The functional analysis of overexpression plasmids and siRNAs (small interfering RNAs) targeting circUBE3C was comprehensively evaluated by employing an array of advanced assays, encompassing CCK-8 (cell counting kit-8), EdU (5-ethynyl-20-deoxyuridine), flow cytometry, western blot analysis, and RT-qPCR. In vivo investigations indicated that overexpression of circUBE3C impedes the process of skeletal muscle regeneration. Mechanistically, we demonstrated that circUBE3C interacts with miR-191 and alleviates the suppression of p27 through cytoplasmic separation, bioinformatics prediction, dual-luciferase reporter assay, and RIP (RNA immunoprecipitation). Our findings indicate that the novel circRNA circUBE3C competitively binds to miR-191, thereby inhibiting proliferation and promoting apoptosis in bovine primary myoblasts and unveiling a regulatory pathway in bovine skeletal muscle development. These findings expand our understanding of circRNA functions in mammals and provide a basis for further exploration of their role in myogenesis and muscle diseases.
Collapse
Affiliation(s)
- Haiyan Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Binglin Yue
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Shuling Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ao Qi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jia Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Gang Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaojun Jiang
- Agriculture and Animal Husbandry Fine Seed Breeding Farm of Shaanxi Province, Fufeng, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
7
|
Wang Z, Guan W, Ma Y, Zhou X, Song G, Wei J, Wang C. MicroRNA-191 regulates oral squamous cell carcinoma cells growth by targeting PLCD1 via the Wnt/β-catenin signaling pathway. BMC Cancer 2023; 23:668. [PMID: 37460940 PMCID: PMC10351167 DOI: 10.1186/s12885-023-11113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Studies have shown that microRNA-191 (miR-191) is involved in the development and progression of a variety of tumors. However, the function and mechanism of miR-191 in oral squamous cell carcinoma (OSCC) have not been clarified. METHODS The expression level of miR-191 in tumor tissues of patients with primary OSCC and OSCC cell lines were detected using real-time quantitative polymerase chain reaction (RT-qPCR) and western blot. OSCC cells were treated with miR-191 enhancers and inhibitors to investigate the effects of elevated or decreased miR-191 expression on OSCC cells proliferation, migration, cell cycle, and tumorigenesis. The target gene of miR-191 in OSCC cells were analyzed by dual-Luciferase assay, and the downstream signaling pathway of the target genes was detected using western blot assay. RESULTS The expression of miR-191 was significantly upregulated in OSCC tissues and cell lines. Upregulation of miR-191 promoted proliferation, migration, invasion, and cell cycle progression of OSCC cells, as well as tumor growth in nude mice. Meanwhile, reduced expression of miR-191 inhibited these processes. Phospholipase C delta1 (PLCD1) expression was significantly downregulated, and negatively correlated with the expression of miR-191 in OSCC tissues. Dual-Luciferase assays showed that miR-191-5p could bind to PLCD1 mRNA and regulate PLCD1 protein expression. Western blot assay showed that the miR-191 regulated the expression of β-catenin and its downstream gene through targeting PLCD1. CONCLUSION MicroRNA-191 regulates oral squamous cell carcinoma cells growth by targeting PLCD1 via the Wnt/β-catenin signaling pathway. Thus, miR-191 may serve as a potential target for the treatment of OSCC.
Collapse
Affiliation(s)
- Zekun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontic Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Wenzhao Guan
- Department of Stomatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yufeng Ma
- Department of Stomatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontic Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Guohua Song
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Taiyuan, 030001, China.
| | - Jianing Wei
- Department of Cardiology, Shanxi Provincial Key Laboratory of Cardiovascular Disease Diagnosis, Treatment and Clinical Pharmacology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chenyang Wang
- Department of Cardiology, Shanxi Provincial Key Laboratory of Cardiovascular Disease Diagnosis, Treatment and Clinical Pharmacology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
8
|
Rao G, Peng X, Tian Y, Fu X, Zhang Y. Circular RNAs in hepatocellular carcinoma: biogenesis, function, and pathology. Front Genet 2023; 14:1106665. [PMID: 37485335 PMCID: PMC10361733 DOI: 10.3389/fgene.2023.1106665] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. Both genetic and environmental factors through a multitude of underlying molecular mechanisms participate in the pathogenesis of HCC. Recently, numerous studies have shown that circular RNAs (circRNAs), an emerging class of non-coding RNAs characterized by the presence of covalent bonds linking 3' and 5' ends, play an important role in the initiation and progression of cancers, including HCC. In this review, we outline the current status of the field of circRNAs, with an emphasis on the functions and mechanisms of circRNAs in HCC and its microenvironment. We also summarize and discuss recent advances of circRNAs as biomarkers and therapeutic targets. These efforts are anticipated to throw new insights into future perspectives about circRNAs in basic, translational and clinical research, eventually advancing the diagnosis, prevention and treatment of HCC.
Collapse
Affiliation(s)
- Guocheng Rao
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Xi Peng
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yan Tian
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Nagaraju GP, Dariya B, Kasa P, Peela S, El-Rayes BF. Epigenetics in hepatocellular carcinoma. Semin Cancer Biol 2022; 86:622-632. [PMID: 34324953 DOI: 10.1016/j.semcancer.2021.07.017] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 07/25/2021] [Indexed: 01/27/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and has a high fatality rate. Genetic and epigenetic aberrations are commonly observed in HCC. The epigenetic processes include chromatin remodelling, histone alterations, DNA methylation, and noncoding RNA (ncRNA) expression and are connected with the progression and metastasis of HCC. Due to their potential reversibility, these epigenetic alterations are widely targeted for the development of biomarkers. In-depth understanding of the epigenetics of HCC is critical for developing rational clinical strategies that can provide a meaningful improvement in overall survival and prediction of therapeutic outcomes. In this article, we have summarised the epigenetic modifications involved in HCC progression and highlighted the potential biomarkers for diagnosis and drug development.
Collapse
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Begum Dariya
- Department of Biosciences and Biotechnology, Banasthali University, Banasthali, 304022, Rajasthan, India
| | - Prameswari Kasa
- Dr. L.V. Prasad Diagnostics and Research Laboratory, Khairtabad, Hyderabad 500004, India
| | - Sujatha Peela
- Department of Biotechnology, Dr. B.R. Ambedkar University, Srikakulam, 532410 AP, India
| | - Bassel F El-Rayes
- Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
10
|
Zhang L, Zhang P, Liu T, Li D, Liu X. Circ_0006404 enhances hepatocellular carcinoma progression by regulating miR-624. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69980-69987. [PMID: 35579835 DOI: 10.1007/s11356-021-17574-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/12/2021] [Indexed: 06/15/2023]
Abstract
Growing studies have demonstrated that circRNAs (circular RNAs) act potential roles in tumor metastasis and progression. However, the expression and function of circ_0006404 in hepatocellular carcinoma (HCC) remain to be investigated. The expression of circ_0006404 and miR-624 was detected by qRT-PCR. CCK-8 assay, flow cytometry, and wound healing were performed to determine cell proliferation, cycle, and migration. The target of circ_0006404 was studied by bioinformatics and luciferase activity analysis. Our data indicated that circ_0006404 was overexpressed in HCC specimens and cells and ectopic expression of circ_0006404 increased HCC cell growth, cycle, and migration. Moreover, we showed that miR-624 was downregulated in HCC specimens and cells and miR-624 expression was negatively correlated with circ_0006404 expression in HCC specimens. Circ_0006404 sponged miR-624 in HCC cell, and the overexpression of circ_0006404 suppressed miR-624 expression in HCC cell. Furthermore, circ_0006404 induced HCC cell growth, cycle, and migration via regulating miR-624. These results elucidated that circ_0006404 facilitated HCC progression and might act as one new biomarker for this carcinoma.
Collapse
Affiliation(s)
- Liguo Zhang
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Ping Zhang
- Department One of Oncology, Binzhou People's Hospital, Binzhou, Shandong, China
| | - Tonggang Liu
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China.
| | - Dongmei Li
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Xianxian Liu
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China.
| |
Collapse
|
11
|
Cui Y, Zhao X, Wu Y. Circ_0005918 Sponges miR-622 to Aggravate Intervertebral Disc Degeneration. Front Cell Dev Biol 2022; 10:905213. [PMID: 35874804 PMCID: PMC9304550 DOI: 10.3389/fcell.2022.905213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Intervertebral discdegeneration (IDD) is the most common cause of lower back pain, but the exact molecular mechanism of IDD is still unknown. Recently, studies have shown that circular RNAs (circRNAs) regulate diverse biological procedures such as cell metastasis, growth, metabolism, migration, apoptosis, and invasion. We demonstrated that IL-1β and TNF-α induced circ_0005918 expression in the NP cell, and circ_0005918 was overexpressed in the IDD group compared with the control group. Moreover, the upregulated expression of circ_0005918 was associated with disc degeneration degree. The elevated expression of circ_0005918 promoted cell growth and ECM degradation, and it induced secretion of inflammatory cytokines including IL-1β, IL-6, and TNF-α. Moreover, we found that circ_0005918 sponged miR-622 in the NP cell. In addition, the exposure to IL-1β and TNF-α suppressed the expression of miR-622, which was downregulated in the IDD group compared with the control group. Furthermore, the downregulated expression of miR-622 was associated with disc degeneration degree. The expression level of miR-622 was negatively associated with circ_0005918 expression in the IDD group. In conclusion, circ_0005918 regulated cell growth, ECM degradation, and secretion of inflammatory cytokines by regulating miR-622 expression. These data suggested that circ_0005918 played important roles in the development of IDD via sponging miR-622.
Collapse
|
12
|
Yan P, Sun C, Luan L, Han J, Qu Y, Zhou C, Xu D. Hsa_circ_0134111 promotes intervertebral disc degeneration via sponging miR-578. Cell Death Dis 2022; 8:55. [PMID: 35136049 PMCID: PMC8827076 DOI: 10.1038/s41420-022-00856-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/06/2022] [Accepted: 01/27/2022] [Indexed: 11/09/2022]
Abstract
Intervertebral disc degeneration (IDD) is a chronic degenerative and age-dependent process characterized by aberrant apoptosis, proliferation, synthesis, and catabolism of the extracellular matrix of the nucleus pulposus (NP) cells. Recently, studies showed that circular RNAs play important roles in the development of many diseases. However, the role of circRNAs in IDD development remains unknown. We showed that circ_0134111 level was overexpressed in IDD tissue samples as compar-ed to control tissues. The upregulation of circ_0134111 was more drastic in the moderate and severe IDD cases than in those with mild IDD. In addition, we showed that interleukin-1β and tumor necrosis factor-α exposure significantly enhanced circ_0134111 expression in NP cells. Furthermore, ectopic expression of circ_0134111 induced proliferation, pro-inflammatory cytokine secretion, and ECM degradation in the NP cells. We also showed that circ_0134111 directly interacted with microRNA (miR)-578 in NP cells where elevated expression of circ_0134111 enhanced the ADAMTS-5 and MMP-9 expression. Moreover, miR-578 expression was significantly decreased in IDD patients and the miR-578 expression was negatively correlated with circ_0134111 expression in the IDD samples. Interleukin-1β and tumor necrosis factor-α exposure significantly decreased miR-578 levels in NP cells, in which ectopic miR-578 expression inhibited cell growth, pro-inflammatory cytokine expression, and ECM degradation. Finally, we showed that circ_0134111 overexpression induced the IDD-related phenotypic changes through inhibiting miR-578. These data suggested that circ_0134111 could promote the progression of IDD through enhancing aberrant NP cell growth, inflammation, and ECM degradation partly via regulating miR-578.
Collapse
Affiliation(s)
- Peng Yan
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, 266000, Qingdao, Shandong, China
| | - Chong Sun
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, 266000, Qingdao, Shandong, China
| | - Liangrui Luan
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, 266000, Qingdao, Shandong, China
| | - Jialuo Han
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, 266000, Qingdao, Shandong, China
| | - Yang Qu
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, 266000, Qingdao, Shandong, China
| | - Chuanli Zhou
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, 266000, Qingdao, Shandong, China
| | - Derong Xu
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, 266000, Qingdao, Shandong, China.
| |
Collapse
|
13
|
Xu D, Ma X, Sun C, Han J, Zhou C, Wong SH, Chan MTV, Wu WKK. Circular RNAs in Intervertebral Disc Degeneration: An Updated Review. Front Mol Biosci 2022; 8:781424. [PMID: 35071323 PMCID: PMC8770867 DOI: 10.3389/fmolb.2021.781424] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/13/2021] [Indexed: 01/26/2023] Open
Abstract
Low back pain, a common medical condition, could result in severe disability and inflict huge economical and public health burden. Its pathogenesis is attributed to multiple etiological factors, including intervertebral disc degeneration (IDD). Emerging evidence suggests that circular RNAs (circRNAs), a major type of regulatory non-coding RNA, play critical roles in cellular processes that are pertinent to IDD development, including nucleus pulposus cell proliferation and apoptosis as well as extracellular matrix deposition. Increasing number of translational studies also indicated that circRNAs could serve as novel biomarkers for the diagnosis of IDD and/or predicting its clinical outcomes. Our review aims to discuss the recent progress in the functions and mechanisms of newly discovered IDD-related circRNAs.
Collapse
Affiliation(s)
- Derong Xu
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuexiao Ma
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chong Sun
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jialuo Han
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuanli Zhou
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Sunny Hei Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - William K K Wu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
Huang Z, Xia H, Liu S, Zhao X, He R, Wang Z, Shi W, Chen W, Kang P, Su Z, Cui Y, Yam JWP, Xu Y. The Mechanism and Clinical Significance of Circular RNAs in Hepatocellular Carcinoma. Front Oncol 2021; 11:714665. [PMID: 34540684 PMCID: PMC8445159 DOI: 10.3389/fonc.2021.714665] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/09/2021] [Indexed: 01/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors worldwide. In view of the lack of early obvious clinical symptoms and related early diagnostic biomarkers with high specificity and sensitivity, most HCC patients are already at the advanced stages at the time of diagnosis, and most of them are accompanied by distant metastasis. Furthermore, the unsatisfactory effect of the follow-up palliative care contributes to the poor overall survival of HCC patients. Therefore, it is urgent to identify effective early diagnosis and prognostic biomarkers and to explore novel therapeutic approaches to improve the prognosis of HCC patients. Circular RNA (CircRNA), a class of plentiful, stable, and highly conserved ncRNA subgroup with the covalent closed loop, is dysregulated in HCC. Increasingly, emerging evidence have confirmed that dysregulated circRNAs can regulate gene expression at the transcriptional or post-transcriptional level, mediating various malignant biological behaviors of HCC cells, including proliferation, invasion, metastasis, immune escape, stemness, and drug resistance, etc.; meanwhile, they are regarded as potential biomarkers for early diagnosis and prognostic evaluation of HCC. This article reviews the research progress of circRNAs in HCC, expounding the potential molecular mechanisms of dysregulated circRNAs in the carcinogenesis and development of HCC, and discusses those application prospects in the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Ziyue Huang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haoming Xia
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuqiang Liu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xudong Zhao
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Risheng He
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhongrui Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenguang Shi
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wangming Chen
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengcheng Kang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhilei Su
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| |
Collapse
|
15
|
Abstract
Background Gastric cell carcinoma (GCC) is a common and high-incidence malignant gastrointestinal cancer that seriously threatens human life and safety. Evidences suggest that microRNAs (miRNAs) exhibit an essential role in regulating the occurrence and development of GCC, while the effects and possible mechanisms remain to be further explored. Objective This study was designed to explore whether miR-200c-3p exerted its functional role in the growth and metastasis of GCC, and investigate the possible mechanisms. Methods The expression levels of miR-200c-3p in GCC tissues and cell lines were detected by qRT-PCR analysis. The functional role of miR-200c-3p in the viability, proliferation, migration and invasion of GCC cells were evaluated by CCK-8, EdU, wound healing and Transwell assays. In addition, the candidate targets of miR-200c-3p was predicted and confirmed by dual-luciferase reporter assay. Moreover, the relationship between miR-200c-3p and target (Krüppel like factor 6, KLF6) was assessed by qRT-PCR and western blot assays. Besides, the expression levels of KLF6 in GCC cells were determined by qRT-PCR and western blot assays. Furthermore, the role of KLF6 in the viability, proliferation, migration and invasion of GCC cells mediated with miR-200c-3p mimics was evaluated by CCK-8, EdU, wound healing and Transwell assays. Results In the present study, a new tumor promoting function of miR-200c-3p was disclosed in GCC. We found that the expression of miR-200c-3p was obviously increased in clinic GCC tissues and cell lines. In addition, down-regulation of miR-200c-3p suppressed cell viability, proliferation, migration, and invasion in GCC cells. Moreover, KLF6 was verified as a direct target of miR-200c-3p by binding its 3’-UTR. Additionally, KLF6 was remarkably decreased and was negatively associated with the miR-200c-3p expression in GCC cell lines. Furthermore, over-expression of KLF6 retarded the effects of miR-200c-3p on the growth and metastasis of GCC cell lines. Conclusions MiR-200c-3p potentially played a tumor-promoting role in the occurrence and development of GCC, which may be achieved by targeting KLF6. Graphic abstract ![]()
Collapse
|
16
|
Ning R, Meng S, Wang L, Jia Y, Tang F, Sun H, Zhang Z, Zhang C, Fan X, Xiao B, Yang C, Li S. 6 Circulating miRNAs can be used as Non-invasive Biomarkers for the Detection of Cervical Lesions. J Cancer 2021; 12:5106-5113. [PMID: 34335927 PMCID: PMC8317520 DOI: 10.7150/jca.51141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Cervical cancer is the most common malignant tumor in the female reproductive system, while the efficacy of routine screening strategy is unsatisfied. New molecular tests need to be developed. miRNAs participate in many pathologic processes, and circulating miRNAs are promising non-invasive biomarkers in tumors. Objectives: This study aimed to identify the circulating miRNAs associated with both cervical cancer and cervical intraepithelial neoplasia (CIN), and establish a non-invasive classifier for cervical lesions using circulating miRNAs. Methods: This study consisted of 5 steps: miRNAs screening, miRNAs validation, classifier establishment, independent validation and in silico analyses. Three cohorts were included in our study: In screening stage, 24 samples including 14 cases and 10 controls were retrieved; In validation stage, 380 samples including 200 cases and 180 controls were recruited; In independent validation stage, 47 samples comprising 26 cases and 21 controls were included. miRNAs were quantified by RT-qPCR. A classifier was built with random forest algorithm using validation samples and selected miRNAs, which were then validated in an independent cohort. To explore the function of selected miRNAs, in silico analyses were performed. Target genes of selected miRNAs were predicted by the overlap of three online tools. Enrichment analyses were executed with predicted target genes. Differential analysis of target genes was carried out with open access expression assay datasets of cervical tissues. Results: 6 miRNAs (hsa-miR-26b-5p, hsa-miR-146b-5p, hsa-miR-191-5p, hsa-miR-484, hsa-miR-574-3p, hsa-miR-625-3p) were screened out from 754 miRNAs. They were associated with cervical lesions and were selected to establish a classifier. The accuracy of the classifier were 0.7218 (0.7117, 0.7319) in validation samples, which was 0.7021 in the independent cohort. 958 target genes were predicted and enriched in 23 pathways (MAPK, human papillomavirus infection and Wnt signaling pathway, etc.). 55 genes were identified as the most likely target genes by differential analysis. Conclusion: The 6 circulating miRNAs were related to cervical lesions and could serve as non-invasive biomarkers.
Collapse
Affiliation(s)
- Ruoqi Ning
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Silu Meng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Lin Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China.,Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Yao Jia
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Fangxu Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Haiying Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Zhi Zhang
- National Engineering Research Center for Beijing Biochip Technology, Changping District, Beijing, 102206, P.R. China.,CapitalBio Corporation, Changping District, Beijing, 102206, P.R. China
| | - Chong Zhang
- National Engineering Research Center for Beijing Biochip Technology, Changping District, Beijing, 102206, P.R. China.,CapitalBio Corporation, Changping District, Beijing, 102206, P.R. China
| | - Xinran Fan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Bing Xiao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Chunhua Yang
- National Engineering Research Center for Beijing Biochip Technology, Changping District, Beijing, 102206, P.R. China.,CapitalBio Corporation, Changping District, Beijing, 102206, P.R. China
| | - Shuang Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| |
Collapse
|
17
|
MicroRNA-543-3p down-regulates inflammation and inhibits periodontitis through KLF6. Biosci Rep 2021; 41:228588. [PMID: 33955459 PMCID: PMC8144941 DOI: 10.1042/bsr20210138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/22/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022] Open
Abstract
MicroRNA-543-3p (miR-543-3p) has been reported to be involved in many human disease’s progression, but its role in inflammation is still unclear. After bacterial infection, innate immune cells are activated to trigger inflammation by recognizing lipopolysaccharide (LPS) on the bacterial outer membrane. In our research, it showed that miR-543-3p was down-regulated in LPS-treated periodontal ligament cells (PDLCs). And it mediated the apoptosis of PDLC induced by LPS, which may be involved in periodontitis development. Besides, up-regulation of miR-543-3p alleviated the inflammatory damage induced by LPS. Furthermore, our research demonstrated Kruppel-like factor 6 (KLF6) served as a direct downstream target of miR-543-3p to play a vital role in periodontitis. Simply put, these findings suggest that miR-543-3p could down-regulate inflammation and inhibit periodontitis by targeting KLF6, and it provides a new insight into the molecular mechanism of periodontitis, which may be helpful for the early diagnosis and treatment of this disease.
Collapse
|
18
|
MicroRNA-4325 Suppresses Cell Progression in Hepatocellular Carcinoma via GATA-Binding Protein 6. BIOMED RESEARCH INTERNATIONAL 2021. [DOI: 10.1155/2021/6616982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
MicroRNAs (miRs) are regulators of the formation and development of hepatocellular carcinoma (HCC). The biological role of miR-4325 in HCC has yet to be determined. This study is aimed at dissecting the role of miR-4325 in HCC and the underlying mechanism. Reverse transcription-quantitative PCR (RT-qPCR) was used to detect miR-4325 expression in HCC tissue specimens and cells. Cell proliferation, migration, and invasion were assessed by using the MTT assay and Transwell assay, respectively. The miR-4325 target was predicted based on bioinformatics analysis and validated using the dual-luciferase reporter assay. Rescue experiments in the cells were utilized to functionally characterize the downstream molecular targets of miR-4325. We observed that miR-4325 expression levels were significantly reduced in both HCC tissue specimens and cell lines. Meanwhile, a lower miR-4325 level was associated with a poorer prognosis. Gain and loss of function assays revealed that miR-4325 markedly downregulated HCC cell growth, migration, and invasion. Moreover, we identified GATA-binding protein 6 (GATA6) as a miR-4325 target and found that GATA6 was abnormally expressed in HCC. Rescue assays demonstrated that the regulatory function of miR-4325 in HCC was mediated by GATA6. Taken together, miR-4325 suppresses HCC cell growth, migration, and invasion by targeting GATA6, suggesting that miR-4325 may potentially serve as a novel therapeutic target for HCC.
Collapse
|
19
|
Ning Z, Yu S, Zhao Y, Sun X, Wu H, Yu X. Identification of miRNA-Mediated Subpathways as Prostate Cancer Biomarkers Based on Topological Inference in a Machine Learning Process Using Integrated Gene and miRNA Expression Data. Front Genet 2021; 12:656526. [PMID: 33841512 PMCID: PMC8024646 DOI: 10.3389/fgene.2021.656526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/02/2021] [Indexed: 11/25/2022] Open
Abstract
Accurately identifying classification biomarkers for distinguishing between normal and cancer samples is challenging. Additionally, the reproducibility of single-molecule biomarkers is limited by the existence of heterogeneous patient subgroups and differences in the sequencing techniques used to collect patient data. In this study, we developed a method to identify robust biomarkers (i.e., miRNA-mediated subpathways) associated with prostate cancer based on normal prostate samples and cancer samples from a dataset from The Cancer Genome Atlas (TCGA; n = 546) and datasets from the Gene Expression Omnibus (GEO) database (n = 139 and n = 90, with the latter being a cell line dataset). We also obtained 10 other cancer datasets to evaluate the performance of the method. We propose a multi-omics data integration strategy for identifying classification biomarkers using a machine learning method that involves reassigning topological weights to the genes using a directed random walk (DRW)-based method. A global directed pathway network (GDPN) was constructed based on the significantly differentially expressed target genes of the significantly differentially expressed miRNAs, which allowed us to identify the robust biomarkers in the form of miRNA-mediated subpathways (miRNAs). The activity value of each miRNA-mediated subpathway was calculated by integrating multiple types of data, which included the expression of the miRNA and the miRNAs’ target genes and GDPN topological information. Finally, we identified the high-frequency miRNA-mediated subpathways involved in prostate cancer using a support vector machine (SVM) model. The results demonstrated that we obtained robust biomarkers of prostate cancer, which could classify prostate cancer and normal samples. Our method outperformed seven other methods, and many of the identified biomarkers were associated with known clinical treatments.
Collapse
Affiliation(s)
- Ziyu Ning
- The Higher Educational Key Laboratory for Measuring and Control Technology and Instrumentations of Heilongjiang Province, Harbin University of Science and Technology, Harbin, China.,School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Shuang Yu
- The Higher Educational Key Laboratory for Measuring and Control Technology and Instrumentations of Heilongjiang Province, Harbin University of Science and Technology, Harbin, China
| | - Yanqiao Zhao
- The Higher Educational Key Laboratory for Measuring and Control Technology and Instrumentations of Heilongjiang Province, Harbin University of Science and Technology, Harbin, China
| | - Xiaoming Sun
- The Higher Educational Key Laboratory for Measuring and Control Technology and Instrumentations of Heilongjiang Province, Harbin University of Science and Technology, Harbin, China
| | - Haibin Wu
- The Higher Educational Key Laboratory for Measuring and Control Technology and Instrumentations of Heilongjiang Province, Harbin University of Science and Technology, Harbin, China
| | - Xiaoyang Yu
- The Higher Educational Key Laboratory for Measuring and Control Technology and Instrumentations of Heilongjiang Province, Harbin University of Science and Technology, Harbin, China
| |
Collapse
|
20
|
Ely A, Bloom K, Maepa MB, Arbuthnot P. Recent Update on the Role of Circular RNAs in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:1-17. [PMID: 33542907 PMCID: PMC7851377 DOI: 10.2147/jhc.s268291] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
After being overlooked for decades, circular RNAs (circRNAs) have recently generated considerable interest. circRNAs play a role in a variety of normal and pathological biological processes, including hepatocarcinogenesis. Many circRNAs contribute to hepatocarcinogenesis through sponging of microRNAs (miRs) and disruption of cellular signaling pathways that play a part in control of cell proliferation, metastasis and apoptosis. In most cases, overexpressed circRNAs sequester miRs to cause de-repressed translation of mRNAs that encode oncogenic proteins. Conversely, low expression of circRNAs has also been described in hepatocellular carcinoma (HCC) and is associated with inhibited production of tumor suppressor proteins. Other functions of circRNAs that contribute to hepatocarcinogenesis include translation of truncated proteins and acting as adapters to regulate influence of transcription factors on target gene expression. circRNAs also affect hepatocyte transformation indirectly. For example, the molecules regulate immune surveillance of cancerous cells and influence the liver fibrosis that commonly precedes HCC. Marked over- or under-expression of circRNA expression in HCC, with correlating plasma concentrations, has diagnostic utility and assays of these RNAs are being developed as biomarkers of HCC. Although knowledge in the field has recently surged, the myriad of described effects suggests that not all may be vital to hepatocarcinogenesis. Nevertheless, investigation of the role of circRNAs is providing valuable insights that are likely to contribute to improved management of a serious and highly aggressive cancer.
Collapse
Affiliation(s)
- Abdullah Ely
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kristie Bloom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mohube Betty Maepa
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
21
|
Li L, He K, Chen S, Wei W, Tian Z, Tang Y, Xiao C, Xiang G. Circ_0001175 Promotes Hepatocellular Carcinoma Cell Proliferation and Metastasis by Regulating miR-130a-5p. Onco Targets Ther 2020; 13:13315-13327. [PMID: 33408482 PMCID: PMC7781360 DOI: 10.2147/ott.s262408] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Objective Many aberrantly expressed circular RNAs (circRNAs) play important roles in the development and progression of hepatocellular carcinoma (HCC). However, the exact function of circ_0001175 in HCC cells is unknown. Our study aimed to investigate the expression characteristics of circ_0001175 in HCC and its effects on the proliferation, migration and invasion of HCC cells, and to explore the potential mechanism. Materials and Methods Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were carried out to detect circ_0001175, microRNA-130a-5p (miR-130a-5p) and sorting nexin 5 (SNX5) expressions in HCC tissues and cells; cell counting kit-8 (CCK-8), BrdU and Transwell assays were conducted to detect the proliferation, migration and invasion of HCC cells. A lung metastasis model in nude mice was used to examine the effect of circ_0001175 on the metastasis of HCC cells in vivo. Bioinformatics prediction, luciferase reporter gene experiment, Ago2-RIP experiment and RNA pull-down assay were adopted to identify the binding relationships among circ_0001175, miR-130a-5p and SNX5. Results Circ_0001175 and SNX5 expressions were up-regulated in HCC tissues and cell lines, while miR-130a-5p expression was down-regulated. Abnormal expressions of circ_0001175, miR-130a-5p and SNX5 were associated with poor clinicopathological features of HCC patients; circ_0001175 facilitated HCC cell proliferation, migration and invasion in vitro and promoted lung metastasis in vivo; miR-130a-5p inhibited the above malignant biological behaviors of HCC cells, and it could reverse the function of circ_0001175. SNX5 was identified as a target gene of miR-130a-5p, and circ_0001175 could sponge miR-130a-5p and up-regulate the expression of SNX5 in HCC cells. Conclusion Circ_0001175 is highly expressed in HCC and facilitates HCC progression through regulating miR-130a-5p/SNX5 axis.
Collapse
Affiliation(s)
- Liheng Li
- Department of Interventional Radiology, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Ke He
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Siliang Chen
- Department of Interventional Radiology, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Wenjiang Wei
- Department of Interventional Radiology, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Zuofu Tian
- Department of Interventional Radiology, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Yinghong Tang
- Department of Interventional Radiology, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Chengjiang Xiao
- Department of Interventional Radiology, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Guoan Xiang
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| |
Collapse
|
22
|
Zhang X, Hao H, Zhuang H, Wang J, Sheng Y, Xu F, Dou J, Chen C, Shen Y. Circular RNA circ_0008305 aggravates hepatocellular carcinoma growth through binding to miR‐186 and inducing TMED2. J Cell Mol Med 2020; 26:1742-1753. [PMID: 33210454 PMCID: PMC8918415 DOI: 10.1111/jcmm.15945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/01/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Dysregulation of circRNAs is reported to exert crucial roles in cancers, including hepatocellular carcinoma (HCC). So far, the function of circRNAs in HCC development remains poorly known. Currently, our data showed that circ_0008305 was highly elevated in HCC cell lines and 30 paired tissue samples of HCC. As evidenced, suppression of circ_0008305 repressed HCC cell growth significantly. Meanwhile, up‐regulation of circ_0008305 significantly reduced HCC cell growth. Mechanistically, we displayed that circ_0008305 could bind with miR‐186 by using bioinformatics analysis. miR‐186 has been reported to be a crucial tumour oncogene in many cancers. In addition, we proved miR‐186 was greatly decreased in HCC. The direct correlation between miR‐186 and circ_0008305 was confirmed in our work. In addition, up‐regulation of miR‐186 obviously restrained HCC progression. Increased expression of transmembrane p24 trafficking protein 2 (TMED2) is significantly related to the unfavourable outcomes in cancer patients. At our present work, we proved that TMED2 could act as a direct target of miR‐186. Mechanistically, we demonstrated that circ_0008305 up‐regulated TMED2 expression by sponging miR‐186, which resulted in significantly induced HCC progression in vitro and in vivo. These revealed the significant role of circ_0008305 in HCC progression, which might indicate a new perspective on circRNAs in HCC development.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Division of Gastrointestinal Surgery Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University Huai'an China
| | - Hui‐Hui Hao
- Department of Pharmacology Jiangsu College of Nursing Huai'an China
| | - Hai‐Wen Zhuang
- Division of Gastrointestinal Surgery Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University Huai'an China
| | - Jian Wang
- Division of Gastrointestinal Surgery Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University Huai'an China
| | - Yu Sheng
- Division of Gastrointestinal Surgery Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University Huai'an China
| | - Fang Xu
- Division of Gastrointestinal Surgery Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University Huai'an China
| | - Jin Dou
- Division of Gastrointestinal Surgery Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University Huai'an China
| | - Chuang Chen
- Division of Hepatobiliary Surgery Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University Huai'an China
| | - Yang Shen
- Operating Room Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University Huai'an China
| |
Collapse
|
23
|
Hashemi A, Gorji-Bahri G. MicroRNA: Promising Roles in Cancer Therapy. Curr Pharm Biotechnol 2020; 21:1186-1203. [PMID: 32310047 DOI: 10.2174/1389201021666200420101613] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/17/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNA) are small non-coding RNAs that act as one of the main regulators of gene expression. They are involved in maintaining a proper balance of diverse processes, including differentiation, proliferation, and cell death in normal cells. Cancer biology can also be affected by these molecules by modulating the expression of oncogenes or tumor suppressor genes. Thus, miRNA based anticancer therapy is currently being developed either alone or in combination with chemotherapy agents used in cancer management, aiming at promoting tumor regression and increasing cure rate. Access to large quantities of RNA agents can facilitate RNA research and development. In addition to currently used in vitro methods, fermentation-based approaches have recently been developed, which can cost-effectively produce biological RNA agents with proper folding needed for the development of RNA-based therapeutics. Nevertheless, a major challenge in translating preclinical studies to clinical for miRNA-based cancer therapy is the efficient delivery of these agents to target cells. Targeting miRNAs/anti-miRNAs using antibodies and/or peptides can minimize cellular and systemic toxicity. Here, we provide a brief review of miRNA in the following aspects: biogenesis and mechanism of action of miRNAs, the role of miRNAs in cancer as tumor suppressors or oncogenes, the potential of using miRNAs as novel and promising therapeutics, miRNA-mediated chemo-sensitization, and currently utilized methods for the in vitro and in vivo production of RNA agents. Finally, an update on the viral and non-viral delivery systems is addressed.
Collapse
Affiliation(s)
- Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gilar Gorji-Bahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Li LB, Yang L, Xie GQ, Zhou XC, Shen XB, Xu QL, Ma ZY, Guo XD. The modulation relationship of genomic pattern of intratumor heterogeneity and immunity microenvironment heterogeneity in hepatocellular carcinoma. Oncol Lett 2020; 20:233. [PMID: 32968455 PMCID: PMC7500054 DOI: 10.3892/ol.2020.12096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/15/2020] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world, with the second highest mortality rate among all cancer types. Growing evidence has demonstrated the notable effects of intratumor heterogeneity (ITH) and tumor immune microenvironment heterogeneity (TIMH) on the biological processes involved in HCC. However, the interactive mechanisms between ITH and TIMH is still unclear. The present study systematically screened the mRNA expression, simple nucleotide variation data and clinical data of samples from The Cancer Genome Atlas (TCGA). The mutant-allele tumor heterogeneity (MATH) score was used to represent ITH, and TCGA cohort was divided into two groups according to the MATH score. Next, different immune-related signaling pathways and enriched immune-related genes were identified using Gene Set Enrichment Analysis of these two groups, and the results revealed that interleukin-1α (IL1A) and serine/threonine-protein kinase PAK4 were associated with prognosis. Furthermore, CIBERSORT was utilized to calculate the fractions of 22 types of leukocytes to represent TIMH, and the fractions of M1 and M2 macrophages were confirmed to be associated with prognosis. Therefore, PAK4, interleukin-1α (IL1A), and M1/M2 ratio were selected as the key factors involved in the interaction between ITH and TIMH. Afterwards, microRNAs (miRNAs) that were linearly related to the M1/M2 ratio and the potential target genes of the miRNAs were screened. Finally, the regulatory network between PAK4, IL1A, and the M1/M2 ratio was established, bridged by the above miRNAs and the target genes. In addition, PAK4, heat shock protein 105 kDa and miRNA-1911 were demonstrated to be a key factor involved in immune response via Weighted Correlation Network Analysis in HCC.
Collapse
Affiliation(s)
- Liu-Bo Li
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200080, P.R. China
| | - Lu Yang
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Guo-Qun Xie
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200080, P.R. China
| | - Xiao-Cui Zhou
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200080, P.R. China
| | - Xu-Bo Shen
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200080, P.R. China
| | - Qiu-Lin Xu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200080, P.R. China
| | - Zheng-Yuan Ma
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Xiao-Dong Guo
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
25
|
Li Z, Li X, Xu D, Chen X, Li S, Zhang L, Chan MTV, Wu WKK. An update on the roles of circular RNAs in osteosarcoma. Cell Prolif 2020; 54:e12936. [PMID: 33103338 PMCID: PMC7791175 DOI: 10.1111/cpr.12936] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/23/2020] [Accepted: 10/04/2020] [Indexed: 01/17/2023] Open
Abstract
Osteosarcoma is the most common primary bone malignancy and is a neoplasm thought to be derived from the bone‐forming mesenchymal stem cells. Aberrant activation of oncogenes and inactivation of tumour suppressor genes by somatic mutations and epigenetic mechanisms play a pivotal pathogenic role in osteosarcoma. Aside from alterations in these protein‐coding genes, it has now been realized that dysregulation of non‐coding RNAs (ncRNAs), including microRNAs (miRNAs), long non‐coding RNAs (lncRNAs) and the recently discovered circular RNAs (circRNAs), is crucial to the initiation and progression of osteosarcoma. CircRNAs are single‐stranded RNAs that form covalently closed loops and function as an important regulatory element of the genome through multiple machineries. Recently, an increasing number of studies suggested that circRNAs also played critical roles in osteosarcoma. This review summarizes recent development and progression in circRNA transcriptome analysis and their functions in the modulation of osteosarcoma progression.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingye Li
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, Beijing, China
| | - Derong Xu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Chen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugang Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care, Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong City, Hong Kong
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong City, Hong Kong
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong City, Hong Kong.,State Key Laboratory of Digestive Diseases, Centre for Gut Microbiota Research, Institute of Digestive Diseases and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong City, Hong Kong
| |
Collapse
|
26
|
The crucial choice of reference genes: identification of miR-191-5p for normalization of miRNAs expression in bone marrow mesenchymal stromal cell and HS27a/HS5 cell lines. Sci Rep 2020; 10:17728. [PMID: 33082452 PMCID: PMC7576785 DOI: 10.1038/s41598-020-74685-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Bone marrow mesenchymal stromal cells (BM-MSCs) have a critical role in tissue regeneration and in the hematopoietic niche due to their differentiation and self-renewal capacities. These mechanisms are finely tuned partly by small non-coding microRNA implicated in post-transcriptional regulation. The easiest way to quantify them is RT-qPCR followed by normalization on validated reference genes (RGs). This study identified appropriate RG for normalization of miRNA expression in BM-MSCs and HS27a and HS5 cell lines in various conditions including normoxia, hypoxia, co-culture, as model for the hematopoietic niche and after induced differentiation as model for regenerative medicine. Six candidates, namely miR-16-5p, miR-34b-3p, miR-103a-3p, miR-191-5p, let-7a-5p and RNU6A were selected and their expression verified by RT-qPCR. Next, a ranking on stability of the RG candidates were performed with two algorithms geNorm and RefFinder and the optimal number of RGs needed to normalize was determined. Our results indicate miR-191-5p as the most stable miRNA in all conditions but also that RNU6a, usually used as RG is the less stable gene. This study demonstrates the interest of rigorously evaluating candidate miRNAs as reference genes and the importance of the normalization process to study the expression of miRNAs in BM-MSCs or derived cell lines.
Collapse
|
27
|
Bao SX, Wang CH, Jin S, Hu KW, Lu JT. miR-135b-5p Suppresses Androgen Receptor-Enhanced Hepatocellular Carcinoma Cell Proliferation via Regulating the HIF-2α/c-Myc/P27 Signals in vitro. Onco Targets Ther 2020; 13:9991-10000. [PMID: 33116584 PMCID: PMC7548343 DOI: 10.2147/ott.s268214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) accounts for more than 90% of liver cancers and is ranked as the fifth most common malignancy. Androgen receptor (AR) may promote the progression of HCC at an early stage of the disease. However, this study identified miR-135b-5p as an AR upstream regulator can suppress AR protein expression and inhibit HCC proliferation, consistent with the idea that AR expression is negatively correlated with HCC progression. Methods The target microRNAs were predicted using online databases (TargetScan, miRDB, and MicroCosm Targets). Cell proliferation ability was measured by MTT and colony formation assay. Western blot was performed to analyze the expression levels of AR, HIF-2α, c-Myc, and p27, which are related to HCC proliferation. Chromatin immunoprecipitation (ChIP) assay and luciferase reporter assay were carried out to investigate the mechanism by which miR-135b-5p decreases AR expression. Results miR-135b-5p suppresses HCC cell proliferation and AR expression. Downregulation of AR expression by miR-135b-5p may in turn transcriptionally modulate HIF-2α expression via direct binding of AR to the androgen response element (ARE) in the HIF-2α promoter. Further dissection of the mechanism revealed that AR-modulated HIF-2α could suppress c-Myc expression resulting in increased p27 expression that likely contributes to the suppression of proliferation in HCC cells. Conclusion miR-135b-5p suppresses HCC cell proliferation via targeting AR-modulated HIF-2α/c-Myc/p27 signals, which may help to develop more effective therapies to prevent HCC progression.
Collapse
Affiliation(s)
- Shi-Xiang Bao
- School of Life Sciences, Anhui Medical University, Hefei 230032, People's Republic of China
| | - Chun-Hua Wang
- Departments of General Surgery, The First Affiliated Hospital, Anhui Medical University, Hefei 230032, People's Republic of China
| | - Shuai Jin
- School of Life Sciences, Anhui Medical University, Hefei 230032, People's Republic of China
| | - Kong-Wang Hu
- Departments of General Surgery, The First Affiliated Hospital, Anhui Medical University, Hefei 230032, People's Republic of China
| | - Jing-Tao Lu
- School of Life Sciences, Anhui Medical University, Hefei 230032, People's Republic of China.,George Whipple Laboratory for Cancer Research, Departments of Pathology and Urology and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
28
|
Zhao X, Wang Y, Yu Q, Yu P, Zheng Q, Yang X, Gao D. Circular RNAs in gastrointestinal cancer: Current knowledge, biomarkers and targeted therapy (Review). Int J Mol Med 2020; 46:1611-1632. [PMID: 33000182 PMCID: PMC7521476 DOI: 10.3892/ijmm.2020.4731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/01/2020] [Indexed: 01/17/2023] Open
Abstract
Circular RNAs (circRNAs) are a type of endogenous non‑coding RNAs that are connected at the 3' and 5' ends by exon or intron cyclization, which forms a covalently closed loop. They are stable, well conserved, exhibit specific expression in mammalian cells and can function as microRNA (miRNA or miR) sponges to regulate the target genes of miRNAs, which influences biological processes. Such as tumor proliferation, invasion, metastasis, apoptosis and tumor stage. circRNAs represent promising candidates for clinical diagnosis and treatment. In the present review, the biogenesis, classification and functions of circRNAs in tumors are briefly summarized and discussed. In addition, the participation of circRNAs in signal transduction pathways regulating gastrointestinal cancer cellular functions is highlighted.
Collapse
Affiliation(s)
- Xiaorui Zhao
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yue Wang
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiongfang Yu
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Pei Yu
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiaoyu Zheng
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xue Yang
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Dian Gao
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
29
|
Zhu J, Li J, Wei Y, Wang J, Zhang XY. Roles of circular RNAs in the progression of hepatocellular carcinoma and their values as diagnostic and prognostic biomarkers. Gene 2020; 767:145175. [PMID: 33002570 DOI: 10.1016/j.gene.2020.145175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/23/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Jing Zhu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, The Sparkfire Scientific Research Group of Nanjing Medical University, Nanjing 210029, China
| | - Jingtao Li
- Department of Liver Diseases, The Hospital Affiliated to Shaanxi University of Chinese Medicine, Xianyang 712000, Shaanxi, China
| | - Yi Wei
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, The Sparkfire Scientific Research Group of Nanjing Medical University, Nanjing 210029, China
| | - Jianchu Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan Road, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Yu Zhang
- Division of Gastrointestinal Surgery, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223002, China.
| |
Collapse
|
30
|
Han TS, Hur K, Cho HS, Ban HS. Epigenetic Associations between lncRNA/circRNA and miRNA in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12092622. [PMID: 32937886 PMCID: PMC7565033 DOI: 10.3390/cancers12092622] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Non-coding RNAs such as microRNAs, long non-coding RNAs, and circular RNAs contribute to the development and progression of hepatocellular carcinoma through epigenetic association. Long non-coding RNAs and circular RNAs act as competing endogenous RNAs that contain binding sites for miRNAs and thus compete with the miRNAs, which results in promotion of miRNA target gene expression, thereby leading to proliferation and metastasis of hepatocellular carcinoma. Competing endogenous RNAs have the potential to become diagnostic biomarkers and therapeutic targets for treatment of hepatocellular carcinoma. Abstract The three major members of non-coding RNAs (ncRNAs), named microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play an important role in hepatocellular carcinoma (HCC) development. Recently, the competing endogenous RNA (ceRNA) regulation model described lncRNA/circRNA as a sponge for miRNAs to indirectly regulate miRNA downstream target genes. Accumulating evidence has indicated that ceRNA regulatory networks are associated with biological processes in HCC, including cancer cell growth, epithelial to mesenchymal transition (EMT), metastasis, and chemoresistance. In this review, we summarize recent discoveries, which are specific ceRNA regulatory networks (lncRNA/circRNA-miRNA-mRNA) in HCC and discuss their clinical significance.
Collapse
Affiliation(s)
- Tae-Su Han
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea;
| | - Keun Hur
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Hyun-Soo Cho
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea;
- Correspondence: (H.-S.C.); (H.S.B.)
| | - Hyun Seung Ban
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea;
- Correspondence: (H.-S.C.); (H.S.B.)
| |
Collapse
|
31
|
Guo W, Zhao L, Wei G, Liu P, Zhang Y, Fu L. Circ_0015756 Aggravates Hepatocellular Carcinoma Development by Regulating FGFR1 via Sponging miR-610. Cancer Manag Res 2020; 12:7383-7394. [PMID: 32884351 PMCID: PMC7443463 DOI: 10.2147/cmar.s262231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the leading threat of cancer-related death in humans. Increasing studies show that circular RNAs (circRNAs) are important indicators in cancer diagnosis and prognosis. This study intended to explore the function and mechanism of circ_0015756 in HCC, providing the additional opinion for HCC treatment. Materials and Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to detect the expression of circ_0015756 and miR-610. Cell viability was assessed by cell counting kit-8 (CCK-8) assay, and colony formation capacity was ascertained by colony formation assay. Cell migration and invasion were monitored by transwell assay. Cell cycle progression and apoptosis were analyzed by flow cytometry assay. Circ_0015756 oncogenicity was determined by Xenograft models. The targets of circ_0015756 and miR-610 were predicted by bioinformatics tools and validated using RNA pull-down, RNA immunoprecipitation (RIP) and dual-luciferase reporter assays. The expression level of fibroblast growth factor receptor 1 (FGFR1) was measured by Western blot. Results The expression of circ_0015756 was increased in HCC tissues, serums and cells. Circ_0015756 downregulation impaired HCC cell viability, colony formation capacity, invasion and migration, induced cell cycle arrest and apoptosis, and inhibited tumor growth in vivo. MiR-610 was ensured as a target of circ_0015756, and miR-610 absence reversed the effects of circ_0015756 downregulation. Further, FGFR1 was targeted by miR-610, and FGFR1 overexpression overturned the effects of miR-610 restoration in HCC cells. Circ_0015756 could regulate FGFR1 expression by targeting miR-610. Conclusion Circ_0015756 played its tumorigenic properties in HCC by activating FGFR1 via sponging miR-610, and circ_0015756 was expected to be a vital indicator in HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Weisheng Guo
- Department of Hepatobiliary Surgery, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450002, People's Republic of China
| | - Lin Zhao
- Department of Hepatobiliary Surgery, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450002, People's Republic of China
| | - Guangya Wei
- Department of Hepatobiliary Surgery, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450002, People's Republic of China
| | - Peng Liu
- Department of Hepatobiliary Surgery, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450002, People's Republic of China
| | - Yu Zhang
- Department of Hepatobiliary Surgery, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450002, People's Republic of China
| | - Liran Fu
- Department of Traditional Chinese Medicine, People's Hospital of Zhengzhou, Zhengzhou, Henan 450000, People's Republic of China
| |
Collapse
|
32
|
Lin Y, Wen-Jie Z, Chang-Qing L, Sheng-Xiang A, Yue Z. mir-22-3p/KLF6/MMP14 axis in fibro-adipogenic progenitors regulates fatty infiltration in muscle degeneration. FASEB J 2020; 34:12691-12701. [PMID: 33000497 DOI: 10.1096/fj.202000506r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/22/2020] [Accepted: 07/11/2020] [Indexed: 12/23/2022]
Abstract
Fibro/adipogenic progenitors (FAPs) are the main cellular source of fatty degeneration in muscle injury; however, the underlying mechanism of FAP adipogenesis in muscle degeneration needs to be further examined. Matrix metalloproteinase 14 (MMP-14) has been reported to induce the adipogenesis of 3T3-L1 preadipocytes, but whether MMP-14 also regulates the differentiation of FAPs remains unclear. To investigate whether and how MMP-14 regulates FAP adipogenesis and fatty infiltration in muscle degeneration, we examined MMP-14 expression in degenerative muscles and tested the effect of MMP-14 on FAP adipogenesis in vitro and in vivo. As expected, MMP-14 enhanced FAP adipogenesis and fatty infiltration in degenerative muscles; moreover, blocking endogenous MMP-14 in injured muscles facilitated muscle repair. Further investigations revealed that Kruppel-like factor 6 (KLF6) was a transcription factor associated with MMP-14 and acted as an "on-off" switch in the differentiation of FAPs into adipocytes or myofibroblasts. Moreover, KLF6 was the target gene of miR-22-3p, which was downregulated during FAP adipogenesis both in vitro and in vivo, and overexpression of miR-22-3p markedly prevented FAP adipogenesis and attenuated fatty degeneration in muscles. Our study revealed that miR-22-3p/KLF6/MMP-14 is a novel pathway in FAP adipogenesis and that inhibiting KLF6 is a potential strategy for the treatment of muscular degenerative diseases.
Collapse
Affiliation(s)
- Yu Lin
- Department of Orthopaedics, the Second Affiliated Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Zheng Wen-Jie
- Department of Orthopaedics, the Second Affiliated Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Li Chang-Qing
- Department of Orthopaedics, the Second Affiliated Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Ao Sheng-Xiang
- Department of Orthopaedics, the Second Affiliated Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Zhou Yue
- Department of Orthopaedics, the Second Affiliated Xinqiao Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
33
|
Han S, Wang L, Sun L, Wang Y, Yao B, Chen T, Liu R, Liu Q. MicroRNA-1251-5p promotes tumor growth and metastasis of hepatocellular carcinoma by targeting AKAP12. Biomed Pharmacother 2019; 122:109754. [PMID: 31918285 DOI: 10.1016/j.biopha.2019.109754] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNA) are small RNA molecules that have emerged as important regulators of gene expression in hepatocellular carcinoma (HCC). However, the expression, function and mechanism of miR-1251-5p in HCC remain poorly understood. In the present study, it was observed that miR-1251-5p expression was upregulated in HCC. Furthermore, higher miR-1251-5p level was correlated with poor prognosis, large tumor size, vascular invasion and high tumor-node-metastasis (TNM) stages of HCC patients. Functionally, miR-1251-5p drove HCC cell proliferation, migration and invasion in vitro, and promoted growth and metastasis of HCC cells in vivo. A-kinase anchor protein 12 (AKAP12) was screened as a direct target of miR-1251-5p by using the starBase V3.0 online platform. The AKAP12 mRNA expression was downregulated and negatively correlated with miR-1251-5p level in HCC tissues. Furthermore, in vitro experiments confirmed that AKAP12 was targeted and negatively regulated by miR-1251-5p. Importantly, AKAP12 overexpression decreased HCC cell proliferation, migration and invasion, whereas inhibition of AKAP12 rescued the miR-1251-5p knockdown-attenuated HCC cell proliferation, migration and invasion. Overall, the present study indicates that miR-1251-5p plays an oncogenic role in HCC by targeting AKAP12, and may be a potential therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Shaoshan Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Liang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Liankang Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Yufeng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Bowen Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Tianxiang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Runkun Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China.
| |
Collapse
|
34
|
Tian F, Yu C, Wu M, Wu X, Wan L, Zhu X. MicroRNA-191 promotes hepatocellular carcinoma cell proliferation by has_circ_0000204/miR-191/KLF6 axis. Cell Prolif 2019; 52:e12635. [PMID: 31334580 PMCID: PMC6797514 DOI: 10.1111/cpr.12635] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES MicroRNAs are powerful regulators in hepatocellular carcinoma (HCC) tumorigenesis. MicoRNA-191 (miR-191) has been reported to play an important role in HCC, However, the regulatory mechanism is still unclear. In this study, we investigated the role of miR-191 in HCC and studied its underlying mechanisms of action. MATERIALS AND METHODS The expression of miR-191 in HCC tissues was determined by quantitative real-time PCR (qRT-PCR). The role of miR-191 in HCC cells was examined by using both in vitro and in vivo assays. Downstream targets of miR-191 were determined by qRT-PCR and Western blot analysis. Dual-luciferase assays were performed to validate the interaction between miR-191 and its targets. RESULTS The expression of miR-191 was significantly higher in HCC patients and a higher miR-191 expression predicted poorer prognosis. Analysis of The Cancer Genome Atlas data sets suggested that miR-191 positively correlated with cell cycle progression. Gain and loss of function assays showed that miR-191 promoted cell cycle progression and proliferation. Luciferase reporter assay showed that miR-191 directly targeted the 3'-untranslated region of KLF6 mRNA. Furthermore, circular RNA has_circ_0000204 could sponge with miR-191, resulting in inactivation of miR-191. CONCLUSIONS Our study sheds light on the novel underlying mechanism of miR-191 in HCC, which may accelerate the development of cancer therapy.
Collapse
Affiliation(s)
- Fang Tian
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Chengtao Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Min Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Xiaoyu Wu
- Life Science and Technology Institute, China Pharmaceutical University, Nanjing, China
| | - Lingfeng Wan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Xuejun Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|